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Pertussis, a highly contagious respiratory infection, remains a public health

priority despite the availability of vaccines for 70 years. Still a leading cause

of mortality in developing countries, pertussis has re-emerged in several

developed countries with high vaccination coverage. Resurgence of pertussis

in these countries has routinely been attributed to increased awareness of the

disease, imperfect vaccinal protection or high infection rates in adults. In this

review, we first present 1980–2012 incidence data from 63 countries and show

that pertussis resurgence is not universal. We further argue that the large

geographical variation in trends probably precludes a simple explanation,

such as the transition from whole-cell to acellular pertussis vaccines. Review-

ing available evidence, we then propose that prevailing views on pertussis

epidemiology are inconsistent with both historical and contemporary data.

Indeed, we summarize epidemiological evidence showing that natural infec-

tion and vaccination both appear to provide long-term protection against

transmission and disease, so that previously infected or vaccinated adults con-

tribute little to overall transmission at a population level. Finally, we identify

several promising avenues that may lead to a consistent explanation of global

pertussis epidemiology and to more effective control strategies.
1. Introduction
Pertussis, or whooping cough, is a highly contagious respiratory disease, pri-

marily caused by the bacterium Bordetella pertussis [1]. Historically, a prominent

cause of mortality in young children [2], routine paediatric immunization with

whole-cell pertussis (wP) vaccines brought about large (typically exceeding

90%) reductions in reported cases in most developed countries, such as the

USA [3] and Canada [4]. Despite these indisputable successes, alarming statistics

indicate that pertussis remains a public health challenge. According to 2008 esti-

mates, pertussis caused 16 million cases and 195 000 deaths in children younger

than 5 years old worldwide, despite a global 82% vaccine coverage [5,6]. While

this burden remains overwhelmingly concentrated in developing countries, per-

tussis has also re-emerged in some developed countries that maintain high

vaccine coverage, including the USA [3], the UK [7] and Australia [8]. Many can-

didate explanations have been advanced, but the causes of these resurgences

remain enigmatic and contentious.

Clinically, pertussis first manifests in mild, non-specific symptoms (catarrhal

phase), which progress to a cough of remarkably long duration, marked by par-

oxysms, inspiratory whoop and post-tussive vomiting [1,9]. Critically, the

infection is most transmissible during the catarrhal phase, when it is least appar-

ent, hampering early diagnosis, treatment and isolation of the bacterium [1].

Unlike other childhood diseases, pertussis exhibits no consistent pattern of sea-

sonality [1,9]. The immunology of pertussis, however, remains its most obscure

aspect. Despite considerable effort, no reliable serological correlates of protection

have been identified, reflecting what is probably a complex immune response to

the many virulence factors expressed by B. pertussis [10].
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Figure 1. Annual incidence data in 20 countries that switched to aP vaccines for primary immunization. We extracted 1980 – 2012 yearly case counts and pertussis
vaccine coverage estimates from the WHO database (http://www.who.int/immunization/monitoring_surveillance/data/en/). For definiteness, we restricted our analy-
sis to countries with more than 80% complete case count and more than 5 million inhabitants. Before analysis, incidence data were log10-transformed and a 5-year
moving average was applied to remove the known 2 – 5 year cycles [21]. To detect long-term trends in pertussis reports, we proceeded in two steps. First, a series of
segmented regression models with 0 – 3 breakpoints and time segments longer than 5 years were applied for each country [3,20]; of these, the most parsimonious
model was selected according to the Bayesian information criterion. Second, to account for autocorrelation, we used generalized least-squares on each time segment
identified in the first step, assuming the residuals autocorrelation structure followed an autoregressive process of order 1. For each country, the time segments were
then classified according to their slope, as increasing (significantly positive slope), decreasing (significantly negative slope) or not significant. For each country, we
represent the annual incidence (black solid lines), the fitted values from segmented regression, coloured according to the trend (red lines: significantly increasing;
grey lines: no significant trend; blue lines: significantly decreasing), and the date of switch to aP vaccination (black vertical dotted lines). Coloured blue areas indicate
the vaccine coverage for the third dose of DTaP vaccine. From left to right and top to bottom, countries are ranked by decreasing value of the last slope.
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Surprisingly, while these complexities leave key questions

in pertussis unanswered, a number of robust opinions are

frequently expressed (illustrated in electronic supplemen-

tary material, figure S6). In particular, pertussis is resurgent

universally [11,12]; whole-cell and acellular pertussis (aP) vac-

cines do not protect against transmission [13–15] and that

waning of infection- or vaccine-derived immunity generates

an endemic pool of adults, who act as a reservoir of transmission

to young children [15–17]. In this review, we re-examine the evi-

dence supporting these widespread opinions and propose that

they are inconsistent with the body of evidence taken as a

whole. Finally, we highlight promising ideas that may lead to

a coherent picture of pertussis epidemiology.
2. Contentious topics in pertussis epidemiology
(a) Pertussis is re-emerging everywhere
Despite highly publicized instances of resurgence in well-

vaccinated countries [3,8,18], the ubiquity of this phenomenon

remains unclear. To assess this, we extended a previous analy-

sis [19] and extracted from the WHO database yearly case

counts (1980–2012) and pertussis vaccine coverage estimates

for 63 countries that met our inclusion criteria (more than
80% complete case count and more than five million inhabi-

tants; electronic supplementary material, text S1). For each

country, we applied a series of segmented regressions to

detect significant changes in trend [3,20].

The results reveal substantial temporal and spatial variabil-

ity in pertussis incidence worldwide (figure 1; electronic

supplementary material, figure S3). Of the 63 countries exam-

ined, 32 had at least one period of increase during 1980–2012,

comprising zero in Africa, eight in the Americas, four in Eastern

Mediterranean, 11 in Europe, five in southeast Asia and

four in Western Pacific. Despite an uneven distribution between

regions for these 32 countries (exact multinomial test, p , 0.01),

no such evidence was found when considering countries

outside Africa (exact multinomial test, p ¼ 0.25). By contrast,

31 countries did not have any significant period of increase

(Africa: eight; Americas: eight; Eastern Mediterranean: five;

Europe: four; Southeast Asia: three; Western Pacific: three),

with an even distribution across regions (exact multinomial

test, p ¼ 0.44). Even in the 32 countries with at least one

period of increase, 28 also had at least one period marked by

a decrease, whereas only four—Australia, Israel, the Nether-

lands and the USA—experienced no decrease in pertussis

incidence over 1980–2012. Considering only contemporary

epidemiological trends (i.e. the last time segment for each
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country), pertussis incidence had increased in 16 countries but

decreased in 32 countries, with no significant trend in

15 countries; again, this pattern did not differ between regions

(Fisher’s exact test, p ¼ 0.39).

The switch to aP vaccine for primary immunization has

been proposed to be associated with resurgence [14,22]. To

assess this, we reviewed the literature to identify the date of

the switch to aP vaccines in the countries that met our inclusion

criteria. For those 20 countries, we examined their primary

immunization schedule and the timing of any paediatric and/

or adolescent booster dose (electronic supplementary material,

table S1). Although the switch to aP coincided with resurgence

in some countries (e.g. Spain and the UK), in others the resur-

gence occurred much earlier, notably in Australia, the USA,

Israel, the Netherlands, Finland and Bulgaria. In addition, the

switch to aP, after a period of high, low or no vaccination, led

to significant decreases in incidence in Finland, Italy and

Sweden, respectively. Trends were similarly variable for the 43

countries that used whole-cell pertussis (wP) vaccines for

primary immunization; for example, pertussis incidence

increased with increasing vaccine coverage in Brazil and Colum-

bia, but decreased with increasing coverage in Bolivia, Thailand

and Vietnam (electronic supplementary material, figure S3).

Considering only contemporary data, these trends did not

differ between countries that used wP or aP for primary immu-

nization (Fisher’s exact test, p ¼ 0.22). Because the number of

aP components [23] and timing of primary immunization [24]

may affect pertussis epidemiology, we also considered this

possibility, but found no consistent association across countries

(electronic supplementary material, table S1).

Despite ever-present incompleteness in notifications, several

robust findings emerge from this analysis. First, contrary to pre-

vious claims [11,12], pertussis resurgence is not global, and a

majority of countries experienced sustained decreases in inci-

dence over the last 30 years. Second, except for countries in

Africa, for which no significant periods of increase were esti-

mated, we found no consistent geographical pattern in the

data, both overall and in the most recent period. Finally, we

found no simple association between epidemiological trends

and country-specific differences in vaccination (i.e. type of vac-

cine, vaccine composition or vaccination schedule), although

more complex interactions may be at work.

(b) Whole-cell pertussis vaccines do not block
transmission

Understanding the nature of vaccine-induced protection is

critical for predicting the benefits of a vaccine. In addition

to the direct protection conferred to those vaccinated, vac-

cines that prevent transmissible infection also protect the

unvaccinated, who benefit from a decreased risk of infection.

Such indirect effects, called herd immunity, are crucial for

the success of vaccination programmes [25]. Although these

effects are rarely measured in vaccine trials, they may be

inferred indirectly from epidemiological data, such as pat-

terns of persistence, changes in periodicity or variations of

incidence in unvaccinated populations [26–28].

A highly influential study by Fine & Clarkson [13] con-

cluded that wP vaccines protect against disease, but not

transmission. Analysing aggregate incidence data from Eng-

land and Wales, these authors noted an increase in the

interepidemic period following the inception of routine infant

immunization, but interpreted its magnitude as insufficiently
large to support a substantial decrease in transmission [13].

This view remains commonly held, is frequently stated and is

now embedded in standard textbooks [1,9].

There is evidence contradicting this view, however. In a

follow-up analysis of an extended dataset from England and

Wales, it was found that, in contrast to Fine & Clarkson’s

study, mass vaccination had in fact resulted in a systematic

increase in the interepidemic period, as predicted by theory

[29]. Subsequent analyses also identified strong signatures of

herd immunity after the rollout of wP vaccines [26,30], notably

a comparative study comprising many countries that demon-

strated an average 1.3-year increase in the interepidemic

period [21]. These findings were supported by direct evidence

from a longitudinal study that estimated high effectiveness of

whole-cell vaccines in reducing transmission in vaccinated

breakthrough cases [31]. Therefore, despite known variability

in efficacy [23], good whole-cell vaccines can unquestionably

provide excellent protection against both disease and

transmission.

(c) Acellular pertussis vaccines do not block
transmission

Widely publicized concerns over the safety and immunogeni-

city of whole-cell vaccines prompted the development of aP

vaccines, which have progressively replaced wP vaccines in

most developed countries [1]. Although vaccine trials demon-

strated high efficacy against disease [23], the ability of aP

vaccines to prevent transmission, and therefore to induce

herd immunity, has been questioned. Specifically, studies of

vaccinated children indicate that aP vaccines stimulate distinct

immune response profiles from those induced by natural infec-

tion or wP vaccination [32]. Further, experimental studies in

mice [22] and baboons [14] suggest limited effectiveness of

aP vaccines in preventing transmissible infection. Empirical

evidence for asymptomatic transmission in aP-vaccinated

individuals is reviewed by Althouse & Scarpino [33].

While intriguing, these conclusions are inconsistent with

epidemiological trends in several countries that use aP vaccines

(figure 2). In Sweden, resumption of aP vaccination, after a

17-year hiatus in pertussis immunization, clearly resulted in

indirect protection of the unvaccinated population [37].

Indeed, the rollout of infant immunization was followed by

substantial reductions of cases in all age groups, including

both adults and infants too young to be vaccinated (figure 2)

[34,38]. This finding confirmed earlier direct evidence of

indirect protection of unvaccinated family members in a pla-

cebo-controlled trial of a pertussis toxoid vaccine [39]. Similar

observations were made in Italy and Japan [35], where the

first aP vaccine was developed (figure 2). To be sure, aP

vaccines, like wP vaccines, vary in efficacy, with higher protec-

tion conferred by vaccines with three or more components [23].

The evidence from Sweden indicates that even mono-

component pertussis toxoid vaccines can effectively prevent

transmission in addition to disease [39]. Therefore, simple

extrapolation of recent experimental findings from animal

models [14,22] to human populations is unwise [27].

(d) Changes in diagnostics and increased awareness
explain pertussis resurgence

Because historically pertussis was regarded as a childhood dis-

ease, clinical diagnosis based on typical presentation in young
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Figure 2. Epidemiological evidence of herd immunity induced by aP vaccines: decrease of cases in infants. (a) Yearly incidence ( per 100 000) in infants less than
1 year old after the 1996 introduction of aP in Sweden (data redrawn from table 3 in [34]). (b) Mean yearly number of cases before (years 1992 – 1994) and after
(overall period 1996 – 2011 or outbreak years) introduction of aP in Sweden, stratified by month of age in the first year of life. (c) Yearly cases per doctor in infants
less than 1 year old after the 1981 introduction of aP in Japan (adapted from fig. 3 in [35]). (d ) Yearly incidence ( per 100 000) in infants less than 1 year old in Italy
(adapted from fig. 5 in [36]).
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children was considered reliable. For the same reason, the mild

disease typical of infection in older children and adults was

rarely reported [16,40]. For example, in the pre-vaccine era,

out of 15 094 reported cases in Aberdeen, Scotland, only

0.59% were in individuals older than 15 years, with 0.26%

identified as repeat attacks [41]. Although long-lasting infec-

tion-derived immunity explains this observation, it has been

proposed that adult pertussis and repeat infections were, in

fact, prevalent, but not reported because of lack of awareness

and the reliance on clinical diagnosis [42]. Recently, more sen-

sitive detection methods, including PCRs or serological assays

of antibody titres against pertussis antigens, have allowed for

a more sensitive (though not necessarily more specific [43])

measure of pertussis in adults. Using these methods, several

studies identified pertussis as a frequent cause of prolonged

coughs in adults [17], suggestive of an under-appreciated

disease burden in this age group.

These observations have led some to assert that recent rises

in pertussis reports merely reflected changes in observation

instead of trends in epidemiology [44]. For example, it has

been proposed that pertussis resurgence in the USA, where a

shift in incidence to older age groups was observed, was

mainly the result of better reporting of the disease in adults

[44]. Although the positive correlation between surveillance

effort and reported adult pertussis in US states superficially

supports this claim [45], detailed observations suggest
otherwise. Analyses of historical US data showed that the

timing of the switch from a downward trend in incidence to

an upward trend varied between states and mostly pre-dated

the use of modern detection methods [3]. Furthermore, it was

found that pertussis reports had declined over 2004–2007 in

24 out of 48 states [3]. These findings are inconsistent with an

explanation of pertussis resurgence based on improved surveil-

lance alone and point to changes in epidemiology.

(e) Natural infection and vaccination confer short-term
immunity

Another commonly held view is that both natural infection and

vaccination confer only transient protection [17,46]. This view

stems from a highly cited review by Wendelboe et al. [15]

that reported estimates of protective immunity of 4–20 years

after natural infection and of 4–12 years after vaccination. As

Wendelboe and co-workers acknowledged, however, most of

the studies they reviewed were not designed to assess the dur-

ation of immunity. Consequently, they may measure a small

and biased sample of the population, unrepresentative of

those whose immunity did not fail. A closer examination of

the studies reviewed to derive the reported range for the dur-

ation of infection-derived immunity makes these limitations

apparent. Three empirical studies were reviewed [15]. The

Aberdeen study [41] indicated near-lifelong immunity in a
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sample of 15 000 individuals, but was excluded by the authors

from their estimates of duration of protection. The second

study documented laboratory-confirmed reinfection in just

four individuals, 3.5–12 years after first infection [40]. The

third, a household contact study of 84 infected adults, found

that 28 could recall having had pertussis at least 20 years

before, though laboratory confirmation of the first infection

was not possible [47]. We submit that this limited evidence is

not a sound basis for claims of the brevity of infection-derived

protection. By contrast, the evidence from the population

dynamics of pertussis reports favours far longer durations

of protection, consistent with epidemic periodicity and

strong natural herd immunity observed in many countries

[28,30,48,49]. Further, it has been shown that patterns of age-

specific incidence during the 17-year vaccination hiatus in

Sweden are inconsistent with even modest contributions to

pathogen circulation from repeat infections [37].

Regarding wP vaccines, small-size cohort studies have

estimated a diminished vaccine efficacy 4 [50] to 12 years

[51] after completion of vaccination. However, to correctly

interpret such estimates, one must overcome bias owing to

case misclassification [52] and uncertainties surrounding the

background force of infection and nature of vaccine failure

(i.e. primary versus leaky) [53]. Epidemiological theory indi-

cates that low durations of vaccine-derived immunity would

result in low vaccinal herd immunity [54]. This is illustrated

by a simple calculation of the reduction in the force of infec-

tion after vaccination, 1� ðlp=l0Þ, where lp is the equilibrium

force of infection at vaccine coverage p, and l0 the equili-

brium force of infection in the absence of vaccination.

Following Magpantay et al. [55], we define the vaccine

impact by w ¼ ð1� 1AÞð1� 1WÞ, where 1A is the probability

of primary vaccine failure and 1W ¼ 1=ð1þDV=LÞ is the

probability that vaccine-derived immunity wanes within a

lifetime, with L the mean lifespan and DV the mean duration

of vaccine-derived immunity. For a vaccinated–susceptible–

infectious–recovered model with perfect infection-derived

immunity (a plausible model of pertussis; cf. [48]),

1� ðlp=l0Þ ¼ wpR0=ðR0 � 1Þ, where R0 is the basic reproduc-

tion number. Application of this formula with reasonable

parameters (R0 ¼ 15, 1A ¼ 0.15, L ¼ 70 y, p ¼ 0.8) and dur-

ations of immunity reported in reference [15] (DV range:

4–12 years) yields a modest 4–11% reduction in the force

of infection. In other words, 80% vaccination coverage

should produce a negligible impact on transmission and

therefore fail to generate appreciable herd immunity, in contra-

diction to the historical experience following the rollout of

wP vaccination in many countries [21,29,30,48].

Although epidemiological datasets in the aP vaccine era are

typically short, trends of increasing incidence among school-

aged children have led many to speculate that aP vaccines

provide only short-lived immunity, with efficacy waning within

as little as 5 years [56,57]. Again, interpreting such observations

requires a careful consideration of the mode of vaccine failure:

one must distinguish waning immunity from primary vaccine

failure. In Sweden, strong signatures of herd immunity [34]

argue against a very short duration of aP-derived immunity.

Careful accounting for age-specific contact rates explained

much of the detailed age-specific incidence patterns in the

Sweden data (including the observed increase in teenage cases),

even under the assumption of lifelong aP-induced immunity [37].

The epidemiological evidence points to long-lasting vac-

cine- and infection-induced protection against transmissible
infection. This is at odds with the clinical observation of dis-

ease in vaccinated and previously infected individuals. We

suggest that it is possible to reconcile these discordant obser-

vations by recognizing the individual variability in the

duration and mode of protection, which appears to be sub-

stantial in the case of pertussis [30]. Clearly, while pertussis

immunity is imperfect, it is important to acknowledge the

diversity of immunity characteristics across the population

and that the average experience may significantly differ

from that of a random individual.
( f ) Adults are a reservoir of infection to young children
It has become conventional wisdom that adults are impor-

tant in the modern epidemiology of pertussis [9,16,17,46].

According to this view, a short duration of infection- or vac-

cine-derived immunity results in an endemic pool of infected

adults, who act as a hidden reservoir of infection to susceptible

children [16,17]. This opinion has originated from studies

that estimated high incidence in adults based on serological

assays and PCR [17] (electronic supplementary material,

table S2), and from household contact studies, in which

adults and adolescents have been identified as the frequent

source of infection for infants, although the source case

frequently cannot be identified [58,59].

Several investigators, however, have questioned the

overwhelming reliance on serology to detect cases in adults,

a method prone to false-positives for which the association

with transmission is unclear [43,60]. Indeed, despite imperfect

sensitivity [61], culture from nasopharyngeal swabs remains

the gold standard for the diagnosis of pertussis [1]. In contrast

to the conventional wisdom, population-based models, chal-

lenged to explain incidence data in both the pre-vaccine

and the vaccine era, have provided remarkably consistent evi-

dence for a minimal impact of repeat infections (electronic

supplementary material, table S4 [21,30,37,48]. This finding

accords with epidemiological theory: the regular 2–5 year

cycles in pertussis reports indicate periodic waves of infection

interspersed by periods of slow build-up, via birth, of naive

susceptibles; analyses of simple models show that constant

input of infectives, for example endemic cases in adults,

preclude oscillations in such systems [62].

Not surprisingly, direct observation of infection in adults

is rare, but not unknown. Von König et al. [17] reviewed a

number of studies that estimated prevalence of symptomatic

infection in adults. Using culture, serology and PCR, the

studies reviewed obtained estimates ranging from 0.05% to

0.5% incidence of symptomatic adult cases per year in highly

vaccinated populations (electronic supplementary material,

table S2). These may be compared with what would be

expected if immunity were permanent. We formulated a

basic age-structured SIR model, assuming different durations

of infection- and vaccine-derived immunity (electronic

supplementary material, text S2). Under the conservative

assumptions of 90% vaccine coverage, 15% primary vaccine

failure and an average duration of infection-derived immunity

exceeding 30 years [30], we found the above-cited estimates to

be inconsistent with durations of vaccine-induced protection

shorter than 50 years (electronic supplementary material,

figure S5). By contrast, durations of vaccine-derived immunity

shorter than 20 years lead to incidences in excess of 1.5%

per year in adults. While this intentionally simple model

does not constitute empirical evidence, it nevertheless
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demonstrates that numbers reported in the literature are not

inconsistent with long average durations of immunity, a find-

ing confirmed using more elaborate models [21,30,37].

Finally, we remark on the possibility, rarely considered but

consistent with epidemiological data from England and

Wales, that symptomatic infections in adults represent primary

infections in individuals who have escaped both previous vac-

cination and natural infection owing to incomplete coverage

with imperfect vaccines [7].

Although transmissible infections in adults certainly

can occur, the lines of above-described evidence incline

us to concur with the conclusion of Preston [63] that there is

‘abundant evidence of the very limited role of adults’ in pertus-

sis epidemiology. This might be either because immunity

wanes slowly (and thus adult infections are rare) or because

adult infections transmit at lower rates, as some clinical evi-

dence suggests [64]. Thus, observations, in adults, of frequent

increases in serum titres of pertussis-associated antibodies

(exceeding 5% per year in some broad serological surveys

[65]) may represent anamnestic responses in the absence of

transmissible infection [43,66]. In keeping with this hypothesis,

serological studies in families have noted antibody-titre

increases, without concomitant inception of clinical disease

and probably without establishment of transmissible infection

[67]. Intriguingly, the ability of B. pertussis to form biofilms in

the respiratory tract [68] might help explain such responses,

as might immunological cross-reactivity with other pathogens.
3. Promising ideas
In §2, we have shown that none of the frequently cited

mechanisms proposed to explain pertussis epidemiology is

consistent with all available. Here, we discuss additional

candidate explanations.

(a) Bordetella pertussis populations evolve
The adaptation of B. pertussis to vaccination has been proposed

as an explanation of recent epidemiological trends [69]. Indeed,

many studies identified temporal variations in B. pertussis
populations as a possible consequence of vaccine immune

escape [70]. Serotyping—based on agglutination assays using

antisera against antigens 1, 2 and 3—provided the first such

evidence. In the UK, several studies documented a shift in

the relative abundance of serotypes after the start of routine

wP vaccination, from a predominance of serotypes containing

antigen 2 (serotypes Fim2 and Fim2,3) in the 1940s to Fim3 in

the 1960s [71]. Similar observations in other countries [72],

particularly in Sweden during three consecutive periods with

wP vaccination, no vaccination and aP vaccination [73], pro-

vided evidence of vaccine-driven evolution to serotype Fim3,

hypothesized to be less antigenic and therefore at a selective

advantage in vaccinated children [74].

Using newer molecular typing methods, many studies

have also documented shifts in allele frequencies of major

B. pertussis antigens following inception of vaccination [69].

A prominent example is the resurgence of pertussis in the

Netherlands, which coincided with the emergence and subse-

quent spread of a novel allele of the pertussis toxin promoter,

suggested to improve fitness by increasing pertussis toxin

production and severity of infections [75]. In the USA, where

similar epidemiological trends have been observed since the

1980s, pertussis resurgence was associated with a mutation
in the gene coding for fimbrial proteins, although the

functional role of that mutation remains unclear [76].

Based on the above observations, it has been proposed

that vaccination has resulted in selection of more virulent

strains that are more efficiently transmitted by previously

primed hosts [69]. To assess the weight of evidence in sup-

port of this hypothesis, several key questions will need to

be answered, with important implications for the design

and the use of current and future vaccines [77]. For example,

why have novel, beneficial variants not spread more broadly

across the globe? What is the impact, if any, of these novel

variants on vaccine effectiveness [73]? More importantly, a

tentative test of this hypothesis will require a comprehensive

description of variations in B. pertussis populations, notably

in countries, such as Australia [78], where resurgence has

not coincided with the timing of strain changes.

Answering the above-mentioned questions will require

highly resolved, geographically distributed gene sequences

from bacterial isolates. The phylodynamic analysis of such

sequences would permit the identification of associations

between transmission and genetic markers for virulence

and antigenicity. Furthermore, such an analysis would

permit the quantification of gene flow between geographical

regions. Additionally, animal challenge experiments can be

invaluable in quantifying the relative transmissibility of

B. pertussis variants.
(b) Circulation of congeners is increasing
In addition to B. pertussis, the main aetiological agent of pertus-

sis—other bacterial species from the genus Bordetella—can infect

humans and may play a role in the epidemiology of pertussis-

like illness [9]. Among these, B. parapertussis has been shown

to cause symptoms very similar to those caused by B. pertussis,
though shorter-lived [79,80]. Moreover, because they express

two closely related surface proteins, filamentous haemagglutinin

and pertactin, the two species induce quantitatively similar anti-

body response against these two antigens [79]. Although

estimates of B. parapertussis incidence rates are low [80], exper-

imental evidence suggests that aP fails to confer cross-

protection and can even facilitate infection by this species [81].

This suggests, therefore, that a role for B. parapertussis in highly

vaccinated populations should not be disregarded.

Another Bordetella species, B. holmesii, has recently attracted

attention [82]. Although its epidemiology remains largely

unstudied, the bacterium is known to cause invasive disease

as well as pertussis-like respiratory infections, mostly in adoles-

cents and adults [82]. Remarkably, current PCR-based methods

do not discriminate between B. holmesii and B. pertussis, and

several studies have identified B. holmesii in a substantial pro-

portion of individuals clinically diagnosed with pertussis.

For example, in a 2010 pertussis outbreak in Ohio, B. holmesii
accounted for 43% of cases in the 11–18 age group and 30%

of cases overall [83]. In addition, B. holmesii was retrospecti-

vely identified in 20% of samples from patients with

suspected pertussis in a study in France [84]. These findings

raise the possibility of frequent misdiagnosis of pertussis,

with considerable implications for the estimation of vaccine effi-

cacy [85]. While the pathogenicity and prevalence of B. pertussis
congeners need to be established, their role will be important to

consider in future studies. To properly quantify the contri-

bution of B. pertussis congeners to reported incidence, there

is a need for more sensitive diagnostic tools capable of



rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20152309

7
distinguishing between different Bordetella species, in addition

to more frequent bacterial isolation from suspected cases.

Finally, animal challenge experiments aimed at determining

heterospecific cross-immunity will be invaluable.

(c) The nature of vaccine failure matters
Quantification of not only the probability of vaccine failure, but

also the manner in which a vaccine fails, may prove critical in

understanding pertussis epidemiology. Although pertussis

immunity is complex [10], two simplified models of vaccine

failure help clarify the issues by capturing opposite extremes

[86]. A leaky vaccine confers equal, though incomplete, protec-

tion to all vaccinated individuals, by reducing the probability

of infection at each exposure. By contrast, an all-or-nothing

vaccine confers complete protection to a fraction of vaccina-

ted individuals, but no protection to the others [86]. In

addition, under both these models, vaccinal immunity can

wane [53,87,88]. These alternative models lead to different

interpretations of age-specific vaccine efficacy estimates from

longitudinal studies [50,53,86], and to different predicted

effectiveness of booster vaccination strategies [89].

Interestingly, these different models of vaccine failure leave

distinct signatures in epidemiological dynamics. In particular,

theory indicates that leakiness can give rise to a ‘reinfection

threshold’ [90] separating a high-transmission regime—

characterized by frequent, immunity-boosting reinfections,

infrequent waning and severe infections concentrated in

children—from a low-transmission regime marked by infre-

quent reinfections, waning immunity and high prevalence of

severe infections in older age groups. Intriguingly, this pattern

results in an overall increase in severe infections as a result of

reduced transmission and was proposed as an explanation for

recent epidemiological shifts in pertussis [90]. Nevertheless,

because previous studies could not discriminate between the

different modes of vaccine failure [53,88], key assumptions

underlying this hypothesis remain unsupported by data.

Recent analysis of models has revealed distinct epidemiological

signatures for these different modes [55], suggesting that statisti-

cal inference on longitudinal incidence data may identify the

mode of vaccine failure. Ideally, this question can be answered

with longer-term vaccine trial designs [87]. Comparative epide-

miological dynamics in the decades following changes in the

vaccine regimen has the potential to resolve this issue.

(d) The honeymoon is over
For any infectious disease, transmission results from inter-

actions between susceptible and infected individuals of a

population. Because such interactions are inherently nonlinear,

seemingly straightforward interventions can have unantici-

pated consequences. In particular, immediately following the

roll-out of a vaccination programme, it is possible to observe

a ‘honeymoon’ period, during which incidence is very low.

This phenomenon arises via the combined effects of vacci-

nation in newborns and initially high herd immunity from

previously infected older individuals. As susceptibles slowly

accumulate owing to incomplete immunization and herd

immunity gradually dissipates through natural deaths of

immune individuals, the honeymoon period eventually ends,

leading to a rise in prevalence especially among older individ-

uals who escaped both infection and vaccination. This effect,

predicted by models [91] and documented for measles [92],

has recently been shown to be consistent with pertussis
resurgence in England and Wales [7]. Specifically, using an

age-structured transmission model and assuming slowly

waning vaccinal immunity, Riolo et al. interpreted the recent

resurgence of pertussis in England and Wales as the inevitable

consequence of a spillover of susceptible individuals into older

age groups over decades of incomplete coverage with an

imperfect vaccine [7]. Although the generality of this phenom-

enon is unknown, it demonstrates that recent epidemiological

trends need not necessarily reflect recent changes in epide-

miology or biology, but rather the slow-to-manifest effects of

long-standing practice.
4. Conclusion
We have summarized empirical evidence showing that, con-

trary to the prevailing view, pertussis vaccines confer long-

term protection against transmission and disease, so that pre-

viously infected or vaccinated adults play a minimal role in

transmission. While this may appear at odds with the results

of particular studies, we submit that the totality of the evi-

dence is fully consistent with this conclusion. In general,

because of the substantial heterogeneity among individuals,

great care is needed in the extrapolation of clinical evidence

to the population level, and vice versa.

We have highlighted several promising ideas that may

explain the perplexing features of pertussis. Most of these

ideas have implications that can be tested by integrating

models with relevant data. While at present insufficient infor-

mation is available on B. pertussis congeners, the growing

interest in B. holmesii may soon yield enough data to inform a

detailed transmission model, which would take into account

the selective advantage imposed by widespread vaccination

against B. pertussis. Similarly, estimation of key parameters

from longitudinal incidence data, using modern inference tech-

niques [93], will help elucidate the mechanisms of vaccinal

immunity conferred by wP and aP vaccines. Pinpointing the

vaccine impact will also be critical for the design of immuniz-

ation strategies to protect newborns, such as cocooning or

maternal immunization [94]. Finally, applying the concept of

a honeymoon period to countries with resurging pertussis

might help focus efforts on those characteristics of pertussis

epidemiology most in need of further explanation.

In their 1951 review, Gordon & Hood [2, p. 334] noted that

‘the epidemiological behavior of whooping cough should be

easy to predict; but whooping cough does not always behave

according to expectation’. More than 60 years after this state-

ment, our understanding of pertussis epidemiology remains

far from perfect. Indeed, our analysis indicates considerable

variability in trends across countries. These findings empha-

size the complexity of pertussis population biology, arising

from the dynamic interplay between country-specific vacci-

nation practices, regional variations in sociodemographic

factors and in the genetic make-up of the aetiological agents,

and heterogeneities among individuals in transmission and

disease. Nevertheless, the considerable burden owing to per-

tussis makes it worthwhile to reconsider long-held beliefs in

the light of all available evidence.
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