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Monitoring chicken flock behaviour
provides early warning of infection
by human pathogen Campylobacter
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Campylobacter is the commonest bacterial cause of gastrointestinal infection in

humans, and chicken meat is the major source of infection throughout the

world. Strict and expensive on-farm biosecurity measures have been largely

unsuccessful in controlling infection and are hampered by the time needed to

analyse faecal samples, with the result that Campylobacter status is often

known only after a flock has been processed. Our data demonstrate an alternative

approach that monitors the behaviour of live chickens with cameras and analyses

the ‘optical flow’ patterns made by flock movements. Campylobacter-free chicken

flocks have higher mean and lower kurtosis of optical flow than those testing

positive for Campylobacter by microbiological methods. We show that by moni-

toring behaviour in this way, flocks likely to become positive can be identified

within the first 7–10 days of life, much earlier than conventional on-farm micro-

biological methods. This early warning has the potential to lead to a more

targeted approach to Campylobacter control and also provides new insights into

possible sources of infection that could transform the control of this globally

important food-borne pathogen.
1. Introduction
Humans currently consume nearly 60 billion chickens a year, numerically more

than any other food animal [1], and chicken production is already so efficient

that modern broilers convert 3 kg of food into 2 kg of meat in a lifespan of

35 days or fewer [2]. Concurrently, there is a worldwide epidemic of human

gastroenteric disease caused by Campylobacter (predominantly C. jejuni and

C. coli) [3,4]. While these bacteria are genetically diverse, associations of particu-

lar genotypes with different host sources are stable over many decades, and

attribution modelling estimates that between 58 and 78% of human disease

originates from contaminated chicken meat [5].

Despite intensive efforts to improve on-farm biosecurity practice over the

past decade, 71.2% of EU broiler chicken flocks remained Campylobacter-positive

at slaughter during 2008 [6] and the incidence of human disease continues una-

bated [7]. This suggests that environmental contamination of growing broilers

may not be the only cause of high rates of Campylobacter infection in chickens

and that key points for intervention, for example, in breeder flocks, hatcheries

or in the first week of chick life, remain unrecognized [8].

One problem in identifying these intervention points is that conventional cul-

ture-based microbiology methods are cumbersome and time-consuming, making

it difficult to know at what stage birds become infected or are vulnerable to infec-

tion. On-farm methods for quickly and easily identifying when flocks become

infected with Campylobacter could therefore be an important step in understanding

the source of that infection, and so a way of helping to design interventions for

living birds [9].
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Although Campylobacter is often classified as a harmless

intestinal commensal of chickens that causes a zoonotic disease

in humans [7], its prevalence in chicken flocks has recently been

linked to welfare [10,11], with the implication that it might also

affect the behaviour and health of the birds themselves. We

tested the hypothesis that flocks infected with Campylobacter
might be distinguishable by their behaviour, thus providing

an immediately available assay for infected birds while they

are still alive. We used a novel and non-invasive way of moni-

toring the behaviour of chickens throughout their lives that

involved analysing the ‘optical flow’ patterns from cameras

inside broiler sheds.

‘Optical flow’ works by detecting the rate of change of

brightness in different parts of a series of visual images

both temporally and spatially [12,13]. It is computationally

simple and does not require tagging or marking individual

animals, making it ideal for long-term continuous monitoring

of large groups of similar animals such as egg-laying hens

[14] and broiler (meat) chickens [15–18], where optical flow

is predictive of key welfare measures in such as percentage

mortality and hockburn [15,16].

To test the hypothesis that optical flow analysis might

also be able to detect when flocks become infected with

Campylobacter, we collected optical flow data for 31 commercial

broiler flocks. We also collected faecal samples from those same

flocks and tested them for the presence of Campylobacter at

different ages (day 21, day 28 and day 35 of age) using standard

laboratory methods. We thus had a direct comparison between

optical flow and testing from faecal samples.
2. Material and methods
(a) Farms and birds
Data (optical flow and pathogen sampling) were collected between

October 2010 and November 2014 from 31 commercial chicken

flocks from three separate sites in the UK belonging to two different

major producers. All flocks were of mixed sexes and were either

Ross 308, Cobb 500 or a mixture of one of the two breeds. All

were grown to a target final stocking density of 38 kg m22. Light-

ing, feeding, temperature and other husbandry regimes were in

accordance with the current practice recommended by the breeder

companies. Optical flow data were collected only until 30 days of

age, before any ‘thinning’ (early removed of a proportion of the

flock). Details of farms and flocks including thinning and clearance

times are shown in the electronic supplementary material, table S1.

(b) Campylobacter sampling
Faecal sampling was employed to detect which flocks were

shedding Campylobacter. Samples were collected using a combi-

nation of swabs placed over boots [19] as a person walked

through the entire house when the chicks were 21 days,

28 days and 35 days of age, and fresh faecal samples that were

collected concurrently on day 28 of chick age. Both boot swabs

and fresh faecal samples were used to maximize the chance of

recovery of the organism. The faecal samples were stored for sub-

sequent more detailed analysis of Campylobacter genotypes and

gut microbiota. Fabric boot swabs were placed over plastic over-

shoes after boot dipping to prevent any transfer of disinfectant

and were pre-moistened with 20 ml buffered peptone water

before use to promote faecal acquisition [19]. The wearer then fol-

lowed a pre-determined zig-zag path through the entire house

of roughly 100 m and (on day 28) collected faecal samples at

10 pre-determined points throughout the house. All samples

were processed within 2 days of collection to ensure bacterial
viability and were cultured using standard methods for both

direct culture using mCCDA (PO0119 Oxoid Ltd, Basingstoke,

UK) and enrichment culture using Exeter broth (Bolton Broth

CM0983, defibrinated horse blood SR0050 and Campylobacter
growth supplement SR0232, Oxoid Ltd, Basingstoke, UK; and

Exeter Campylobacter enrichment-selective supplement SV59,

Mast Group, Bootle, UK) and sub-culture onto mCCDA. Faecal

material was loosened from the boot swabs by adding 50 ml of

phosphate-buffered saline and placing in a stomacher for

30 seconds, prior to innoculating 20 ml of the resulting sus-

pension onto mCCDA and 1 : 10 v v21 into Exeter broth. All

culture media were incubated at 428C for 48 h, using a micro-

aerobic atmosphere for solid agar plates, and a small air space

for the broths. Presumptive Campylobacter isolates identified by

characteristic colony appearance were sub-cultured onto blood

agar (PB0122, Oxoid Ltd) and incubated at 428C for a further

48 h. The identity of Campylobacter isolates was then confirmed

by characteristic Gram-negative small curved rod appearance,

and positive oxidase and catalase reactions.

(c) Definition of Campylobacter-positive and -negative
flocks

We originally collected data from 51 flocks from four sites, but

then applied strict criteria for a flock to be included in the analy-

sis, leaving only 31/51 (61%) flocks that met these criteria (23

from company 1 and 8 from company 2, and from only two-

thirds farms of company 2). We only included flocks that had

been tested on at least two separate days. Negative flocks were

defined as those that were microbiologically negative at 35

days and had not tested positive on any previous sampling

days. Positive flocks were defined as those that tested positive

at any time and were not tested as negative subsequent to that

test. Results of sampling, flock status and dates placed are

given in electronic supplementary material, table S2.

(d) Cameras and recording equipment
For farm 1, the behaviour of the broiler flocks was recorded using

waterproof and custom-built Logitech C120 web cameras, con-

nected (two cameras/unit) to a small form-factor industrial PC

(Fit-PC2, Anders Electronics plc, London, UK) enclosed in a

protective waterproof covering as described in more detail else-

where [13,14]. Two units (four cameras per house) were

installed. For farms 2–4, the equipment was updated and the soft-

ware rewritten for ruggedized smartphones (CAT B15, Caterpillar

Inc., Illinois, USA) running ANDROID v. 4.0.4. In both cases, the cam-

eras (or smartphones) were mounted at a height of 2.0+ 0.1 m.

Both had a focal length (35 mm equivalent) of approximately

25 mm, giving a ‘wide angle’ field of view of approx. 3 � 3 m of

floor area. They were connected to a mains power supply and posi-

tioned so that the field of view contained less than 10% of static

objects such as feeders, drinkers and house uprights. Both systems

recorded with a frame rate of four frames per second. The two sys-

tems were calibrated with test runs of the same data and shown to

give similar results (r2 for kurtosis¼ 0.84, n ¼ 20, p , 0.0001, Pear-

son correlation), but to ensure that the change of equipment did not

affect the results, data from a given flock were compared only with

data collected on the same system. Cameras were installed before

the chicks arrived and left running until day 35. Day 1 data were

not used as the chicks were clearly unsettled on arrival, and data

for company 2 days 1–5 were not available due to camera faults.

(e) Optical flow
Optical flow analysis involves detecting the rate of change of

brightness in each area of an image frame both temporally and

spatially. These changes are combined to give an estimate of
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Figure 1. Daily mean optical flow for (a) company 1 and (b) company 2 for
Campylobacter-positive (blue) and Campylobacter-negative flocks (green). The
solid lines show the best-fit fourth-order model for daily mean values (daily
means of mean optical flow). The dots represent the actual observed daily
mean values and the dashed lines are the 95% confidence limits for
bootstrapped model data. The x-axis is the age in days.
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local velocity vectors [10,11]. Data were collected at four frames a

second between 08.00 and 20.00 each day. Each image frame on a

video file was divided into 320 � 240 pixel images divided into

1200 (i.e. 40 � 30) 8-by-8 pixel blocks and optical flow statistics

(mean, variance, skew, kurtosis) calculated every 15 min (all

4 Hz frames) [15,16]. For each flock, daily means for each statistic

were calculated by taking the average of all four cameras, orig-

inally using MATLAB and subsequently a combination of

Python and C code for improved processing efficiency.

( f ) Statistical analysis
The data were analysed with multi-level models. The explanatory

variables were the presence/absence of Campylobacter and chick

age in days expressed in terms of orthogonal polynomials up to

and including fourth order. Interaction terms were included in

order to account for profile differences between Campylobacter-
positive and -negative flocks. The same methodology was used

to perform separate analyses on the two optical flow descriptors,

mean and kurtosis, that had previously been shown to be of par-

ticular importance to health and welfare outcomes [15,16]. For

both mean and kurtosis, the measure used was average daily

value (over the 12 h period 08.00–20.00). Diagnostics were carried

out on the fitted model to confirm normality and homoscedasticity.

(i) Company
Because housing, management and recording equipment differed

between companies, data from each company were analysed

separately. This means that the comparison between Campylobac-
ter-positive and -negative flocks was based on flocks belonging

to the same company. There was not enough data to separate

farm and company effects.

(ii) Temperature
To take account of possible effects of variation in external tempera-

ture at different times of year, we obtained minimum and

maximum monthly temperature readings from the UK Met

Office (http://www.metoffice.gov.uk/climate/uk/) using data

from the weather station closest to each farm (electronic sup-

plementary material, table S2). The mid-range of temperatures

for the month in which the chicks were hatched was entered into

the multi-level model.

(iii) Campylobacter and age
For each company, for both daily mean and daily kurtosis,

exploratory plots showed that the 30-day profiles had three turn-

ing points, and so orthogonal polynomials up to and including

fourth order were fitted.

Modelling used the nlme library from the R statistical pack-

age [20] and R2-values based on the likelihood ratio were used

to give an indication of goodness of fit [21].

Taking ‘flock’ as a random variable (i.e. assuming that the

flocks observed were a random sample of all flocks from that com-

pany and would naturally vary in movement), it was possible to

incorporate random effects into the coefficients of the order 1

(change of mean or kurtosis) and order 2 (rate of change) coeffi-

cients. Including these random effects in the model resulted in a

highly significant increase in the log likelihood ( p , 0.001). Using

this best-fit model, robust 95% bootstrap confidence envelopes

were obtained for all of the plotted curves. For each curve, over

1000 bootstrap replicates were obtained at each time point [22].
3. Results
Campylobacter-positive flocks showed lower mean optical

flow than flocks not detected as shedding Campylobacter, as
early as the first 10 days of life (figure 1a,b and table 1). For

company 1, the shapes of the two age curves (positive and

negative) are similar and are distinguished by location and

depth of the turning points. The model fit is very close, as

indicated by the fact that almost all the points are inside

the bootstrap confidence limits and the R2-value ¼ 0.8575.

For company 2, the same lower value of mean optical flow

for Campylobacter-positive flocks is apparent (figure 1b and

table 1), and this difference between flocks of different

Campylobacter status is maintained throughout life. Once

again the model fit is good (R2 ¼ 0.8378).

For kurtosis of optical flow, the effects are even more

apparent, with Campylobacter-positive flocks showing consist-

ently higher values than negative flocks (figure 2). For

company 1, there are significant contrasts between flocks

with different disease status in both location and shape.

Being Campylobacter-positive produces an upward shift in

kurtosis of 5.44 and highly significant interactions between

disease and the third and fourth polynomials (table 2).

Model fit is good (R2 ¼ 0.9247). For company 2, an even

greater upward shift is apparent (26.81) and the fit is even

closer (R2 ¼ 0.9879).

Importantly, temperature had no significant effects on the

differences between Campylobacter-positive and -negative

flocks in either mean or kurtosis of optical flow, and there

were no significant interactions between the presence/

absence of Campylobacter and temperature (table 2).
4. Discussion
Our results provide statistical evidence of a link between broi-

ler chicken flock behaviour and Campylobacter status, as early

as the first 10 days of life. Flocks shedding Campylobacter have

a lower mean optical flow (less average movement) and

higher kurtosis (less uniform movement) than flocks not

detected as shedding Campylobacter. This link is independent

http://www.metoffice.gov.uk/climate/uk/
http://www.metoffice.gov.uk/climate/uk/


Table 1. Coefficients of fitted model for daily mean optical flow.

coefficient value d.f. t-value p-value

company 1 intercept 0.8769 532 12.1832 0.0000

CampPos 20.0917 18 21.0789 0.2949

temperature 0.0079 18 1.4207 0.1725

oAge1CampPos 0.1717 532 1.0858 0.2781

oAge2CampPos 20.0188 532 20.3002 0.7642

oAge3CampPos 20.1257 532 25.6008 0.0000

oAge4CampPos 0.0168 532 0.7506 0.4532

company 2 intercept 21.4182 158 20.1893 0.8501

CampPos 0.6668 4 0.1624 0.8789

temperature 20.1523 4 20.2271 0.8315

oAge1CampPos 20.1162 158 20.5932 0.5539

oAge2CampPos 20.0770 158 20.3655 0.7152

oAge3CampPos 20.0838 158 20.8029 0.4233

oAge4CampPos 0.2153 158 3.1551 0.0019
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Figure 2. Daily kurtosis optical flow for (a) company 1 and (b) company 2 for
Campylobacter-positive (blue) and Campylobacter-negative flocks (green). The
solid lines show the best-fit fourth-order model for daily mean values (daily
means of kurtosis optical flow). The dots represent the actual observed daily
mean values and the dashed lines are the 95% confidence limits for
boostrapped model data. The x-axis is the age in days.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20152323

4

of external temperature and cannot be explained by a direct

effect of temperature on the behaviour of a flock. Thus,

although the incidence of Campylobacter may be higher with

warmer temperatures, the differences in optical flow between

positive and negative flocks, in both mean and kurtosis, are

independent of temperature.

Our results are compatible with the growing evidence that

Campylobacter may not be just a harmless commensal member

of the chicken gut microbiota, but is associated with reduc-

tion in the health of the chickens [7]. Reduced growth rate in

free-range chickens is associated with increased diversity of

Campylobacter genotypes [23], and where chickens show a

strong inflammatory response to Campylobacter, this can lead
to diarrhoea, poor-quality wet litter, and damage to birds’

feet and legs [7]. Greater susceptibility to Campylobacter has

also been associated with changes in the gut microbiota

of chickens, humans and mice, while vibrionic hepatitis

(spotty liver disease) in chickens is also strongly linked with

Campylobacter [24–26].

What is not clear, however, is whether the lower mean

and higher kurtosis of optical flow associated here with

Campylobacter infection is the result of a direct effect of

Campylobacter on chicken behaviour or whether the optical

flow is detecting other signs of reduced welfare (such as

poorer walking ability) that indicate a general reduction in

the birds’ overall health. We also do not know whether the

optical flow differences that were apparent in very young

birds (less than 10 days old) were due to their already

being infected but not shedding sufficiently for infection to

be detected or whether they were still uninfected but had

slightly reduced overall condition that would make them vul-

nerable to later infection. However, whether Campylobacter is

affecting chickens directly or is an indicator of other predis-

posing factors, detecting its presence could be a valuable

aid to healthy flock management for producers. Detecting

health and welfare issues at an early stage provides opportu-

nities for interventions before commercially damaging

consequences occur.

Our results also suggest new directions in identifying

causes of Campylobacter infection of chickens. First, although

direct vertical transmission of Campylobacter between parent

and progeny flocks is not widely regarded as important on

the grounds that the bacteria are only rarely isolated from

eggs, our finding that susceptible flocks are identifiable when

the flocks are only 7–10 days old points to the possible impor-

tance of transgenerational influences, or at least to particular

susceptibility in early life [27]. Second, closer attention

should be paid to the hypothesis that there may be inherent

differences between broiler flocks (e.g. number of parent

flocks supplying eggs, breed) or the management of flocks in

the first week of life that contribute to the development

of Campylobacter infection. Stress increases the uptake of



Table 2. Coefficients of fitted model for daily kurtosis optical flow.

coefficient value d.f. t-value p-value

company 1 intercept 20.9575 532 6.9515 0.0000

CampPos 5.0119 18 2.1215 0.0473

temperature 0.0616 18 1.6869 0.1080

oAge1CampPos 211.6433 532 20.8142 0.4159

oAge2CampPos 21.0755 532 20.1761 0.8612

oAge3CampPos 11.7441 532 6.6239 0.0000

oAge4CampPos 212.8840 532 27.3100 0.0000

company 2 intercept 5.8956 158 1.3675 0.1734

CampPos 26.8173 6 4.9176 0.0027

temperature 0.0104 18 1.7460 0.8101

oAge1CampPos 38.8721 158 2.0434 0.0427

oAge2CampPos 227.3677 158 22.6389 0.0091

oAge3CampPos 15.7648 158 3.6063 0.0004

oAge4CampPos 28.0803 158 22.8023 0.0054
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Campylobacter in the gut epithelium [2,28], and chicks that

experience temperature and humidity levels outside rec-

ommended boundaries in their first 7 days have increased

risk of mortality and leg health problems in later life [29,30].

Reduction of stress through careful management of the

environment experienced by young chicks may be an

important potential way of combating Campylobacter infection.
5. Conclusion
Systematic use of optical flow information has the potential to

make a major impact on the management of commercial

chicken flocks, to the benefit of producers, consumers and

the birds themselves. Farm managers able to access such

information in real time would have an early warning of

which of their flocks were most at risk of health and welfare

problems, enabling them to intervene before these became

serious and helping them to produce higher-quality, healthier

food with better welfare.
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