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Abstract

Complex diseases are the result of intricate interactions between genetic, epigenetic and 

environmental factors. In previous studies, we used epidemiological and genetic data linking 

environmental exposure or genetic variants to phenotypic disease to construct Human Phenotype 

Networks and separately analyze the effects of both environment and genetic factors on disease 

interactions. To better capture the intricacies of the interactions between environmental exposure 

and the biological pathways in complex disorders, we integrate both aspects into a single 

“tripartite” network. Despite extensive research, the mechanisms by which chemical agents disrupt 

biological pathways are still poorly understood. In this study, we use our integrated network 

model to identify specific biological pathway candidates possibly disrupted by environmental 

agents. We conjecture that a higher number of co-occurrences between an environmental 

substance and biological pathway pair can be associated with a higher likelihood that the 

substance is involved in disrupting that pathway. We validate our model by demonstrating its 

ability to detect known arsenic and signal transduction pathway interactions and speculate on 

candidate cell-cell junction organization pathways disrupted by cadmium. The validation was 

supported by distinct publications of cell biology and genetic studies that associated 

environmental exposure to pathway disruption. The integrated network approach is a novel 

method for detecting the biological effects of environmental exposures. A better understanding of 

the molecular processes associated with specific environmental exposures will help in developing 

targeted molecular therapies for patients who have been exposed to the toxicity of environmental 

chemicals.

Keywords

Exposure; Complex Diseases; Chemical Agents; Biological Pathways; Human Phenotype 
Network

jhmoore@upenn.edu. 

HHS Public Access
Author manuscript
Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 21.

Published in final edited form as:
Pac Symp Biocomput. 2016 ; 21: 9–20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Complex diseases are believed to be the result of non-linear genetic, epigenetic and 

environmental interactions. Epistatic and pleiotropic genetic interactions, though ubiquitous 

in nature, only explain a fraction of disease occurrences.1 Both acute and prolonged 

exposure to environmental factors such as chemical agents present in water, soil, or air also 

contribute to human disease.2 GWAS partially reveal causal genetic interactions in complex 

diseases. Well-established studies of specific chemical agents link tobacco smoke to 

cardiovascular and respiratory diseases, and asbestos dust to several types of cancer. 

Integrating data from multiple sources helps to gain a better understanding of the way 

genetic risk factors, environmental exposures, as well as lifestyle choices all contribute to 

causing complex diseases.

Human phenotypes, including physical traits, diseases and behaviors, have been successfully 

linked through their shared biology to form networks of diseases. These networks and the 

interactions they reveal have been thoroughly studied using mathematical and statistical 

analyses.3,4 Indeed, networks offer a comprehensive array of analytical tools while at the 

same time providing an intuitive representation of interactions within otherwise inextricably 

complex data.5 Additionally, the concept of exposome6 encompasses all human 

environmental exposures and complements the genome in predicting complex disease.

At a systems biology level, the interaction between genetic predisposition and 

environmental factors is poorly understood. The discovery of novel personalized molecular 

drugs that target specific pathways rely on the development of methods to study the intricate 

interactions between our environment and the biological pathways that govern human 

complex disease. The focus of this work is to provide a novel tool to identify candidates for 

potential environmental chemical agent and biological pathway interactions.

The sheer combinatorial complexity of chemical agents and pathways drives us to explore 

new approaches that prioritize the interaction of potential interest. Therefore, we propose to 

build an extension of the Human Phenotype Network (HPN)7 based on biological pathway 

interactions, and overlay it with the HPN based on environmental exposure data.8 The 

resulting model is a tripartite network constituted of three different types of vertices: human 

phenotypes, biological pathways, and environmental chemical agents. By projecting the 

network onto the space of human phenotypical traits, we are able to identify disorders that 

share only biological pathways, those that share environmental factors, and those that 

interact both at the environmental and the genetic level. We speculate that by integrating 

pathways and environmental exposure data in a single network, we are able to generate 

plausible hypotheses about the disruptive nature of chemical agents on certain biological 

pathways.

We analyze the resulting integrated networks both in quantitative and qualitative terms. We 

show how focusing on the double-edges of disorders that share both environmental and 

genetic origins can help identify potential candidates for environmental chemical agent and 

biological pathway interactions.
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2. Methods

The expansion of systems biology has given rise to a trend towards studying disease from a 

global perspective, reaching beyond the silos of traditional medicine. Graphs, or network, 

are commonly used to study the interactions between phenotype and genotype. In the 

Human Disease Network (HDN),3 or its extension, the Human Phenotype Network,7 nodes 

representing diseases and phenotypes are linked by edges that represent various connections 

between disorders. These connections can be established by identifying shared causal 

genes,3 genetic variants (SNPs),9 linkage-disequilibrium SNP clusters,7 biological 

pathways,4 or clinical symptoms.10 The underlying connections of these networks contribute 

to the understanding of the molecular basis of disorders, which in turn lead to a better 

understanding of human disease.

In previous works, we presented the concept of Human Phenotype Networks (HPNs), which 

represent the interactions between human traits and diseases based on their shared biological 

background, such as SNPs, genes, or pathways.4,7 This approach has proven useful in 

analyzing epistatic and pleiotropic effects at the systems level.11 Additionally, we have 

proposed an extension to the HPN based on shared environmental chemical agents.8 When 

considered separately, both environmental and genetic HPNs are bipartite networks5 

composed of two distinct sets of vertices. Edges can only connect members of the opposite 

set. Bipartite networks can be projected in the space of either vertex set. Projecting the 

network increases the readability and interpretability of the data represented, but results in 

information loss. Figure 1 shows a schematic representation of a bipartite network in the 

center panel (b) and the resulting projection in either the space of circle vertices (a) and the 

space of rectangle vertices (c). In the case of the genetic HPN presented below, the vertex 

sets are composed of diseases and biological pathways. In the environmental HPN, the 

vertex sets are composed of diseases and chemical substances.

Because both HPNs share the disease vertex set, we can combine the two HPNs into a single 

“tripartite” network composed of three distinct vertex sets: traits, biological pathways, and 

chemical agents. Figure 2 represents a tripartite network (a) and its projection onto the 

rectangle vertex set (b). In tripartite networks, the edges are also divided into two categories. 

In our example, the blue edges only connect circle and rectangle vertices, whereas the red 

edges connect rectangles to diamonds. The resulting projection network has vertices linked 

by blue edges, red edges or both red and blue edges. Naturally, a tripartite network can be 

projected onto the space of either vertex set.

In the following sections, we discuss the two bipartite HPNs and the third novel tripartite 

HPN that combines exposure and genetic data.

2.1. Human Phenotype Network based on Exposure Data

In our previous study, we proposed a novel approach to bridging the gap between 

environmental exposure data and information on the diseases they may cause.8 To the best 

of our knowledge, the exposure-to-disease data has not been aggregated in publicly 

accessible sources. To establish possible causal effects at a global level, we integrated data 

from the CDC's Fourth National Report on Human Exposure to Environmental Chemicals 
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(http://www.cdc.gov/exposurereport/), including its subsequent updated tables, and the data 

of the NHGRI GWAS Catalog, accessed on 05/06/2014. Through a meticulous PubMed and 

Google Scholar literature survey, we compile a list of the diseases and traits that have been 

associated with any 60 environmental chemicals of the CDC's report. The CDC has 

identified these chemical agents as potentially harmful to human health and categorized 

them into 11 groups such as tobacco smoke, heavy metals, pesticides, etc. Figure 8 (X-axis) 

recapitulates all the chemical agents and their group in square brackets. Causal association 

between a chemical substance and a disease is based on compelling evidence found in the 

literature and confirmed in multiple studies, limiting uncertain associations to a minimum. 

We subsequently use the phenotype list from the GWAS catalog and the International 

Classification of Diseases Ninth Revision (ICD-9) codes to classify all traits and eliminate 

redundancies. Our survey inventories 548 well-established causal effects between these 60 

substances and 151 human phenotypic traits and disorders. We note, however, that the data 

collected might contain a bias towards phenotypes and exposures that are more heavily 

studied.

The data aggregated in the survey is arranged in a bipartite network of diseases and 

environmental chemical compounds linked by “probable causality” edges. The resulting 

graph is depicted in Figure 3(a). This bipartite network shows the 548 relationships between 

the 60 chemical substances (top row, red vertices) and the 151 human disorders (bottom 

row, light blue vertices). The node sizes are proportional to vertex degree, i.e. the number of 

connections to the opposite set of vertices. The resulting projection onto the disease space is 

presented in Figure 3(b), where edges display common chemical factors associated with 

disorders. Furthermore, each node in the network is annotated with the substance 

classification group(s) to which it belongs. In the case of chemicals, the annotation is 

straightforward, as each substance belongs to exactly one class. For diseases, we identify all 

groups that contain at least one causal substance. A detailed description of the 

environmental HPN and our findings is available in our previous study.8 The projection onto 

the chemical substance space is not shown in this study to save space, but it can be found in 

our previous study.8 Nodes are color coded according to their (majority) substance class. 

The phenotype network (b) has 151 nodes and is densely connected (average degree of 40+), 

where each edge signifies that the two diseases they connect are associated with one or more 

common chemical agents.

2.2. Human Phenotype Network based on Biological Pathways

In their seminal work, Goh et al.,3 explored the Human Disease Network, limiting their 

analysis to the genes shared by different diseases. Another study by Li et al.9 traced the 

genetic variants connecting disease traits. In 2009, Silpa Suthram et al.12 analyzed diseases 

by their related messenger RNA in combination with the human protein interaction network. 

They found significant genetic similarities between certain diseases, some of which shared 

drug treatments. Also in 2009, Barrenas et al.13 further studied the genetic architecture of 

complex diseases by doing a GWAS, and found that complex disease genes contribute less 

and are less represented than the single-gene diseases in the human interactome. In 2014, 

Zhou et al.14 have presented yet another way of finding overlap in disease commonalities, 

that is, they link disorders that share symptoms.

DARABOS et al. Page 4

Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cdc.gov/exposurereport/


In the present work, we expand on the biological SNP-based HPN presented first in our 

previous studies.11,15 We update the data to the most recent versions of the GWAS catalog 

(05/15/2015), NIH database of Genotypes and Phenotypes (dbGaP), and the Kyoto 

Encyclopedia of Genes and Genomes (KEGG).16 We integrate the 1,252 phenotype 

information from both sources, the over 37,000 SNPs annotation, and 16,000 gene/loci 

association, as well as the biological pathways data to build the present pathway-based HPN. 

By aggregating these associations, we were able to link phenotypes with shared pathways, 

i.e. with genes involved in the same pathways. Furthermore, we have used the International 

Classification of Diseases Ninth Revision (ICD-9) codes to classify all traits and identify 

redundancies. The HPN encompasses all phenotypes listed in the GWAS catalog and 

dbGaP, provided that they are connected to at least one other trait. It is comprised of 986 

phenotypic traits, 1,424 biological pathways, and over 260,000 edges, with an average 

connectivity of 500+.

2.3. Combining the Human Phenotype Networks: Tripartite and Projection

The main focus of this work is to help identify potential candidates for environmental 

chemical agent and biological pathway interactions. These interactions can in turn guide the 

development of novel targeted and personalized therapies. To help tease out potentially 

relevant pathway-environment interactions out of all the possible combinations, we build the 

tripartite HPN by combining the pathway-based HPN and the environmental HPN into one 

graph. The resulting model is comprised of 2,529 vertices of three different types: 1,045 

diseases (142 overlapping between the two HPNs), 1,424 biological pathways, and 60 

environmental chemical substances. Moreover, the tripartite HPN includes two different 

types of interaction edges: about 80,000 disease-to-pathway and over 1,500 disease-to-

substance links.

Because of the sheer size, density and complexity of the tripartite network, we choose to 

present only its projection onto the disease space in Figure 4. Red edges represent biological 

pathway interactions, green edges represent environmental chemical agent interactions, and 

blue edges are double edges that share both biological and environmental interactions.

To further facilitate the interpretation of the results and focus our analysis on shared genetic 

and environmental candidates, we filter the combined HPN to retain only the traits and 

diseases that have at least one edge of each kind impinging on them. In other words, we 

extract the subnetwork made of only blue edges and the vertices that are connected by those 

blue edges. The resulting HPN is presented in Section 3 below.

3. Results

In this section, we present the results of the quantitative analysis of the projected tripartite 

HPN. Quantitative network and graph analysis relies on strict statistical and mathematical 

tools and can be applied to networks of arbitrary size and complexity.5 In this study, we 

focus on a subnetwork that shows the shared interactions between traits associated with both 

environmental and genetic factors. Therefore, we reduce the size and the complexity of the 

projected HPN to a manageable number of diseases and interactions in order to allow both 

quantitative, qualitative, and visual interpretation of the results. The final HPN integrating 
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only vertices that share both genetic and environmental background, pictured in Figure 5, is 

composed of 74 phenotypes and 1,000 edges. The node (and label) size is proportional to the 

total number of associated environmental chemical agents; the color hue represents the 

number of biological pathways associated (green for fewer and red for more). The edge 

weight (i.e. its width) is proportional to the number of pathways shared between the disease 

endpoints whereas the color hue represents the number of shared environmental factors 

(green for fewer, red for more).

Further study of the individual edges and their distribution reveals that the vast majority of 

disease pairs are connected by heavy metals (59%), pesticides (20%) or organic compounds 

(7%). Mercury is potentially a common cause for almost 300 pairs of disorders, closely 

followed by lead, cadmium, DDT and arsenic. Figure 6 provides the detailed distribution of 

each substance of amongst the edges of the HPN. In the inset of Figure 6, the pie chart 

shows the same distribution by chemical agents classification groups, no by individual 

compound.

A similar study of the biological pathway edges reveals that the signal transduction, the 

immune system and metabolism pathways are the most represented. This comes as no 

surprise because these are “generic” pathways involving hundreds or even thousands of 

genes, therefore statistically highly probable to be represented more within the network. The 

complete breakdown of the 25 most represented biological pathways is shown in Figure 7.

Finally, we studied the distribution of biological pathway and chemical agent interactions 

within the projected network. The heatmap in Figure 8 shows the frequency of co-

occurrence (double edge) for chemical substances and pathways between pairs of diseases.

In Figure 8, the biological pathways are approximately sorted by ascending frequency along 

the Y-axis. The chemical substances are arranged in groups along the X-axis. Heavy metals, 

in particular lead, cadmium, arsenic and mercury, and a pesticide (DDT) appear to interact 

with the most biological pathways. To assess the significance of these co-occurrences, we 

test the statistical probability of each existing pair in a null-model by running a 10,000-fold 

permutation test on all the edges of the tripartite network. For lack of space, we cannot 

present these data in detail. The results of the permutation test show that the most 

represented chemical agent-pathway pairs of have less than a 3% probability of occurring by 

chance.

4. Qualitative Observations, Biomedical Implications & Discussion

In this study, we integrated genetic and environmental exposure data in a tripartite network 

to identify interactions between environmental agents and biological pathways. Although the 

effects of environmental agents on disease have been studied extensively, the mechanisms of 

exposure are still poorly understood. Using the network approach, we aim to identify 

specific biological pathways disrupted by environmental agents. Identifying these pathways 

would not only help to establish more effective, more precise treatment therapies for patients 

who have been exposed, but can also provide insight to the mechanisms behind complex 

diseases.
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To identify potential exposure-pathway interactions, we analyze overlapping edges in the 

final integrated HPN. Each edge distinguishes two phenotypes that are associated with the 

same environmental and genetic risk factors. We conjecture that the number of co-

occurrences between pairs of environmental substances and biological pathways is 

correlated with a higher likelihood of an interaction between substance and pathway 

involved. Our permutation test shows that due to the combinatorial complexity of our HPN, 

the statistical probability of having our identified pathway-environment interaction occur by 

chance is generally below 3%.

The integrated network approach is a novel method for detecting the biological effects of 

environmental exposures. A better understanding of the molecular processes associated with 

specific environmental exposures will help in developing targeted molecular therapies for 

patients who have been exposed to the toxicity of environmental chemicals. We qualitatively 

analyze the HPN and propose possible biomedical applications. To establish the validity of 

the HPN, we assess its ability to detect known environmental substance-pathway 

interactions. To construct the tripartite network, we used epidemiological data that 

associated environmental exposure and genetic data to phenotypic disease. In order to 

validate our network and generate new hypotheses, we used distinct publications of cell 

biology and genetic studies that associate environmental exposure to pathway disruption. 

There is no overlap between the publications we used to build the network and the 

publications we used to validate it and generate hypotheses.

Arsenic and signal transduction

Arsenic is a heavy metal toxin found naturally in the soil, minerals, and groundwater. 

Because of the many health risks it poses for humans, arsenic and its associated molecular 

mechanisms have been investigated extensively. By now, it is well known that arsenic 

severely disrupts signal transduction pathways.17,18 Thus, we expect to see arsenic exposure 

overlap with signal transduction pathways at a high frequency in the HPN. Indeed, arsenic 

occurred most frequently in conjunction with “signaling by GPCR” and “GPCR downstream 

signaling”, with a combined 225 co-occurrences and an approximate 1.4% chance co-

occurrence, and less than 2.3% chance respectively. Arsenic exposure also had a high 

number of co-occurrences with more specific signaling transduction pathways such as T-cell 

receptor signaling (28 co-occurrences, 1% probability)19 and B-cell receptor signaling (36 

co-occurrences, 1.2% probability),20 both of which have been supported by scientific 

literature.

4.1. Generating hypotheses for substance-pathway interactions

Beyond the HPN's capability of replicating recognized environment-pathway interactions, 

we can further use it to search for undiscovered exposure-pathway interactions and identify 

possible molecular targets candidates for environmental exposure treatments. We generate 

hypotheses by first looking for high frequency co-occurrences that are less established in the 

literature. Pathways that are highly incident on a particular disease are evaluated to establish 

a possible link between the exposure, biological pathway, and disease using biological 

knowledge and scientific literature. Using this approach, our integrated HPN can narrow in 
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on plausible exposure-pathway interactions that are worth studying further in order to 

elucidate the molecular mechanisms involved in environmental toxicity.

Cadmium and cell-cell junction organization—Occupational studies from the 1980s 

and 1990s suggest that kidney stones, a highly recurrent and hard calcium deposit in the 

kidneys, are more common among workers exposed to cadmium.21–23 A subsequent study 

analyzed NHANES data from 1999-2006 and concluded that low levels of exposure to 

cadmium increase the risk of chronic kidney disease.24 There has been little elucidation of 

how cadmium contributes to kidney disease, however. We use the combined HPN to 

generate a hypothesis about which biological pathways are disrupted by cadmium exposure 

and how they might contribute to kidney disease. We observe on the network that cell-cell 

junction organization pathway is highly incident on the kidney stones phenotype node. We 

also observe the cell-cell junction organization pathway occurs most often with cadmium 

exposure (21 co-occurrences, 0.9% probability). From this, we can hypothesize that 

cadmium increases risk of kidney stones by obstructing tight junction functionality. Recent 

studies have provided preliminary support for this hypothesis. A recent study provided 

evidence that claudin-14, a gene associated with tight junction function, is responsible for a 

genetic predisposition to kidney stones.25 The study suggested that claudin-14 mutations 

blocks calcium from entering tight junctions of the kidneys and causes excess calcium to go 

into urine, leading to kidney stones. Additionally, a literature survey indicates preliminary 

evidence that cadmium affects the distribution of tight junction proteins.26 These studies 

suggest that both claudin-14 and cadmium confer risk for developing kidney stones. Using 

the combined HPN, we identified cell-cell junction pathway disruption as one way cadmium 

exposure might confer this risk.

Most complex diseases are synergistic outcomes of genetic and environmental effects. In 

order to develop effective therapies, we must understand the molecular processes modulated 

by both genetic variants and environmental exposures. The combined HPN provides a 

method to detect pathways that are disrupted by environmental exposures and proposes 

potential molecular targets for therapies.
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Fig. 1. 
Schematic representation of a Bipartite Network (b) and its projection in the space of either 

vertex set (a) and (c).
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Fig. 2. 
Schematic representation of a Tripartite Network (a) and its projection in the space of the 

“rectangle” vertex set (b).
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Fig. 3. 
Phenotype-Substances Network. (a) The Bipartite Network. Top row, red vertices: 

environmental chemical substances. Bottom row, blue vertices: human phenotypes and 

diseases. Vertex size is proportional to the degree. (b) Projections onto the Phenotype Space. 

Nodes are colored according to their (majority) substance group according to the legend. 

Node sizes are proportional to the number of substances associated. Edge weights and width 

represent the number of shared substances.
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Fig. 4. 
Combined Human Phenotype Network based on Biological Pathways and Chemical 

Substances Exposure: Projection of the substance-phenotype-pathway tripartite network 

onto the phenotype space. Red edges represent pathway interactions only. Green edges show 

identified substance interactions. Finally, blue edges show pairs of traits that share both 

biological pathways and chemical substance exposure. The vertex and label size are 

proportional to its degree (i.e. the number of impinging edges).
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Fig. 5. 
Filtered Substance-Exposure HPN: Projection of the substance-phenotype-pathway tripartite 

networks onto the phenotype space filtered to retain only edges and vertices that share both 

substance and genetic interactions. Vertex size is proportional to the total number of 

associated substances; vertex color is proportional to the number of biological pathways 

associated (green for fewer and red for more). Edge width is proportional to the number of 

shared pathways; edge color is proportional to the number of shared substances (green for 

fewer, 1 pathway, and red for most: 10 pathways).
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Fig. 6. 
Distribution of the Chemical Agents among the Edges within the Combined Network. The 

number of edges connecting two traits for each substance. Inset: the distribution of the 

substance classification groups among all edges in the combined network.
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Fig. 7. 
Distribution of the biological pathways amongst the edges within the combined network. 

The number of edges connecting two traits for each the top 50 most represented pathways.
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Fig. 8. 
Pathway-Substance Interaction Heatmap.
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