Neurobiology of Stress 1 (2015) 44—59

journal homepage: http://www.journals.elsevier.com/neurobiology-of-stress/

Contents lists available at ScienceDirect

OF STRESS

Neurobiology of Stress

Glucocorticoids, epigenetic control and stress resilience

@ CrossMark

Johannes M.H.M. Reul #*, Andrew Collins *, Richard S. Saliba ¢, Karen R. Mifsud ?,
Sylvia D. Carter ¢, Maria Gutierrez-Mecinas * 2, Xiaoxiao Qian °, Astrid C.E. Linthorst "

2 Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY,

United Kingdom

b Neurobiology of Stress and Behaviour Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street,

Bristol BS1 3NY, United Kingdom

ARTICLE INFO

Article history:

Received 13 August 2014
Received in revised form

1 October 2014

Accepted 4 October 2014
Available online 15 October 2014

Keywords:

Exercise

HPA axis

Glucocorticoid receptor
Mineralocorticoid receptor
CBG

PTSD

ABSTRACT

Glucocorticoid hormones play a pivotal role in the response to stressful challenges. The surge in
glucocorticoid hormone secretion after stress needs to be tightly controlled with characteristics like peak
height, curvature and duration depending on the nature and severity of the challenge. This is important
as chronic hyper- or hypo-responses are detrimental to health due to increasing the risk for developing a
stress-related mental disorder. Proper glucocorticoid responses to stress are critical for adaptation.
Therefore, the tight control of baseline and stress-evoked glucocorticoid secretion are important con-
stituents of an organism's resilience. Here, we address a number of mechanisms that illustrate the
multitude and complexity of measures safeguarding the control of glucocorticoid function. These
mechanisms include the control of mineralocorticoid (MR) and glucocorticoid receptor (GR) occupancy
and concentration, the dynamic control of free glucocorticoid hormone availability by corticosteroid-
binding globulin (CBG), and the control exerted by glucocorticoids at the signaling, epigenetic and
genomic level on gene transcriptional responses to stress. We review the beneficial effects of regular
exercise on HPA axis and sleep physiology, and cognitive and anxiety-related behavior. Furthermore, we
describe that, possibly through changes in the GABAergic system, exercise reduces the impact of stress on
a signaling pathway specifically in the dentate gyrus that is strongly implicated in the behavioral
response to that stressor. These observations underline the impact of life style on stress resilience. Finally,
we address how single nucleotide polymorphisms (SNPs) affecting glucocorticoid action can compromise

stress resilience, which becomes most apparent under conditions of childhood abuse.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

endocrine and neuro-psychiatric disorders. The psychiatric dis-
eases include stress-related disorders like major depression and

Glucocorticoid hormones play a fundamental role in the adap-
tation of an organism to stressful events in its life. Research over the
past >60 years has shown that glucocorticoid hormone actions at
the molecular and cellular level are highly complex with multiple
long-term consequences for physiology and behavior (De Kloet and
Reul, 1987; De Kloet et al., 1998, 2005; McEwen, 2012a,b). Not
surprisingly, research has provided ample evidence that chronic
hyper- as well as hypo-secretion of glucocorticoid hormones is
involved in the development of a range of metabolic, immune,
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anxiety disorders (e.g. post-traumatic stress disorder (PTSD)).
During the past 15 years this idea has been supported by evidence
that individual differences exist in the vulnerability of developing a
major depressive or anxiety disorder during the course of life
(Zannas and Binder, 2014). It appears that certain genetic traits, e.g.
SNPs in the glucocorticoid receptor (GR; Nr3c1) associated chap-
erone Fkbp5 (FK506-binding protein 51) gene, in combination with
traumatic (early) life events can dramatically increase the likeli-
hood of precipitating psychiatric disease (Klengel and Binder,
2013a,b). Conversely, mechanisms are in place to maintain or in-
crease resilience of the organism to stress and prevent the devel-
opment of maladaptive responses and disease. Evidence has been
accumulating that a physically active life style (exercise) is benefi-
cial in strengthening resilience to stress (Reul and Droste, 2005).
Indeed, it has been shown that long-term voluntary exercise in
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rodents such as rats and mice results in changes in HPA axis control,
sleep physiology, and anxiety-related behavior (Droste et al., 2003;
Lancel et al., 2003; Binder et al., 2004a).

In this article we will review the role of glucocorticoid hormones
in resilience. We define resilience as an individual's ability to
effectively adapt to stress and adversity, resulting in the prevention
of physical and/or psychological disease. We will address recently
discovered mechanisms dynamically regulating the biological
availability of glucocorticoid hormones. Novel insights into the role
of this hormone in epigenetic mechanisms associated with gene
transcriptional and behavioral responses to stress will be described.
We will review evidence that increasing physical activity in one's
life style enhances stress resilience. Finally, we will highlight how
early life trauma can affect life-long glucocorticoid action.

2. Glucocorticoid action via MRs and GRs: early findings and
concepts

It has been almost 30 years ago since the binding properties of
the natural glucocorticoid hormone to receptors in rodent brain
have been described (Reul and De Kloet, 1985). Reul and de Kloet
discovered that corticosterone binds to two types of receptors, the
mineralocorticoid receptor (MR; also termed ‘Type 1’ in the early
days) and the GR (also termed ‘Type 2’), in the high-speed soluble
fraction (‘cytosol’) of hippocampus homogenates (Reul and De
Kloet, 1985). Highest levels of MRs are typically found in dentate
gyrus, CA2 and CA1 of the hippocampus, lateral septum and central
amygdala whereas GRs are found throughout the brain with high
concentrations in the hippocampus, neocortex and hypothalamic
nuclei such as the paraventricular nucleus (PVN) and supraoptic
nucleus (Reul and De Kloet, 1985, 1986; Reul et al., 1987; Kiss et al.,
1988). This localization pattern was confirmed after the receptor
had been cloned (Hollenberg et al., 1985; Arriza et al., 1987) and in
situ hybridization and immunohistochemical studies had been
performed (Fuxe et al., 1985a,b; Herman et al., 1989a; Van Eekelen
et al., 1988; Reul et al., 2000; Gesing et al., 2001). A similar distri-
bution of MRs and GRs as found in the rat and mouse brain was
found in the dog brain albeit that the brain localization of MRs is
more widespread in this species than in rodents (Reul et al., 1990).
Scatchard and Woolf plot analyses showed that MRs bind cortico-
sterone with an extraordinarily high affinity (0.1-0.5 nM) whereas
GRs bind the natural hormone with a lower affinity (2.5—5 nM)
(Reul and De Kloet, 1985; Reul et al., 1987). As a result of this stark
difference in binding affinity, subsequent studies presented a
marked difference between MRs and GRs in the degree of occu-
pancy by endogenous glucocorticoid hormone under baseline and
stress conditions (Reul and De Kloet, 1985). Under baseline early
morning conditions, MRs already showed a high occupancy
whereas GRs were hardly occupied. In contrast, at the circadian
peak and even more strongly after stress both receptor types
showed a high degree of occupancy by endogenous hormone (Reul
and De Kloet, 1985).

At the time, the concept of a glucocorticoid-binding receptor, i.e.
MR, which under any physiological conditions is highly occupied
with endogenous hormone, was rather controversial. As usually
receptor signaling is thought to depend on the degree of receptor
occupancy by ligand whose concentration is determined by the
physiological condition at hand; a receptor like MR that is always
substantially occupied would defeat this purpose. Based on the
remarkably distinct properties of MRs and GRs in the hippocampus
in conjunction with neuroendocrine and other observations, De
Kloet and Reul (De Kloet and Reul, 1987; Reul and De Kloet, 1985)
developed a concept that amalgamated these properties in a uni-
fying model on glucocorticoid action in this limbic brain structure.
In this concept, hippocampal MRs confer tonic inhibitory influences

of circulating glucocorticoids that serve to restrain baseline HPA
axis activity (De Kloet and Reul, 1987; Reul and De Kloet, 1985).
Neuroanatomical, pharmacological and lesion studies indeed
showed that the hippocampus exerts a tonic inhibitory influence on
the activity of PVN neurons in the hypothalamus, driven trans-
synaptically through distinct populations of GABA-ergic neurons
in the bed nucleus of the stria terminalis (BNST; De Kloet and Reul,
1987; De Kloet et al., 2005; Herman et al., 1989b; Herman and
Cullinan, 1997; Herman et al., 2003). In accordance with their
responsiveness to elevated glucocorticoid levels and the mediation
of the HPA axis-suppressing effects of synthetic glucocorticoids like
dexamethasone, GRs are considered to be responsible for the
negative feedback action of glucocorticoid hormones (De Kloet and
Reul, 1987; Reul and De Kloet, 1985). They do so mainly at the
anterior pituitary and PVN level but effects via GRs located in the
hippocampus, prefrontal cortex, amygdala and other parts of the
brain cannot be excluded (De Kloet and Reul, 1987; De Kloet et al.,
2005; Reul and De Kloet, 1985; Herman et al., 2003). The hippo-
campal MRs and GRs also play distinct roles in the control of
sympathetic outflow and in behavioral responses to stressful
events (De Kloet et al., 2005). Potent MR- and/or GR-mediated ef-
fects of glucocorticoid hormones have been shown in various
hippocampus-associated behavioral tests such as the forced swim
test, Morris water maze learning and contextual fear conditioning
(Jefferys et al., 1983; Veldhuis et al., 1985; Bilang-Bleuel et al., 2005;
Gutierrez-Mecinas et al., 2011; Mifsud et al., 2011; Trollope et al.,
2012; Reul, 2014; Oitzl et al., 2001; Beylin and Shors, 2003; Zhou
et al., 2010). At the cellular level, distinct electrophysiological ef-
fects of glucocorticoid hormones via MRs and GRs on hippocampal
neurons have been described (Joéls and De Kloet, 1992; Pavlides
et al., 1993; Joéls et al., 2009).

In this manner, the dual glucocorticoid-binding receptor system
regulates the physiological (including endocrine and autonomic)
responses and behavioral responses under baseline and stress
conditions thereby maintaining homeostasis and facilitating long-
term adaptation, together safeguarding resilience of the organ-
ism. The mechanisms underlying resilience are complex and
multifaceted. Furthermore, the capacity to cope with and adapt to
adverse events is influenced by life style, genetic vulnerability and
early life factors. Presently, we are only beginning to understand
these mechanisms. Here, we describe several findings that portray
the importance and complexity of the role of MRs and GRs in
resilience. This is not a complete listing as this would go beyond the
scope of this review. The described findings address the diversity
and complexity of the mechanisms involved and are regarded as
particularly important for future developments.

3. Dynamic control of hippocampal MRs as an instrument of
resilience

The high degree of occupancy of hippocampal MRs under any
physiological circumstance was a controversial finding because
how would such a receptor system be able to adjust signaling to
different circumstances? The answer turned out to be: by dynam-
ically adjusting the concentration of receptor molecules in neurons.
Serendipitously, we observed that acute stressful challenges that
engage the hippocampus like forced swimming and novelty
exposure resulted in a significant increase in the concentration of
MRs, but not GRs, in the hippocampus of rats (Gesing et al., 2001).
The rise was transient and occurred between 8 and 24 h after the
challenge. Remarkably, this effect of stress turned out to be
mediated by corticotropin-releasing factor (CRF). Intra-
cerebroventricular injection of the neuropeptide resulted in a rise
in hippocampal MRs whereas pre-treatment with a CRF receptor
antagonist blocked the effect of forced swimming on MRs.
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Interestingly, CRF injection was ineffective in adrenalectomized
rats; concomitant MR occupancy appeared to be a necessity for CRF
to produce an increase in hippocampal MR levels indicating a
permissive role of the receptor in this process (Gesing et al., 2001).
The observation that CRF mimicked the stress effect on MRs sug-
gested the involvement of CRF1 receptors (Reul and Holsboer,
2002). It was indeed found that forced swimming failed to raise
hippocampal MR mRNA concentrations in mice carrying a gene
deletion of CRF1 receptor (Muller et al., 2003). The effect of CRF on
MRs was a remarkable novel finding as we are dealing with one of
the principal mediators of acute stress response in the brain, i.e.
CRF, acting upon a main stress controlling instrument, i.e. MR.
Changes in hippocampal serotonin levels may also be involved in
the effect of forced swimming on MR as this stressor has been
shown to increase hippocampal serotonin; an effect which was
mimicked by central CRF administration (Linthorst et al., 2002,
2008). Serotonin has been shown to be involved in MR and GR
regulation (Seckl and Fink, 1991; Vedder et al., 1993). The rise in
MRs after stress proved to have functional consequences for the
control of baseline HPA axis activity. Administration of the selective
MR antagonist RU28318, 24 h after swim stress, i.e. at the time
point when MRs are increased, resulted in a substantially larger rise
in baseline HPA axis activity in rats which had been forced to swim
24 h earlier than in unstressed control animals (Gesing et al., 2001).
This indicates that, concomitantly with the rise in receptor con-
centration, the MR-mediated inhibitory control of the HPA axis had
increased after stress. Thus, the stress-CRF-MR mechanism appears
to participate in safeguarding normal HPA axis activity with the aim
to prevent the development of glucocorticoid hyper-secretion with
its associated adverse effects on the organism. Therefore, this
mechanism may be important to maintain resilience to stress.

In aging and depressed subjects this mechanism may be failing.
Many years ago it was found that hippocampal MR levels are
significantly decreased and baseline and stress-induced HPA axis
activity is increased in aged rats and dogs (Reul et al., 1988, 1991;
Rothuizen et al., 1993). In some post-mortem studies on people
with a history of major depressive illness, increased levels of CRF
concentrations in cerebrospinal fluid and decreased levels of CRF-
binding capacity has been shown (Nemeroff et al., 1984, 1988;
Swaab et al., 2005). In Alzheimer's disease increase activation of
central CRF neurons has been reported as well (Swaab et al., 2005).
Chronically elevated CRF concentrations have vast implications for
central neurotransmission (e.g. serotonin) as well as for the control
of system physiology and behavior (e.g. body temperature, immune
system regulation, circadian behavioral activity) (Linthorst et al.,
1997; Labeur et al., 1995). A recent publication reported on the
role of the CRF1 receptor in the effects of chronic stress on Alz-
heimer's disease related molecules in the hippocampus and
behavior (Carroll et al., 2011). Thus, in aged subjects, CRF/CRF1
receptor associated mechanisms to maintain hippocampal MR
function seem to be failing but more research is required to support
this notion. Interestingly, hippocampal MR levels are particularly
sensitive to neurotrophic factors and antidepressant drug treat-
ment (Reul et al., 1988, 1993, 1994; De Kloet et al., 1987), however,
how these findings relate to changes in the CRF-MR system is
currently unknown.

4. CBG — a novel role for the control of stress-induced
glucocorticoid hormone concentrations

For many years, corticosteroid-binding globulin (CBG) has been
thought to be simply just a transport protein for endogenous
glucocorticoid hormone. The levels of CBG were thought to be quite
stable in the circulation, and depending on the activity state of the
HPA axis, allowing approximately between 1 and 10% of circulating

plasma glucocorticoid hormone to be ‘free’, i.e. unbound, and thus
capable to penetrate tissues and bind to glucocorticoid-binding
receptors. However, in 2008 the HPA axis field was about to
receive a stir. The prelude to this started in the early 1990s when we
were the first to start using in vivo microdialysis in freely behaving
rats and mice to study free corticosterone levels in the brain under
various physiological conditions (Linthorst et al., 1994, 1995). It
proved to be a powerful technique allowing monitoring of free
glucocorticoid hormone levels in the extracellular space of different
brain regions, like the hippocampus, with a high time resolution
over several days without the need to interfere with the animal
(Linthorst and Reul, 2008). Comparing various studies over a
number of years, we noted a discrepancy between the time courses
of the free glucocorticoid hormone response and the total plasma
hormone responses after stress. The free glucocorticoid response
after stressors like forced swimming (15 min, 25 C water) peaked at
approximately 1 h after the start of the stressor (Droste et al.,
2009b) whereas the total plasma hormone response was already
at its highest level at 30 min (Bilang-Bleuel et al., 2002). In a study
which directly compared the plasma glucocorticoid response and
free hormone response in the hippocampus after forced swimming
using blood sampling and microdialysis, respectively, a time delay
between the two responses of 20—25 min was indeed confirmed
(Droste et al., 2008). The delay was not due to a tardy penetration of
the hormone into the extracellular space of the brain because
parallel microdialysis of the brain, the blood and the subcutaneous
tissue showed highly similar free glucocorticoid levels under
baseline, circadian conditions (Qian et al., 2012) and in response to
stress (Qian et al, 2011) in these different compartments. The
delayed free corticosterone response to stress was further assessed
using different stress paradigms including forced swimming, re-
straint and novelty stress. We discovered that subjecting rats to a
stressful situation resulted in a rapid rise in circulating CBG con-
centrations in the blood (Qian et al., 2011). The extent of the rise
depended on the magnitude of the glucocorticoid hormone
response evoked by the stressor. Hence, strong stressors like forced
swimming and restraint produced substantially higher rises in
plasma CBG than a mild stressor like novelty stress that led to a
negligible increase in the binding protein (Qian et al., 2011). As
mentioned, the rise in plasma CBG has a rapid onset reaching
maximal levels within 15—30 min after the start of forced swim-
ming and returning to baseline values between 2 and 8 h later.
Thus, the rise in circulating CBG evolving in parallel with the rise in
total plasma corticosterone and sequestering these glucocorticoid
hormone molecules is the reason for the delay of approximately
25 min in the rise of free hormone levels (Droste et al., 2008; Qian
et al,, 2011). The logical question came up: where is the significant
amount of CBG molecules coming from? As the surge in plasma CBG
levels was so rapid, de novo synthesis was highly unlikely. Never-
theless, we embarked to investigate the prime site of CBG synthesis,
which is the liver (Hammond, 1990; Hammond et al., 1991).
Immunohistochemical analysis revealed that liver cells store sub-
stantial amounts of CBG. Remarkably, within 30 min after forced
swimming virtually all CBG had disappeared from the organ, pre-
sumably into the circulation (Qian et al., 2011). Twenty-four hours
later CBG content in the liver had returned to its normal levels
(Qian et al., 2011); whether this is due to re-synthesis or retrieval
from the circulation is presently unknown.

This recent work identifies CBG as a principal regulatory factor
in glucocorticoid homeostasis and function. It plays a defining role
in not only the degree to which tissue is exposed to glucocorticoid
hormone but also in determining the exact timing during which
this is happening. Timing has been shown to be an important factor
in glucocorticoid action (Munck et al., 1984; Wiegers and Reul,
1998). Studies in CBG knockout mice have suggested as well that
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CBG plays a complex role in the regulation of glucocorticoid hor-
mones (Petersen et al, 2006; Richard et al., 2010). Currently,
however, it is unknown whether compensatory mechanisms may
have contributed to the phenotypic findings in animals with a life-
long CBG deficiency. Therefore, if mutant mouse models are the
chosen route of investigation, forthcoming studies should be
directed at inducible and tissue-specific CBG knockout mouse
models.

These novel insights underscore the great significance of CBG for
stress resilience. Future research should elucidate the signaling,
epigenetic and gene transcriptional mechanisms governing the
secretion/release and synthesis of this very interesting binding
protein.

5. Glucocorticoid regulation of epigenetic mechanisms
controlling gene transcription and behavior

It has been known for many years that glucocorticoid hormones
have a potent influence on behavior. These effects have been shown
repeatedly in various behavioral paradigms such as the forced swim
test, Morris water maze learning and contextual fear conditioning
(Jefferys et al., 1983; Veldhuis et al., 1985; Gutierrez-Mecinas et al.,
2011; Beylin and Shors, 2003; Zhou et al., 2010; Cordero and Sandi,
1998; Oitzl and De Kloet, 1992; Sandi et al., 1997). In the learning
phase of these paradigms, glucocorticoid hormones are secreted in
response to the stress associated with being submitted (involun-
tarily) into a container filled with water (forced swim test, Morris
water maze) or into a shock box (fear conditioning). The elevated
concentrations of hormone (predominantly via GRs) facilitate the
consolidation of memories specifically associated with the adverse
event. It is important to underline that glucocorticoids only exert
this role if their concentrations rise within the context of the
adverse event. If levels rise, for instance as a result of a stressor (e.g.
electric foot shock(s)), before the event, then glucocorticoids have
been shown to impair learning and memory processes (De Kloet
et al, 2005; McEwen, 2001). Also chronic stress, leading to
persistently elevated glucocorticoid hormones, has been reported
to impair cognitive processes (De Kloet et al., 2005; McEwen, 2001).
Due to these distinct roles of glucocorticoids in learning and
memory there is often confusion in the scientific literature (and in
the media!) about the effects of stress or glucocorticoids on
learning and memory. Here we will focus on the role of glucocor-
ticoids during the consolidation phase of acute adverse events, thus
when the action of these hormones helps to make memories of the
event thereby supporting behavioral adaptation and resilience of
the organism.

Although a role of glucocorticoids on behavior has been known
for many years, only fairly recently some insight was revealed into
the mechanism of action of these hormones (Gutierrez-Mecinas
et al., 2011). Most progress in this respect has been made using
the forced swim test but the mechanism uncovered is likely
transposable to the Morris water maze and contextual fear condi-
tioning paradigms (Reul, 2014; Reul and Chandramohan, 2007). In
the forced swim test, rats or mice are placed in a beaker containing
water (usually at 25 C; duration 15 min (mice: 10 min)) from which
they cannot escape. The animal will try to escape but quickly finds
out that this is impossible and adopts a so-called floating or
immobility position to conserve energy (De Pablo et al., 1989; Korte,
2001). If the animal is re-introduced to the water 24 h later, after
initial brief attempts to escape it will predominantly show immo-
bility behavior and to a much greater extent than in the initial test.
Even if the animal is re-tested 4 weeks after the initial test it will
show this behavioral immobility response (Gutierrez-Mecinas
et al,, 2011). Thus, based on memories the animal has formed af-
ter the initial forced swim session, it quickly decides in the favor of

the adaptive behavioral immobility strategy to increase its chances
for survival (Reul, 2014; Reul and Chandramohan, 2007).

Studies since the early 1980s have shown that the behavioral
immobility response in the re-test is critically dependent of
glucocorticoid hormone action via GRs during the hours after the
initial test. Adrenalectomized rats are severely impaired in this
behavioral response (Jefferys et al., 1983; Veldhuis et al., 1985;
Mitchell and Meaney, 1991). Behavior in these animals can be
rescued if given a GR agonist like corticosterone or dexamethasone
at the time of the initial test (Jefferys et al., 1983; Veldhuis et al.,
1985; Mitchell and Meaney, 1991). Rats treated with a GR antago-
nist like RU38486 or ORG34517 show normal behavior in the initial
test but an impaired immobility response in the re-test (Gutierrez-
Mecinas et al.,, 2011; De Kloet et al., 1988). More details about the
pharmacology of this behavioral test were addressed recently
elsewhere (Reul, 2014). As mentioned, until recently the mecha-
nism of action of glucocorticoid hormone in this test was
completely unknown. The neuroanatomical site of hormone action
however has been known since 1988 when de Kloet and colleagues
reported that micro-injection of GR antagonist specifically into the
dentate gyrus of the hippocampus impaired the behavioral
immobility response (De Kloet et al., 1988). We recently elucidated
how glucocorticoids via GRs are implemented in this process. We
discovered that in addition to GRs, dentate gyrus N-methyl p-
aspartate (NMDA) receptors activating the mitogen-activated pro-
tein kinase (MAPK) pathway are also involved (Gutierrez-Mecinas
et al., 2011; Chandramohan et al., 2008). Forced swimming re-
sults, via a sparse activation of NMDA receptors, in the specific
phosphorylation of the MAPKs extracellular signal-regulated ki-
nase 1 and 2 (ERK1/2; also termed p42/44-MAPK). pERK1/2 sub-
sequently phosphorylates the two downstream chromatin-
modifying kinases mitogen- and stress-activated kinases 1 and 2
(MSK1/2) and ets-like kinase 1 and 2 (Elk1/2). pMSK1/2 was shown
to phosphorylate histone H3 at serine10 (S10) whereas pElk1/2, via
recruitment of histone acetyl-transferases (HATs) like p300, evoke
the acetylation of lysine14 (K14), thus forming the combinatorial
epigenetic marks H3S10p-K14ac (Gutierrez-Mecinas et al., 2011;
Chandramohan et al., 2008). The formation of these epigenetic
marks in the promoter region of intermediate-early genes (IEGs)
like c-Fos and Egr-1 (also called NGFI-A or Zif268) facilitated the
induction of these genes (Gutierrez-Mecinas et al., 2011). Injection
of a GR-occupying dose of corticosterone was ineffective in terms of
H3S10p-K14ac formation and IEG induction (Chandramohan et al.,
2007), indicating indeed that, in addition to GR, activation of the
NMDA receptor pathway is required. Previous work has shown that
the H3S10p-K14ac mark is particularly involved in the opening of
silent genes, possibly through chromatin remodeling, making them
accessible for transcription (Cheung et al., 2000a,b; Nowak and
Corces, 2000). The interesting notion may be extracted that these
dual histone marks tag genes that were silent before the animal
was stressed. Neuroanatomically it is of interest to note that the
activation of this signaling and epigenetic pathway leading to IEG
induction was specifically observed in sparsely distributed mature
granule neurons located in the dorsal blade of the dentate gyrus of
rats and mice (Bilang-Bleuel et al., 2005; Gutierrez-Mecinas et al.,
2011; Chandramohan et al., 2007, 2008). Similar characteristic
biochemical (pathway) and neuroanatomical changes in dentate
gyrus neurons were observed after Morris water maze training,
contextual fear conditioning and novelty exposure (Chandramohan
et al, 2007; Chwang et al., 2007; Carter S.D., Mifsud K.R. & Reul
J.M.H.M., unpublished observations). These observations are
commensurate with the normal physiology of the dentate gyrus, i.e.
the NMDA receptor-mediated sparse activation of mature dentate
neurons after a challenge. Therefore, we have previously hypoth-
esized (Reul, 2014; Reul et al., 2009) that the observed signaling and
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epigenetic changes are taking place in neurons involved in a pro-
cess called pattern separation (Treves and Rolls, 1994; Rolls and
Kesner, 2006); a physiological process which is thought to be
required for sensory information processing in the dentate gyrus
and memory formation.

Other researchers and we have indeed shown that various
constituents of the NMDA/ERK1/2/MSK1/2—Elk-1 pathway are
required for memory formation in the Morris water maze,
contextual fear conditioning and the forced swim test (Gutierrez-
Mecinas et al., 2011; Chandramohan et al., 2008; Chwang et al.,
2007). Several research groups have shown that the NMDA recep-
tor and the MAPK pathway are critical for learning in these tests
(Chandramohan et al., 2008; Chwang et al., 2007). David Sweatt
and colleagues reported that MSK1 gene deleted mice are impaired
in the Morris water maze and contextual fear conditioning para-
digms (Chwang et al.,, 2007). We reported that the behavioral
immobility response in the forced swim test is gravely disturbed in
MSK1/2 double gene knock-out mice (Chandramohan et al., 2008).
Furthermore, in a series of pharmacological and neuroanatomical
studies we found that inhibition of any step of the NMDA/ERK1/2/
MSK1/2—Elk-1 pathway in dentate gyrus neurons resulted in a
significant reduction in the IEG response and an impaired behav-
ioral immobility response (Gutierrez-Mecinas et al., 2011;
Chandramohan et al., 2008).

The activation of the previously described signaling and epige-
netic pathway along with GRs at dentate gyrus neurons is involved
in the consolidation of the behavioral immobility response. The
question arose how these two pathways are involved in estab-
lishing this behavioral response. An important lead was provided
by the observation that administration of a GR antagonist before
forced swimming resulted in a strongly diminished c-Fos and Egr-1
response in dentate neurons (Gutierrez-Mecinas et al., 2011).
Moreover, the antagonist also inhibited the stress-induced re-
sponses in pMSK1/2 and pElk1/2 in these neurons but did not affect
the pERK1/2 response (Gutierrez-Mecinas et al., 2011). Based on
these observations we postulated that in the forced swim situation,
activated GRs, through interaction with pERK1/2, facilitate the
phosphorylation of MSK1/2 and Elk-1, which was indeed confirmed
by co-immuno-precipitation experiments (Gutierrez-Mecinas
et al., 2011). This novel, non-genomic mode of GR action is rela-
tively fast as pERK1/2, pMSK1/2 and pElk1 peak at approximately
15 min after start of forced swimming. Since these molecules also
play a role in Morris water maze learning and fear conditioning this
mechanism may play a role in these paradigms as well but this
needs to be confirmed. This was the first time a functional inter-
action between GRs, pERK1/2, pMSK1/2 and pElkl has been
observed. Previously, Miguel Beato and colleagues reported a
crucial role of the interaction of the progesterone receptor with
ERK1/2 and MSK1/2 in the phosphorylation of S10 in histone H3 in
cells in vitro (Vicent et al., 2006). Thus, in dentate gyrus neurons,
after a challenge the convergence of two signaling pathways is
crucial for the proper activation of chromatin-modifying enzymes
to subsequently elicit epigenetic changes and induction of gene
transcription. In this manner, enhanced glucocorticoid hormone
secretion as a result of the stressful challenge facilitates a now well-
defined molecular mechanism that underlies the consolidation of
appropriate cognitive behavioral responses to the challenge, which
are adaptive and beneficial for the organism (Reul, 2014; Reul and
Chandramohan, 2007; Reul et al., 2009). Therefore, this novel
glucocorticoid mechanism participates in the maintenance of
resilience.

Classically, GRs and MRs act by binding as ligand-dependent
transcription factor to gene promoter and other sites within the
genome containing the consensus sequence of the so-called
Glucocorticoid-Response Element (GRE). They can bind as homo-

dimers as well as hetero-dimers (Trapp et al., 1994). Although the
genomic action of GRs, and less so MRs, have been well investigated
it is presently unclear whether such action and the consequences of
such action in terms of specific gene output play a role in the
behavioral responses discussed here. A study of Melly Oitzl and
colleagues suggests that a genomic action of GRs may be important
as well. A study using mice carrying a point-mutation that prevents
homo-dimerization and hence DNA binding reported that these
animals show impaired spatial memory formation in the Morris
water maze with no changes in locomotion or anxiety-related be-
haviors (Oitzl et al., 2001). Thus, a role of genomic action of GR (and
MR) and its consequences regarding gene expression needs to be
further investigated. Approaches like chromatin-immuno-
precipitation (ChIP) in combination with quantitative PCR have
opened the possibility to study the binding of GRs and MRs to
specific GRE sequences within gene promoters. Fig. 1 shows pre-
liminary data of GR binding to a GRE within the promoter region of
the Period 1 (Per1) gene using chromatin prepared from neocortex
of rats killed at baseline or after forced swimming. Per1 is a GR-
responsive period gene involved in circadian activities including
the regulation of neuronal activity. Combination of ChIP with next-
generation sequencing technologies allows studying GR binding
across the entire genome. These relatively new epigenetic tech-
nologies in the field of neuroscience (Lester et al., 2011) should
boost research output regarding the (epi)genomic action of GR and
MR during the coming years.

It's becoming increasingly clear that glucocorticoids act on
neuronal function through a great number of molecular mechanisms
within different time domains. The fastest action is via membrane-
bound receptors (Groeneweg et al., 2012), an issue which hasn't
been addressed as their role in the behaviors mentioned here is un-
clear. The second fastest is the interaction of receptors with signaling
mechanisms like the GR-MAPK interaction addressed here. The
slowest one is the action of MRs and GRs (via GREs) at the genome.
This molecular portfolio allows glucocorticoids to adjust neuron
function via disparate mechanisms and different time domains,
which underscores its importance for resilience.

6. Exercise: a boost for resilience

It is now well established that life style choices play a pivotal
role in staying healthy and well, both physically and mentally. A life
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Fig. 1. Forced swimming results in significantly enhanced binding of GRs to a GRE
sequence within the Per1 gene promoter. In an xChIP assay, cross-linked chromatin
samples prepared from neocortex tissue of baseline (Bs) and forced swim (FS) rats
were incubated with anti-GR antibody (Santa Cruz, CA). Bound and Input GRE-
containing Per1 gene promoter DNA were quantified using qPCR. Data are expressed
as the ratio of Bound/Input; mean + SEM, n = 5. *, P < 0.001, Student's t-test.
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style option which has been obtaining great attention over the past
several decades is physical activity. Initially, great benefits as a
result of performing exercise regularly were seen with regard to
cardiovascular health and controlling body weight. Presently,
however, it has become clear that regular physical activity evokes
vast changes in a plethora of body functions, many of which can be
regarded as particularly beneficial for resilience. As the breadth of
its effects on the body and mind is probably greater than any other
life style option (e.g. meditation, yoga) we have chosen to review
here the consequences of regular exercise with special emphasis
regarding its benefits for stress resilience.

6.1. Exercise — the model

During the past 15 years evidence has been accumulating that
an active life style is beneficial for resilience against stress. Often (in
the media) it is thought that regular exercise is predominantly
helpful for cardiovascular health and maintaining body weight in a
healthy range. However, a variety of studies, exploring effects of
exercise at the molecular, cellular, physiological and behavioral
level, have shown that exercise has a deep impact on many body
functions. When considering animal studies a distinction needs to
be made between voluntary exercise and forced exercise. In the
voluntary exercise paradigm, rodents like rats and mice run in a
running wheel whenever they please to do so; they are not forced
whatsoever. If provided with a running wheel they will run during
the first half of the nighttime, i.e. the time when they are normally
most active (Droste et al., 2003, 2007). Avast body of work indicates
that this voluntary exercise has major beneficial effects and in-
creases resilience to stress (Reul and Droste, 2005; Collins et al.,
2012; van Praag et al., 1999). In contrast, the application of forced
exercise, usually delivered by placing the animal for a period of
time on a motorized treadmill during the daytime (when rats and
mice normally sleep), is regarded as aversive by rodents and not
beneficial in terms of increasing resilience (Stallknecht et al., 1990;
Schmidt et al., 1992; Bedford et al., 1979). We will focus here on the
voluntary exercise model. Several weeks of wheel running has
indeed a major effect on body composition, but not really on body
weight (Droste et al.,, 2003, 2007). Exercising rats and mice have
substantially less abdominal fat and more muscle tissue.

6.2. Exercise — HPA axis changes

Long-term voluntary exercise has a major impact on physio-
logical system like the HPA axis, the sympathetic nervous system
and sleep regulation. Wheel running for several weeks evokes
major changes in HPA axis regulation (Droste et al., 2003, 2007).
These were associated with increased activity of the sympatho-
adrenomedullary system, i.e. enhanced synthesis and release of
adrenaline from the adrenal medulla, which is under sympathetic
control (Droste et al., 2003, 2007). Exercising rats and mice show
increases in adrenal weight (relative to the body weight; Reul and
Droste, 2005; Droste et al., 2003, 2007). The adrenal medulla of the
runners presented increased levels of tyrosine hydroxylase (TH; the
rate-limiting enzyme in adrenaline synthesis) mRNA indicating a
rise in the activity of sympatho-adrenomedullary system (Reul and
Droste, 2005; Droste et al., 2003, 2007). These changes in adrenal
size and adrenomedullary activity can be regarded as a direct
consequence of long-term enhanced physical activity. Baseline
early morning plasma ACTH levels were decreased in exercising
mice suggesting a reduced hypothalamic-pituitary drive at this
time of the day (Droste et al., 2003). Furthermore, evening plasma
corticosterone values were higher in the running mice which may
be an adaptive response to increased metabolic demand due to
running during this time of the day/night cycle (Droste et al., 2003).

In vivo microdialysis in exercising rats showed that free glucocor-
ticoid hormone levels were increased at this time of the day as well
(Droste et al., 2009b). There were distinct changes in the HPA axis
responses to different stressful challenges. Exposure to a novel
environment, which is regarded as a mild psychological stressor,
resulted in a lower plasma glucocorticoid hormone response in
exercising rats and mice than in sedentary animals (Droste et al.,
2003, 2007). In contrast, subjecting rats and mice to forced swim-
ming (this involves a substantial physical stress component) led to
a significantly higher glucocorticoid response in the exercising
animals (Droste et al., 2003, 2007). As plasma ACTH responses were
not different to either stressor, it appears that mechanisms at the
level of the adrenal gland are predominantly responsible for the
distinct glucocorticoid responses to the novelty challenge and the
forced swim stress. Due to its strong physical component forced
swimming would evoke a strong release of adrenaline from the
adrenal medulla, which is known to enhance the (ACTH-induced)
secretion of corticosterone from the adrenal cortex (Bornstein et al.,
1990, 2000; Engeland and Arnhold, 2005). In this regard, the
enlarged adrenal cortex in exercising rats and mice would benefit a
greater glucocorticoid response as well. To explain the diminished
glucocorticoid response to novelty in the face of unchanged ACTH
responses is not as straightforward. The presumably neural
component responsible for suppressing the glucocorticoid
response to novelty in the adrenal glands of exercising animals is
still elusive.

In view of the enlarged adrenals in exercising animals the
thought could arise whether these changes are adaptive or mal-
adaptive as in chronic stress conditions enlarged adrenal glands
have been observed as well. It is however unlikely that long-term
voluntary exercise is comparable to a chronic stress condition. In
exercising rats and mice we observed highly distinct glucocorticoid
responses to novelty and forced swimming whilst ACTH responses
were unchanged (Droste et al., 2003, 2007). In chronically stressed
animals, in general, enhanced responses in ACTH and corticoste-
rone to acute (heterotypic) stressors have been observed
(Bhatnagar and Dallman, 1998). Furthermore, except for increased
hippocampal GR mRNA levels, no changes were observed in brain
MR and GR mRNA levels and paraventricular CRF, arginine-
vasopressin (AVP) and oxytocin mRNA levels in long-term exer-
cising rats (Droste et al., 2007). In chronic stress paradigms, usually
MR and/or GR mRNA levels are decreased and CRF and AVP mRNA
levels are increased. Thus, there are clear distinctions with regard
to HPA axis changes between these models. Moreover, based on
various observations on changes in cell biology (e.g. neurogenesis),
physiology and behavior, exercise results in adaptive changes
(Droste et al., 2003, 2007; Lancel et al., 2003; Binder et al., 2004a;
van Praag et al., 1999) whereas the changes in chronic stress con-
ditions are generally considered to be maladaptive (e.g. reduced
neurogenesis, impaired structural plasticity, aberrant anxiety-
related and social behavior) (McEwen, 2001; Wood et al., 2008).

In follow-up work, to obtain further insight into the significance
of the altered glucocorticoid responses to stress in the exercising
animals we conducted a microdialysis study in 4-weeks exercising
and sedentary rats. As mentioned before, with this approach the
levels of the free, biologically available fraction of glucocorticoid
hormone is assessed. To our surprise, we observed no differences
between the free corticosterone responses in the sedentary and
exercised rats to either stressor (Droste et al., 2009b). There were
also no differences in circulating early morning and evening base-
line CBG levels between these animals. It may be speculated that
exercising and sedentary animals show distinct responses in blood
CBG levels after stress but this has not been investigated yet.
Anyway, these ‘negative’ observations on free hormone responses
generate some novel insights. First of all, measurement of total



50 JM.H.M. Reul et al. / Neurobiology of Stress 1 (2015) 44—59

plasma glucocorticoid hormone only provides limited information
about the real biologically active free concentration. Second, from a
homeostatic perspective, it seems that, with regard to the free
glucocorticoid hormone, the organism is keen to generate stressor-
specific set response levels to stress. If like in the case of long-term
exercise the enhanced sympatho-adrenomedullary drive results in
enhanced total plasma corticosterone responses to physical chal-
lenges then apparently mechanisms are in place to adjust the
available free hormone levels to match those in the sedentary an-
imals. A similar mechanism is supposedly in place in case of mild
psychological stressors. Identification of these mechanism(s) is
important, as they are part of the nuts and bolts that constitute
resilience. Consequently, disturbances in these adjusting mecha-
nisms would result in hypo- or hyper-levels of glucocorticoid hor-
mone, which could lead to development of various disorders.

We would like to note that in addition to exercise, gender is
another example in which this mechanism of free glucocorticoid
adjustment may be operational. It's known for many years that
female rats and mice have substantially higher baseline and stress-
induced total plasma glucocorticoid levels than their male coun-
terparts. Using microdialysis, we found however that the free
corticosterone levels at baseline and after stress were very similar
between female and male rats (Droste et al., 2009a).

6.3. Exercise — sleep/EEG changes

In a sleep physiological study we studied various properties of
the sleep/EEG pattern in exercising and sedentary mice including
the duration of sleep episodes, sleep intensity, rapid eye movement
(REM) sleep, non-REM sleep and wakefulness. These properties are
indicators of sleep quality. For more information about our method
of sleep recording, sleep analysis and spectrum analysis see Lancel
et al. (1997).

We observed that long-term wheel running mice showed
significantly less sleep episodes, however, these episodes were of
longer duration indicating a better sleep consolidation (Lancel
et al., 2003). Compared with sedentary controls the exercising
mice also showed less REM sleep. A 15 min social conflict resulted
in an increase in non-REM sleep, enhancement of low-frequency
activity in the EEG within non-REM sleep (indicating increased
sleep intensity) and less wakefulness in both control and exercising
mice. In the control mice however an increased REM sleep
concurrently with the rise in non-REM sleep was observed. In
contrast, exercising animals showed a decrease in REM sleep. As the
exercising animals showed higher plasma glucocorticoid responses
after the stressor and glucocorticoids were known to inhibit REM
sleep, it was thought at the time that the exercising mice showed a
decrease in REM sleep after stress because of the higher glucocor-
ticoid responses in these animals (Lancel et al., 2003). Presently,
based on in vivo microdialysis studies (see above), we know that
control and exercising animals do not differ regarding their free
glucocorticoid hormone responses, so differential hormone re-
sponses cannot explain the distinct REM sleep responses in
sedentary versus exercising mice. REM sleep is regulated by the
activity of GABAergic neurons (Brooks and Peever, 2011). We have
reported that exercising animals present changes in their
GABAergic system (Hill et al., 2010), which could play a role in their
altered REM sleep responses to stress. Further research is required
to elucidate the role of this inhibitory neurotransmitter system in
REM sleep regulation in exercising subjects. Nevertheless, our sleep
data suggest that the beneficial effects of physical activity on
resilience involve effects on sleep/EEG regulation. Through
improvement of sleep consolidation and lengthening the duration
of sleep episodes, regular physical exercise clearly increases sleep
quality. Also in humans physical exercise has been shown to

decrease overall REM sleep (Torsvall et al., 1984; Kupfer et al., 1985;
Netzer et al., 2001). Studies on chronic stress in animals and major
depressive illness in humans show that these conditions have
deleterious effects on sleep quality and sleep/EEG. Chronic mild
stress in rats shortens the duration of sleep episodes, thereby dis-
rupting sleep maintenance, and raises the number of REM sleep
episodes and overall REM sleep (Willner et al., 1992; Grenli et al,,
2002). Disturbed sleep is one of the hallmarks of major depres-
sion. Depressed patients show a highly fragmented sleep, increased
REM sleep and a shortened REM sleep latency (Kupfer, 1995). It is
thought that clinically efficacious anti-depressant drugs reverse the
sleep disturbances (Winokur et al., 2001). Clearly, in conditions like
chronic stress and major depression resilience mechanisms are
failing. Conversely, it seems that the effects of regular physical
exercise on sleep/EEG strengthens resilience but more research is
required in order to understand the underlying mechanisms and to
gain better insight into the physiological significance of these
effects.

6.4. Exercise — behavioral changes

Long-term voluntary exercise has vast effects on stress-related
behavior in rats and mice indicating that exercise indeed
strengthens resilience at the behavioral level. One of the earliest
observations regarding the behavioral impact of exercise is the
finding that wheel-running mice show improved spatial memory
formation in the Morris water maze (van Praag et al., 1999).
Notably, submission to this hippocampus-associated behavioral
test is stressful for rats and mice as underlined by the significant
rise in circulating plasma glucocorticoid hormone over the course
of training (Carter S.D., Mifsud K.R. & Reul J.M.H.M., unpublished
observations). Basically, the animal wishes to leave the water as
quickly as possible and uses spatial cues (and memory formation
thereof) to learn to find the platform speedily to this effect. Exer-
cising mice learn faster than sedentary animals in this test (van
Praag et al., 1999) suggesting that they are better in cognitively
coping with the adverse situation. A similar conclusion could be
drawn when exercising and sedentary rats were subjected to the
forced swim test. Both groups of rats showed similar behaviors in
the initial test. In the re-test 24 h later however the exercising rats
showed significantly more immobility behavior and less struggling
and swimming indicating an improved learned coping response in
these animals (Collins et al., 2009).

Using various tests we reported that long-term exercising mice
and rats show substantially less anxiety-related behavior (Binder
et al.,, 2004a). Initially, when 4-weeks exercising mice were tested
in an open field test the result was somewhat ambiguous. When
the exercising mice were introduced to the open field they showed
an increased delay before exploring the open field which could be
interpreted as the result of an elevated anxiety state. However, the
exercising animals compensated at a later stage of the test when
they increasingly explored all areas of the open field. To obtain
certainty about the anxiety state of the exercising mice we sub-
jected them to the elevated plus-maze and the dark—light box, i.e.
two established tests for anxiety-related behavior. In both tests, the
exercising mice showed clear evidence for a reduced anxiety state
as compared to the sedentary controls (Binder et al., 2004a). This
reduced anxiety state after voluntary exercise has also been re-
ported by other investigators (Duman et al., 2008). Thus, the initial
delay in the open field test could not be explained by increased
anxiety. We had observed that the exercising mice scanned the
open field before embarking on its exploration. In view of these
observations and findings of others that exercising animals have
improved cognitive abilities, we hypothesized that the delay before
exploration was the result of reduced impulsiveness. An initial
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Fig. 2. Effect of long-term voluntary exercise on forced swimming-induced MSK1/2 and ERK1/2 phosphorylation and c-Fos induction in rat dentate gyrus neurons. Male Sprague
Dawley rats had 4 weeks access to a running wheel in their home cages after which they were either killed under baseline conditions (Bs) or at 15 min (pMSK, pERK) or at 60 min
after start of forced swimming (FS; 15 min, 25 C water). Sacrifice and immunohistochemical procedures (including used antibodies) were exactly performed as described in
Gutierrez-Mecinas et al. (2011). A—F: representative images of the dorsal blade of the dentate gyrus of baseline (A—C) and stressed (D—F) sedentary control rats. G—I: Quantitation of
immuno-positive neurons in the dentate gyrus of sedentary and exercised rats killed at baseline or after forced swimming. Data are expressed as the average counts in a coronal
50 pum section (for details, see Gutierrez-Mecinas et al., 2011); mean + SEM, n = 4 rats. *, P < 0.05, significantly different from the respective baseline group; ¥, P < 0.05, significantly
different from the sedentary FS group, post-hoc Bonferroni test after two-way ANOVA. Scale bar is 100 pm.

delay was not only observed in the open field test but also in the so-
called modified hole board test (Binder et al., 2004a). Nevertheless,
the reduced impulsivity hypothesis, though intriguing, needs to be
tested in appropriate behavioral tests.

Previously, we described that long-term exercising rats show
reduced glucocorticoid hormone responses to a 30 min novelty
(new clean cage) challenge (Droste et al., 2007). We postulated that
this decreased neuroendocrine response in stress hormone secre-
tion could be the result of reduced anxiety in these animals.
Investigation of the control and exercising rats in the novel cage
revealed a marked difference in the behavior of these animals un-
der these psychologically stressful conditions (Droste et al., 2007;
Collins et al., 2009). Typically, the sedentary rats explored the
novel cage for the full 30 min. In contrast, the exercising animals
showed over time significantly less exploration behavior (walking
and rearing). A remarkable observation was that during the second
half of the novelty exposure these rats showed a progressive in-
crease in lying and resting/sleeping behavior (Droste et al., 2007;

Collins et al., 2009). We concluded that exercising rats are sub-
stantially quicker in assessing a new environment regarding its
potential dangers (and opportunities) and after this assessment has
been made these animals return to their normal behavior for this
time of the day (early morning) which is resting and sleeping. This
rapid assessment capability in the physically active animals is most
likely the result of enhanced cognitive abilities in combination with
a reduced state of anxiety. These observations underscore the
benefit of regular physical activity for boosting resilience.

6.5. Exercise — changes in pERK1/2—pMSK1/2 signaling and IEG
induction — role of GABA?

To obtain insight into the molecular mechanisms underlying the
behavioral changes brought about by regular physical exercise we
investigated the role of the signaling molecules pERK1/2 and
pMSK1/2 and the IEG product c-Fos after forced swimming. As a
detailed survey of pERK1/2 and pMSK1/2 had never been
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undertaken before, we assessed the immuno-reactivity of these
molecules in many nuclei throughout the brain focusing on those
brain regions known to be involved in the stress response. In
control (sedentary) rats at baseline, the number of pERK1/2-
positive (pERK') neurons was very low in the neocortex, except
for the moderate numbers found in the piriform cortex (Collins A. &
Reul J.M.H.M, unpublished). At 15 min after the start of forced
swimming (15 min, 25 C water) the number of pERK™ neurons had
moderately to strongly increased in the cingulate, somatosensory,
motor, perirhinal, prelimbic and infralimbic cortex but not in the
piriform cortex. Moderate to strong increases were observed in the
lateral septal nucleus, nucleus accumbens, locus coeruleus and
dorsal raphe nucleus whereas no effects or small effects were
observed in the magnocellular and parvocellular neurons of the
hypothalamic PVN, central, medial and lateral nucleus of the
amygdala, globus pallidus, caudate putamen, and median raphe
nucleus. In the hippocampus, as shown before (Gutierrez-Mecinas
et al.,, 2011), strong increases in pERK™ neurons were selectively
found in the dorsal blade of the dentate gyrus (Fig. 2) whereas no or
only small increments were found in the ventral blade of the
dentate gyrus, CA1, CA2 and CA3 (Collins A. & Reul JM.H.M,
unpublished).

In the neocortex of sedentary rats, the number of pMSK1/2-
positive (pMSK") neurons (presenting as nuclear staining) was
low under baseline conditions except in the piriform cortex where
numbers were already high under these conditions. Moderate in-
creases in pMSK™' neurons were found at 15 min after the start of
forced swimming in the cingulate, motor, perirhinal, prelimbic and
the infralimbic cortex, but not in the somatosensory and piriform
cortex (Collins A. & Reul ].M.H.M., unpublished). In addition, strong
increases in pMSK™ neurons were observed in the lateral septal
nucleus, nucleus accumbens, dorsal raphe nucleus and locus
coeruleus but no effects were found in the central, medial and
lateral nucleus of the amygdala, globus pallidus, caudate putamen
and median raphe nucleus. At baseline, pMSK staining was
considerable in both magnocellular and parvocellular neurons of
the hypothalamic PVN but did not change after forced swimming.
In all sub-regions of the hippocampus pMSK1/2 was very low to
absent at baseline but after forced swimming a large increase was
observed in the dorsal blade of the dentate gyrus (as reported
before (Gutierrez-Mecinas et al., 2011); Fig. 2) and only small in-
creases were found in the CA1 and CA2. In the other sub-regions,
including the ventral blade of the dentate gyrus and CA3, no
changes were observed.

The forced swimming-induced changes in c-Fos expression (at
60 min after the start of forced swimming) in the brain of sedentary
rats were similar to the pattern we reported many years ago
(Bilang-Bleuel et al., 2002). In control rats, moderate to strong ef-
fects of forced swimming were found throughout the neocortex,
lateral septal nucleus, hypothalamic PVN, nucleus accumbens,
caudate putamen, and locus coeruleus. In the hippocampus, a
strong increase was observed in the dorsal blade of the dentate
gyrus 60 min after the start of forced swim stress (Fig. 2) but in the
other regions including the dentate's ventral blade (Gutierrez-
Mecinas et al., 2011), CA1, CA2 and CA3 hardly any or very small
effects were observed (Collins A and Reul J.M.H.M., unpublished).

We investigated the effects of long-term voluntary exercise on
baseline and forced swimming-induced changes in pMSK™, pERK™
and c-Fos™ neurons in the brain. To our surprise we only found
significant effects of regular physical activity on pERK1/2, pMSK1/2
and c-Fos responses in the dentate gyrus (Fig. 2). Exercise had no
effect on baseline levels but it substantially attenuated the effect of
forced swimming on the responses in pERK1/2, pMSK1/2 and c-Fos
in dentate gyrus granule neurons (Fig. 2). The effect of forced
swimming and the attenuating effect of exercise were selectively

found in the dorsal blade of the dentate gyrus (Collins A. and Reul
J.M.H.M., unpublished). In a previous study (Collins et al., 2009), we
had investigated the effect of forced swimming on H3S10p-K14ac
and c-Fos in dentate gyrus granule neurons of exercising rats kil-
led at 2 h after forced swimming. We found that at that time point
the stressor resulted in a significantly higher response in histone
H3 phospho-acetylation and c-Fos induction in the runners than in
the non-runners (Collins et al., 2009). It appears that an initial
suppression of responses was over-compensated at a later point in
time, the underlying mechanism of which is presently unclear.
Thus, regular physical activity alters the behavioral immobility
response and, as shown here, targets signaling and IEG responses in
the dentate gyrus that are implemented in the consolidation of this
behavioral response.

The attenuating effects of exercise on the initial forced
swimming-induced molecular responses in the dentate gyrus may
correspond with the reduced state of anxiety in exercising animals.
The change in emotionality in these animals may be the result of
adjustments in the GABAergic system. We had published that, be-
sides distinct changes in the expression of GABA-A receptor sub-
units (e.g. the extra-synaptic receptor associated delta and alpha-5
subunits), regular physical activity led to increased gene tran-
scription of the GABA-synthesizing enzyme GAD67 (Hill et al,
2010). Moreover, our recent preliminary data indicate that GABA
synthesis is increased in the dentate gyrus/CA3 of exercising rats
(Kersanté et al., unpublished observations). This is an important
observation as we have previously reported that GABAergic
neurotransmission is a critical regulator of stress-evoked (pERK1/2-
and pMSK1/2-targeted) epigenetic and IEG transcriptional re-
sponses in the dentate gyrus (Papadopoulos et al., 2008). We found
that a single injection of a non-sedative dose of the anxiolytic
benzodiazepine, Lorazepam (a GABA-A receptor allosteric modu-
lator) blocked the novelty stress-induced rise in H3S10p-K14ac-
and c-Fos-positive granule neurons in the dentate gyrus. More-
over, administration of the partial inverse agonist FG7142 resulted
in strongly enhanced novelty-induced increases in H3S10p-K14ac-
and c-Fos-positive neurons in the dentate gyrus (Papadopoulos
et al,, 2008). FG7142 has been shown to be an anxiogenic drug in
rats and humans by lowering GABA-A receptor function (Dorow
et al., 1983; Kalueff and Nutt, 1996; Evans and Lowry, 2007).
Additional information on the role of anxiety state and GABAergic
neurotransmission on epigenetic, gene transcriptional and behav-
ioral responses can be found elsewhere (Reul, 2014). Collectively, it
seems that the beneficial effects of regular physical exercise on
anxiety state and behavioral responses involve the enhancement of
GABAergic inhibitory control. Thus, in addition to glucocorticoids,
GABA may be an important mediator of the positive effects of ex-
ercise on resilience.

6.6. Exercise — controversial findings on mood in humans

Studies on the effects of regular exercise (and physical activity in
general) on mood and affect in humans have been conducted over
the past 20 years. The outcome picture has been rather mixed. For
instance, some studies have been published showing improve-
ments in measures of anxiety and depression (Steptoe et al., 1989;
Byrne and Byrne, 1993; Salmon, 2001) whereas an investigation
looking into the effects of ‘facilitated physical activity’ in addition to
usual care (antidepressant treatment) reported no significant ef-
fects (Chalder et al., 2012). Cooney and colleagues recently con-
ducted a meta-analysis involving 2326 participants on the
effectiveness of exercise in the treatment of depression in adults
compared with no treatment (or placebo treatment) or a compar-
ator intervention (pharmacological or psychological treatment)
(Cooney et al., 2013). Overall, exercise was more effective than no or
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placebo treatment in reducing depressive symptoms and equally
effective as pharmacological and psychological treatment (Cooney
et al., 2013). The extent of efficacy of exercise was reduced if only
methodologically robust trials were considered. A few months ago
these authors wrote in a JAMA Synopsis review: “Exercise is asso-
ciated with a greater reduction in depression symptoms compared
with no treatment, placebo, or active control interventions, such as
relaxation or meditation. However, analysis of high-quality studies
alone suggests only small benefits.” (Cooney et al., 2014). Presently,
several points can be made. First of all, more methodologically
robust studies should be conducted. By nature, exercise studies in
humans are difficult to design. Questions like which exercise to
apply (e.g. aerobic, anaerobic, endurance or just facilitated physical
activity?), how often and how long (days, weeks, months?) and
which patients to include/exclude need to be answered. Different
modes of applied exercise will invariably result in variations in
outcome. Blinding of treatments is inherently difficult in exercise
studies. Human studies suffer from variability by nature as humans
differ greatly in terms of physical and physiological properties and
responses. Furthermore, major depressive and anxiety disorders
are very heterogeneous psychiatric disorders, a situation which
may greatly contribute to the variation in treatment outcome.
Voluntary exercise studies on mice and rats produce much less
variability as all animals will be of the same sex and similar weight/
age and will receive the same exercise, i.e. usually a running wheel.
There may be differences among animals in running wheel per-
formance (in km/day) but, at least in our hands using male Sprague
Dawley rats and male C57/BI6 mice, this has made no difference in
terms of the extent of HPA axis and behavioural changes (Reul
JMHM and Droste SK, unpublished observations).

If the verdict ultimately is that the efficacy of exercise is not
greater than that of pharmacological or psychological treatment,
this would not be entirely disappointing. It needs to be considered
that exercise has no adverse side effects which unfortunately
cannot be said of pharmacological treatments. Furthermore, given
that exercise has positive effects on the body and mind besides its
effects on mood and affective state, it will contribute to the general
health and wellbeing of the individual.

With regard to human studies on exercise mostly the effects of
exercise and physical activity on patients suffering from depression
and/or anxiety have been investigated. In view of consideration
how to effectively enhance stress resilience in individuals, future
studies should be directed toward the question whether an active
physical life style provides increased protection against the impact
of traumatic experiences in terms of PTSD and other mental
disorders.

7. Fkbp5 in stress resilience and vulnerability

The FK506 binding protein 51 or Fkbp5 was first identified as a
novel steroid hormone receptor binding protein over 20 years ago
(Sanchez, 1990), and research has revealed that it plays a prominent
role in stress-related diseases (Zannas and Binder, 2014; Binder,
2009). Fkbp5 is a co-chaperone and interacts with the GR
through the heat shock protein HSP90 (Jaaskelainen et al., 2011).
When Fkbp5 is bound to the GR complex cortisol binds with lower
affinity and nuclear translocation of the receptor is reduced; thus
Fkbp5 acts as a negative regulator of GR function (Jaaskelainen
et al., 2011). In fact, GR activation rapidly induces Fkbp5 mRNA
and protein expression thus creating a short, negative feedback
loop that regulates GR function (Binder, 2009; Jaaskelainen et al.,
2011). Furthermore, Fkbp5 is also a co-chaperone of other steroid
receptors including the progesterone and androgen receptors
(Stechschulte and Sanchez, 2011); however, in contrast to the ef-
fects on the GR, Fkbp5 increases the sensitivity of the androgen

receptor (Stechschulte and Sanchez, 2011). The human Fkbp5 gene
locus spans approximately 155 kbp on the short arm of chromo-
some 6 and the gene contains 13 exons (Jaaskelainen et al., 2011)
with GREs found throughout the gene; however, functional GREs
have only been shown to be present upstream of the promoter
region, and in introns 2, 5 and 7 (Zannas and Binder, 2014,
Jaaskelainen et al., 2011; Paakinaho et al., 2010). It is believed that
these GRE enhancers come into direct contact with the transcrip-
tion start site and RNA polymerase II via the formation of three-
dimensional (3D) chromatin loops (Klengel and Binder, 2013a;
Jaaskelainen et al, 2011), consequently promoting a
glucocorticoid-induced increase in Fkbp5 gene transcription.

Genetic variations in the Fkbp5 region are associated with
regulation of the HPA axis, resulting in an altered responsiveness to
stress, which seems to predispose an individual to psychiatric
disorders. A number of studies have shown association of Fkbp5
polymorphisms with an increased susceptibility to major depres-
sion (Lavebratt et al., 2010; Lekman et al., 2008; Zimmermann et al.,
2011; Zobel et al., 2010), bipolar disorder (Willour et al., 2009) and
posttraumatic stress disorder (PTSD) (Appel et al., 2011; Binder
et al., 2008; Mehta et al, 2011; Sarapas et al,, 2011; Xie et al,,
2010) as well as an increased suicide risk (Brent et al., 2010; Roy
et al.,, 2012; Supriyanto et al., 2011), especially in interaction with
exposure to early trauma.

Binder et al. (2004b) have described polymorphisms in the
promoter region, intron 2 and the 3’ un-translated region of human
Fkbp5 — these three single nucleotide polymorphisms (SNPs)
rs4713916, rs1360780, and rs3800373, were associated with
increased recurrence of depressive episodes and rapid antide-
pressant response (Lekman et al., 2008; Binder et al., 2004b). In
particular, rs1360780 T allele which is located close to a functional
GRE in intron 2 is associated with greater induction of Fkbp5 mRNA
with GR activation, leading to compromised negative feedback of
the stress hormone system (Klengel and Binder, 2013a; Binder et al.,
2004b). It is thought that direct contact of the intron 2 GRE with the
transcription start site is enhanced in T allele carriers (Klengel and
Binder, 2013a). In addition, studies have shown that healthy sub-
jects who are carriers of the rs1360780 T allele show protracted
cortisol responses to psychosocial stress (Ising et al., 2008; Luijk
et al., 2010), suggesting that the GR is showing some resistance in
these individuals. Moreover, Binder et al. (2008) reported that in an
African—American sample, four SNPs (rs3800373, rs9296158,
rs1360780, and rs9470080) interacted with childhood trauma in
predicting symptoms of posttraumatic stress disorder (PTSD), a
disorder associated with both a raised risk of attempting suicide
and HPA axis dysregulation (Binder et al., 2008; Wilcox et al., 2009).
Therefore, it appears that Fkbp5 can moderate the influence of
childhood trauma on the stress-responsive HPA axis.

Changes in the methylation status of cytosine nucleotides
within the genomic DNA are an established epigenetic mechanism,
which regulates gene expression and plays a pivotal role in neural
plasticity and environmental adaptation (Telese et al., 2013).
Furthermore, changes in DNA methylation in response to traumatic
experiences and stress are now thought to play an important role in
stress-related psychiatric disorders (Klengel et al., 2014). A recent
study has shown that allele specific changes in DNA methylation
induced by early trauma bring about the interaction observed be-
tween child abuse and Fkbp5 in the development of stress-related
psychiatric disorders (Klengel and Binder, 2013a). This study found
that rs1360780 T allele carriers who were exposed to child abuse,
show de-methylation of CpGs in the functional GRE in intron 7 of
the Fkbp5 gene. This de-methylation of CpGs in intron 7, leads to an
enhanced induction of Fkbp5 transcription by GR agonists and is
associated with GR resistance. Interestingly, in carriers of the
rs1360780C allele, trauma-induced de-methylation of intron 7 GRE
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is absent. Furthermore, de-methylation in this region of FKBP5 was
only dependent on exposure to child abuse but not dependent on
exposure to adult trauma. Thus, de-methylation of the GRE region
in intron 7 results in an enhanced stressor-evoked induction of
Fkbp5 and impaired GR-mediated negative feedback of the HPA
axis (Klengel and Binder, 2013a). Together, these findings support
the idea that exposure of children to abuse who carry risk alleles in
Fkbp5, which can cause enduring epigenetic changes in Fkbp5 gene
expression, are predisposed to stress-associated disorders such as
PTSD. Thus, GR and Fkbp5 molecules form an intricate reciprocal
control loop that is of critical importance for stress resilience and
health. Polymorphisms have also been found in the GR. Although it
is still early days, associations between SNPs within GR and
phenotype have been described for metabolism, body composition,
the immune and cardiovascular systems, and psychiatric diseases
(Koper et al., 2014, in press). However, as the frequency of most
SNPs is rather low, it has been suggested that the influence of a
single SNP on health and disease is limited (Koper et al., 2014,
in press).

8. Early life stress, epigenetic changes and long-term
consequences for resilience

Resilience in adulthood is impaired during episodes of chronic
depression, PTSD and other mental disorders. Clinical studies into
the origin of chronic depression found childhood adversity, in the
form of parental neglect, physical and/or sexual abuse, to be one of
the main factors in predicting episodes of chronic depression in
adulthood based on a sample of 404 women (Brown and Moran,
1994; Brown et al., 1994). Other researchers have shown that a
history of childhood adversity is predictive for other mood, anxiety,
behavioral and substance disorders including bipolar disorder,
PTSD, ADHD and drug/alcohol misuse respectively, although it
should be noted that many studies are limited in some way either
by the retrospective analysis of abuse or influencing factors not
taken into consideration (Kessler et al., 2010). Despite the strong
correlation between early life stress and mental illness, according
to the Connar-Davidson Resilience Scale (CDRISC) the presence of
resilience characteristics such as hardiness, tenacity and adapt-
ability can mitigate the negative outcome of early childhood stress
on some of these disorders (Wingo et al., 2010, 2014).

Research into the physiological effects of childhood adversity on
stress-coping systems, namely the HPA axis identified complex
changes in both the ovine CRF-activated HPA response and the
exogenous ACTH-evoked response in circulating glucocorticoid
levels (Heim et al., 2001). Thus, whereas the CRF-induced increase
in plasma ACTH levels was enhanced in women with a history of
childhood abuse but without comorbid major depressive disorder
(MDD), a blunted ACTH response was found in women with MDD
irrespective of the presence of childhood abuse. Interestingly, only
in abused women without comorbid MDD, baseline cortisol levels
and the cortisol response to synthetic ACTH were decreased (Heim
et al., 2001). In a further study, Heim et al. (2000) investigated the
HPA axis responses to psychosocial stress, which, rather than the
pharmacological challenges, involves higher cognitive and
emotional processing (Heim et al., 2000). Women with a history of
childhood abuse (physical or sexual) had significantly higher levels
of ACTH released following psychosocial stress compared with non-
abused women regardless of mental state. The observation that the
abused women presenting with MDD have an exaggerated ACTH
response to psychosocial stress but not to pharmacological stimu-
lation could indicate that additional cognitive and emotional ele-
ments involved in this stress are interacting with pathways or
emotions established from a history of childhood abuse. Subse-
quent enhanced responses in circulating cortisol levels and heart

rate to psychosocial stress were only observed in abused women
presenting with MDD in adulthood but not in abused women
without MDD, despite exaggerated ACTH responses in both groups.
Taken together, these findings indicate that childhood abuse pre-
cipitates pituitary sensitization with subsequent counter-
regulatory adrenocortical adaptations occurring only in abused
women without MDD, which may be regarded as a potential form
of resilience (Heim et al., 2008). Exposure to further life stressors
may lead to the HPA axis profile seen in the group of abused women
with comorbid MDD and thus it seems that resilience is compro-
mised in these women.

Long-term changes in HPA axis function due to experiences
encountered during childhood have been widely attributed to
changes in the epigenome. Early studies of Michael Meaney's group
investigating the effects of maternal behavior on the offspring's
HPA axis function in adulthood provided the first evidence for an
epigenetic link between early-life experiences and life-long
changes in HPA axis function (Weaver et al., 2004). Rat pups
reared by high care-giving mothers exhibited a sustained DNA de-
methylation in the promoter region of the GR gene within the
hippocampus shortly after birth. This DNA de-methylation was
associated with enhanced acetylation of lysine 9 within histone H3
and increased Egr-1 binding, promoting gene transcription. In
contrast, rats reared from low care-giving mothers had significant
re-methylation of this region after birth leading to aberrant HPA
axis function and anxiety-like behavior in adulthood (Weaver et al.,
2004). In later studies it was found that maternal care also resulted
in de-methylation of the region responsible for maternal behavior
in female offspring, namely the estrogen receptor alpha 1b of the
medial preoptic area (Champagne et al., 2006). These epigenetic
changes in the estrogen receptor determined which class of care-
giver female pups would become based on their experience as
pups. Hence, female offspring of low care-giving dams would
become low care-giving dams and propagate the cycle of epigenetic
changes based on maternal care (Champagne et al., 2006).

Other components of the HPA axis have been investigated for
epigenetic changes as a result of early life stress (ELS) including the
proopiomelanocortin (POMC) gene which is responsible for pro-
ducing the pro-hormone for ACTH production (Patchev et al., 2014).
Daily separation of mice pups from their mother (a form of ELS)
disrupted basal corticosterone levels in offspring compared with
controls (non-ELS) and detailed epigenetic analysis of the POMC
gene in the ELS mice identified a sustained hypo-methylation in the
distal promoter region in ELS mice compared with non-ELS con-
trols. This hypo-methylation was functionally linked to an increase
in POMC mRNA expression possibly as a result of decreased binding
of protein methyl-CpG-binding protein 2 (Mecp2) and DNA-
methyltransferase 1 (DNMT1), which are involved in transcrip-
tional repression. These epigenetic changes in the POMC gene, as a
result of ELS, were still present in aged mice tested at 1 year
(Patchev et al., 2014).

McGowan et al. (2009) translated the animal studies described
above regarding the GR gene into the human situation of child-
abuse related suicide and found similar epigenetic changes as
those identified within the hippocampal GR promoter of low-care
giving rats to those present in the human hippocampal GR gene
promoter (McGowan et al., 2009). Male suicide victims abused as
children had increased methylation of the hippocampal GR pro-
moter region and an associated reduction in GR gene transcription
compared with hippocampal samples from non-abused suicide
victims or age-matched non-suicide non-abused controls. Later
studies examining changes in the blood of children and adolescents
with or without a history of childhood abuse have revealed that: 1.
Changes in DNA methylation patterns occur shortly after the
adverse experience (van der Knaap et al.,, 2014; Romens et al.,
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2014); 2. Increases in DNA methylation within the GR promoter
region as a result of childhood adversity is not exclusive to the
hippocampus and can be detected in DNA extracted from whole
blood (van der Knaap et al., 2014; Romens et al., 2014); and 3. DNA
methylation levels in the promoter region of the GR gene are
positively correlated with the number of stressful life events (such
as parental divorce, hospitalization, parental illness etc.) a child or
young adult experiences in a cumulative manner (van der Knaap
et al., 2014). Additional genome-wide screening studies have
been performed on both human blood (Bick et al., 2012; Suderman
et al., 2014) and brain tissue (Labonte et al., 2012) to identify the
sheer number of genes differentially methylated when categorized
based on experience of childhood abuse.

The relevance of long lasting epigenetic changes as a result of
early life experiences could be explained by the emerging match/
mismatch hypothesis of psychiatric disease (Nederhof, 2012).
Studies on human development (reviewed in Belsky and Pluess
(2009)) discussed the possibility that apparent ‘negative’ behav-
ioral and or molecular changes occurring as a result of adverse
environmental experience during development may, in fact, in-
crease resilience when dealing with a matched environment of
high stress in later life. These ideas forming the basis of match/
mismatch hypothesis of psychiatric disease suggest that individuals
are better suited when adapting to an environment which matches
their early life experience (Nederhof and Schmidt, 2012). Mice
experiencing mismatched environmental conditions between early
life and adulthood had lower thymus weight and reduced basal
corticosterone levels compared with mice experiencing both pos-
itive and negatively matched environments (Santarelli et al., 2014).
When facing an adverse challenge, in the form of the forced swim
test, mice that had experienced early life stress were quicker to
adapt to the stressful experience compared with mice that had
experienced a beneficial early care regime (Santarelli et al., 2014).
Maternal separation in early life also had an enhancing effect on
freezing behavior when rats were exposed to fear conditioning
following a chronic stress paradigm in adulthood compared with
non-maternally separated rats indicating the adverse experience of
maternal separation had increased the adaptive response of the rats
to stressful situations in adulthood and supporting the match/
mismatch hypothesis (Zalosnik et al., 2014). Taken together these
studies may indicate that whilst early life stress causes long term
changes in the HPA axis and stress response these may be designed
to increase resilience of that individual to stress in later life but
clearly more research is needed to verify the validity of the match/
mismatch hypothesis.

9. Perspectives

Resilience is of crucial importance for maintaining health
throughout life. It may be regarded as an important factor in the
mitigation of allostatic load, i.e. the slipping of homeostatic
mechanisms due to genetic vulnerabilities in combination with the
adversities of life (McEwen, 2001, 2012a). Research over the past
seven decades has made it undeniably clear that glucocorticoid
hormones play a pivotal role in processes underlying adaptation
and resilience. Not surprisingly, glucocorticoid function is highly
regulated to safeguard the organism from hypo- as well as hyper-
function of this steroid hormone. As illustrated in this article, the
regulation of glucocorticoid function is taking place at multiple
levels: 1. Through the tight control of biologically available hor-
mone for binding to MRs and GRs during baseline and stress con-
ditions, and other physiological conditions like exercise, resulting
in differential MR and GR occupancies. These hormone concen-
trations are kept in check within the HPA axis through intricate
ultradian and circadian, feed-forward and feed-back mechanisms,

and a plethora of HPA axis-afferent systems such as the sympa-
thetic nervous system and the central aminergic systems; 2.
Through the regulation of the concentration of MRs and GRs in
various tissues during baseline and stress conditions and over the
life span; 3. Through the fine-tuning of MR and GR activities by co-
chaperone molecules like Fkbp5 and many other steroid receptor
co-regulators; 4. Through interaction of MRs and GRs with acti-
vated or induced signaling molecules whose availability depends
on the state of cellular activity. These interactions determine
epigenetic modifications, gene promoter accessibility, transcription
factor activities (including those of MRs and GRs themselves!) and
thus gene transcription (Reul, 2014). This list doesn't claim to be
exhaustive and new mechanisms are still being discovered, and no
doubt, with future discoveries possible.

With all the checks and balances in place it appears that the
entire system or network controlling glucocorticoid function and
resilience is rather robust. In principle this may be the case, yet
more than 10% of our population is suffering from stress-related
major depressive disorder and anxiety-related disorders. It ap-
pears that the system can fail if put under high strain, such as major
(chronic) emotional stress, in combination with genetic vulnera-
bility (SNPs, point mutations) in key molecules. Genetic vulnera-
bilities in particular have a substantial, often life-long impact, if
physical or sexual abuse occurs during early childhood with a
significantly higher risk of developing major depressive disorder or
anxiety disorders in later life.

These novel insights into the effects of stress and glucocorticoids
on the brain, particularly in relation to the role of epigenetic control
of gene expression and its consequences for neuronal function and
behavior, will help to develop new treatment strategies for patients
suffering from a stress-related mental disorder. In this respect, the
combined application of epigenetic techniques and whole genome
screening technologies in the neuroscience of stress resilience will
accelerate the accumulation of vital knowledge. In addition to the
development of novel pharmacological treatments, attention
should be given to the neurobiology underlying the beneficial ef-
fects of life style choices such as exercise, mindfulness and
meditation.
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