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In this issue of Coronary Artery Disease, Wang et al. investigated the use of plasma DNA as 

a novel early biomarker for acute myocardial infarction (AMI) in patients undergoing a 

coronary catheterization for symptomatic heart disease. They discovered that, at the time of 

diagnostic catheterization, plasma levels of nuclear (n) and mitochondrial (mt) DNA were 

elevated in patients with AMI compared to patients without AMI, thus pointing to the 

prospect that analysis of plasma DNA could comprise an earlier and perhaps more cost-

effective means of clinical laboratory detection than the other analyses currently employed. 

These observations also add some urgency to the need for an improved understanding of 

how DNA fragments are elaborated into the circulatory system and, perhaps of even greater 

significance, whether free DNA fragments function as mediators of the injury via their 

ability to activate resident and itinerant inflammatory and other tissue-specific effector 

cells 1, 2.

Levels of plasma mtDNA were approximately eight-fold higher than nDNA, but both 

decreased to the levels of the non-healthy controls by day 3. Although the authors suggested 

the increased levels of plasma DNA was secondary to cell death, there are reasons to suspect 

that mechanisms promoting release of mtDNA fragments might be cell type-specific, and 

not always linked to cell death per se. For example, stimulated eosinophils and dendritic 

cells both release mtDNA fragments into the extracellular environment in the absence of cell 

death 3-6. In AMI, as well as the other disorders in which DNA fragment release into the 

extracellular space has been described, the cellular sources and mechanisms of release have 

yet to be completely defined and could be fruitful areas for further study.

The mechanisms triggering cellular export of DNA fragments are also unknown. In 

eosinophils, for example, mtDNA release has been described as a “catapult-like” process not 

involving conventional motor proteins 3. Emerging evidence also suggests that oxidative 
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damage to mtDNA may play a critical role. In this regard, it has been known for some time 

that the mitochondrial genome is far more sensitive to oxidative damage than nuclear 

DNA 7, 8, an observation whose significance is underscored by involvement of reactive 

species of oxygen and nitrogen across the spectrum of pathologic processes associated with 

isolated and multiple organ dysfunction, including AMI 9, 10. In direct support for a role for 

oxidative mtDNA damage in promoting release of extracellular mtDNA following AMI, our 

preliminary observations showed that pharmacologic enhancement of mtDNA repair in 

isolated rat lungs blocks bacteria-induced oxidative mtDNA damage and extracellular 

accumulation of mtDNA DAMPs 11.

An important question to emerge from the present study is whether the free DNA fragments 

mobilized in the setting of AMI contribute to ischemic myocardial damage. There are 

conflicting data that bear on this concept. First, in support for the postulated importance of 

mtDNA damage-induced mtDNA DAMP formation in AMI, Yang et al. found in a rat 

model of ischemia-reperfusion myocardial injury that intravenous administration of a fusion 

protein targeting the initial enzyme in base excision DNA repair, Ogg1, to mitochondrial 

reduced both mtDNA damage and infarct size 12. Involvement of DNA DAMPs in this 

process was inferred by observations that, similar to enhancement of mtDNA repair, 

treatment of the animals with DNase1 to degrade circulating DNA also abrogated infarct 

size. Moreover, when isolated rat hearts were subjected to transient ischemia, infarct size 

was enlarged considerably by simultaneous exposure of the cardiac tissue to exogenous 

mtDNA fragments. Counter to the postulated importance of mtDNA damage and DAMPs in 

AMI, transgenic mice deficient in one or two key DNA glycosylases, either 8-oxoguanine 

DNA glycosylase or MutY glycosylase, fail to display exagerrations in either infarct size or 

cardiac function in comparison to wild type controls 13. One plausible explanation for these 

divergent results is that, in the knockout mouse experiments, the DNA glycosylases were 

deficient in both the nuclear and mitochondrial compartments. Nuclear Ogg1 is known to 

play a role in transcriptional signaling 14, 15, including regulation of pro-inflammatory 

genes 16-19. Obviously, nuclear Ogg1 (and MutY) deficiency could modulate the evolution 

of AMI in this animal model by mechanisms independent of mtDNA repair. In addition, 

given the fact that multiple DNA glyosylases are expressed in mammalian cells, there is the 

possibility of compensatory increases in expression or activities of other glycosylases in 

knockout animals.

In severely injured or septic human patients, circulating abundances of mtDNA fragments 

are associated with poor outcomes, including particularly multiple organ system 

failure 20-22. In light of laboratory experiments demonstrating that administration of 

exogenous mtDNA DAMPs leads to widespread inflammation mediated by activation of 

TLR-9 receptors on innate immune and resident tissue effector cells 1, 2, it has been 

postulated that mobilization of mtDNA DAMPs by isolated tissue damage serves to 

propagate injury to distant organs thereby leading to multiple organ system dysfunction1. 

This concept leads to the question of why AMI, which is also accompanied by elevations in 

circulating mtDNA and nDNA fragments, is not generally linked to systemic inflammation 

and failure of non-cardiac organs by mechanisms not related to hemodynamic dysfunction. 

Of course, there are multiple explanations for this. The magnitude or persistence of the rise 

in circulating DNA evoked by the comparatively small amount of tissue damaged in AMI 
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might not be adequate to trigger propagation of injury to non-cardiac sites. In this regard, 

our previous work in patients with severe trauma showed that individuals with similar 

injuries presented with either high plasma mtDNA that remained elevated until the patient 

developed MODS and death, or the patient presented with low plasma mtDNA levels which 

did not lead to MODS 22. By contrast, Wang et al. found in patients with AMI that plasma 

mtDNA levels decreased over a three-day period to the baseline of the non-healthy controls. 

Another consideration is that predisposing factors which could augment sensitivity to 

mtDNA DAMPs, such as enhanced expression of TLR-9 23, could be absent in the setting of 

AMI. Finally, the possibility also should be considered that there are indeed non-cardiac 

consequences of AMI that are DAMP mediated. In this context, literature now several 

decades old noted that in some AMI patients displayed pulmonary edema caused by 

enhanced vascular permeability rather than hydrostatic mechanisms 24-27. Perhaps elevated 

circulating DAMPs triggered by ischemic cardiac damage contribute in subtle ways to the 

evolution of so-called “cardiogenic” pulmonary edema. Clearly, future studies will be 

required to address this possibility.

The provocative evidence provided in the current report by Wang et al suggesting that 

plasma DNA levels predict the occurrence of AMI should be pursued. Early, cost-effective 

laboratory determination of AMI would certainly have an impact on clinical management of 

this patient population. Among the various technical hurdles that needs to be overcome 

before this potential can be realized revolves around the fact that there is little 

standardization in the literature in terms of how mtDNA abundance is reported (i.e. relative 

difference, copy-number, ng/mL, etc.). For the field to advance, it might be beneficial for an 

expert panel to define methods for isolation and quantitation of mtDNA and nDNA values to 

guide future clinical studies of these novel outcome markers.
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