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Abstract

Accumulating evidence indicates that the capacity to integrate information in the brain is a
prerequisite for consciousness. Integrated Information Theory (IIT) of consciousness pro-
vides a mathematical approach to quantifying the information integrated in a system, called
integrated information, ®. Integrated information is defined theoretically as the amount of
information a system generates as a whole, above and beyond the amount of information
its parts independently generate. lIT predicts that the amount of integrated information in
the brain should reflect levels of consciousness. Empirical evaluation of this theory requires
computing integrated information from neural data acquired from experiments, although dif-
ficulties with using the original measure @ precludes such computations. Although some
practical measures have been previously proposed, we found that these measures fail to
satisfy the theoretical requirements as a measure of integrated information. Measures of
integrated information should satisfy the lower and upper bounds as follows: The lower
bound of integrated information should be 0 and is equal to 0 when the system does not
generate information (no information) or when the system comprises independent parts (no
integration). The upper bound of integrated information is the amount of information gener-
ated by the whole system. Here we derive the novel practical measure ®* by introducing a
concept of mismatched decoding developed from information theory. We show that ®* is
properly bounded from below and above, as required, as a measure of integrated informa-
tion. We derive the analytical expression of ®* under the Gaussian assumption, which
makes it readily applicable to experimental data. Our novel measure ®* can generally be
used as a measure of integrated information in research on consciousness, and also as a
tool for network analysis on diverse areas of biology.

Author Summary

Integrated Information Theory (IIT) of consciousness attracts scientists who investigate
consciousness owing to its explanatory and predictive powers for understanding the neural
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properties of consciousness. IIT predicts that the levels of consciousness are related to the
quantity of information integrated in the brain, which is called integrated information ®.
Integrated information measures excess information generated by a system as a whole
above and beyond the amount of information independently generated by its parts.
Although IIT predictions are indirectly supported by numerous experiments, validation is
required through quantifying integrated information directly from experimental neural
data. Practical difficulties account for the absence of direct, quantitative support. To
resolve these difficulties, several practical measures of integrated information have been
proposed. However, we found that these measures do not satisfy the theoretical require-
ments of integrated information: First, integrated information should not be below 0; and
second, integrated information should not exceed the quantity of information generated
by the whole system. Here, we propose a novel practical measure of integrated informa-
tion, designated as ®* that satisfies these theoretical requirements by introducing the con-
cept of mismatched decoding developed from information theory. ®* creates the
possibility of empirical and quantitative validations of IIT to gain novel insights into the
neural basis of consciousness.

Introduction

Although its neurobiological basis remains unclear, consciousness may be related to certain
aspects of information processing [1, 2]. In particular, Integrated Information Theory of con-
sciousness (IIT) developed by Tononi and colleagues [2-9] predicts that the amount of infor-
mation integrated among the components of a system, called integrated information @, is
related to the level of consciousness of the system. The level of consciousness in the brain varies
from a very high level, as in full wakefulness, to a very low level, as in deeply anesthetized states
or dreamless sleep. When consciousness changes from high to low, IIT predicts that the
amount of integrated information changes from high to low, accordingly. This prediction is
indirectly supported by recent neuroimaging experiments that combine noninvasive magnetic
stimulation of the brain (transcranial magnetic stimulation, TMS) with electrophysiological
recordings of stimulation-evoked activity (electroencephalography) [10-14]. Such evidence
implies that if there is a practical method to estimate the amount of integrated information
from neural activities, we may be able to measure levels of consciousness using integrated
information.

IIT provides several versions of mathematical formulations to calculate integrated informa-
tion [2-8]. Although the detailed mathematical formulations are different, the central philoso-
phy of integrated information does not vary among different versions of IIT. Integrated
information is mathematically defined as the amount of information generated by a system as
a whole above and beyond the amount of information generated independently by its parts. If
the parts are independent, no integrated information should exist.

Despite its potential importance, the empirical calculation of integrated information is diffi-
cult. For example, one difficulty involves making an assumption when integrated information
is calculated according to the informational relationship between the past and present states of
a system. The distribution of the past states is assumed to maximize entropy, which is called
the maximum entropy distribution. The assumption of the maximum entropy distribution
severely limits the applicability of the original integrated information measure @ as indicated
by [15]. First, the concept of the maximum entropy distribution cannot be applied to a system
that comprises elements whose states are continuous, because there is no unique maximum

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004654 January 21,2016 2/18



©PLOS

COMPUTATIONAL

BIOLOGY

Measuring Integrated Information from the Decoding Perspective

entropy distribution for continuous variables [15, 16]. Second, information under the assump-
tion of the maximum entropy distribution can be computed only when there is complete
knowledge about the transition probability matrix that describes how the system transits
between states. However, the transition probability matrix for actual neuronal systems is prac-
tically impossible to estimate.

To overcome these problems, Barrett and Seth [15] proposed using the empirical distribu-
tion estimated from experimental data, thereby removing the requirement to rely on the
assumption of the maximum entropy distribution. Although we believe that their approach
does lead to practical computation of integrated information, we found that their proposed
measures based on the empirical distribution [15] do not satisfy key theoretical requirements
as a measure of integrated information. Two theoretical requirements should be satisfied as a
measure of integrated information. First, the amount of integrated information should not be
negative. Second, the amount of integrated information should never exceed information gen-
erated by the whole system. These theoretical requirements, which are satisfied by the original
measure @, are required so that a measure of integrated information is interpretable in accor-
dance with the original philosophy of integrated information.

Here, we propose a novel practical measure of integrated information, ®*, by introducing
the concept of mismatched decoding developed from information theory [17-20]. ®* repre-
sents the difference between “actual” and “hypothetical” mutual information between the past
and present states of the system. The actual mutual information corresponds to the amount of
information that can be extracted about the past states by knowing the present states (or vice
versa) when the actual probability distribution of a system is used for decoding. In contrast,
hypothetical mutual information corresponds to the amount of information that can be
extracted about the past states by knowing the present states when the “mismatched” probabil-
ity distribution is used for decoding where a system is partitioned into hypothetical indepen-
dent parts. Decoding with a mismatched probability distribution is called mismatched
decoding. ®* quantifies the amount of loss of information caused by the mismatched decoding
where interactions between the parts are ignored. We show here that ®* satisfies the theoretical
requirements as a measure of integrated information. Further, we derive the analytical expres-
sion of ®* under the Gaussian assumption and make this measure feasible for practical compu-
tation. We also compute ®* and the previously proposed measures in electrocorticogram
(ECoG) data recorded in monkeys to demonstrate that the previous measures violate the theo-
retical requirements even in real brain recordings.

Results

While its central ideas are unchanged, IIT updated measures of integrated information. The
original formulation, IIT 1.0 [2], underwent major developments leading to IIT 2.0 [6] and the
latest version IIT 3.0 [8]. In the present study, we focus on the version in IIT 2.0 [3, 6], because
the measure of integrated information proposed in IIT 2.0 is simpler and more feasible to cal-
culate compared with that in IIT 3.0 [5, 8].

Here, we briefly review the original measure of integrated information, @, in IIT 2.0 [3, 6]
and describe its limitations for practical application [15]. From the concept of the original mea-
sure, we point out the lower and upper bounds that a measure of integrated information should
satisfy. We introduce next two practical measures of integrated information, ®; and @y, pro-
posed by [15] and show that @; and @y fail to satisfy the lower and upper bounds of integrated
information. Finally, we derive a novel measure of integrated information, @, from the decod-
ing perspective, which is properly bounded from below and above.
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Intrinsic information and extrinsic information

In IIT, information refers to intrinsic information as opposed to extrinsic information (See S1
Text for details). Intrinsic information is quantified from the intrinsic perspective of a system
itself and only depends on internal variables of the system. On the other hand, extrinsic informa-
tion is quantified from the extrinsic perspective of an external observer and depends on external
variables. For example, in neuroscience, extrinsic information is quantified as mutual informa-
tion between neural states X and external stimuli S, I(X;S) [21-24]. In contrast, intrinsic informa-
tion can be quantified by the mutual information between the past states X" and the present
states X' of the system, I(X* ;X’). The mutual information, I(X* %X"), is expressed by

I(X"5X") = H(X"") — H(X"[X"), (1)

where H(X'™) is the entropy of the past states and H(X'"*|X") is the conditional entropy of the
past states given the present states. In IIT, the distribution of the past states is assumed to be the
maximum entropy distribution so that the entropy of the past states is maximized, i.e., the past
states are maximally uncertain. We can interpret that intrinsic information, I(X*~5X"), quantifies
to what extent uncertainty of the past states can be reduced by knowing the present states from
the system’s intrinsic point of view. IIT considers such quantity as the amount of information
intrinsically generated by the system.

Measure of integrated information with the maximum entropy distribution

Consider partitioning a system into m parts such as M, M,, - - -, and M,, and computing the
quantity of information that is integrated across the m parts of a system. As detailed in S1 Text,
the measure of integrated information proposed in IIT 2.0 can be expressed as follows:

O =I(™X X)) = > I(™MTM]), (2)
i=1

where the superscript™® indicates that the distribution of the past states is the maximum
entropy distribution. The first term of Eq 2, (™ X" %;X"), represents the mutual information
between the past and present states in the whole system, and the second term represents the
sum of the mutual information between the past and present states in the i-th part of the sys-
tem I("“M!™"; M!). Thus, @, the difference between them, gives the information generated by
the whole system above and beyond the information generated independently by its parts. If

the parts are independent, no extra information is generated, and the integrated information is
0. We can rewrite Eq 2 in terms of entropy H as follows:

® =3 H (™M M) — H(™XX). 3)

i=1

To derive the above expression, we use the fact that the entropy of the whole system H(™* X*™")
equals the sum of the entropy of the subsystems > " | H(™*M!~*) when the maximum entropy
distribution is assumed.

Theoretical requirements as a measure of integrated information

To interpret a measure of integrated information as the “extra” information generated by a sys-
tem as a whole above and beyond its parts, it should satisfy theoretical requirements, as follows:
First, integrated information should not be negative because information independently gener-
ated by the parts should never exceed information generated by the whole. Integrated informa-
tion should equal 0 when the amount of information generated by the whole system equals 0
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(no information) or when the amount of information generated by the whole is equal to that
generated by its parts (no integration). Second, integrated information should not exceed the
amount of information generated by the whole system because the information generated by
the parts should not be negative. In short, integrated information should be lower-bounded by
0 and upper-bounded by the information generated by the whole system.

One can check the original measure @ satisfies the lower and upper bounds.

0<®<I(™X X (4)

As shown in S1 Text, @ can be written as the Kullback-Leibler divergence. Thus, ® is positive
or equal to 0. Further, as can be seen from Eq 2, the upper bound of ® is the mutual informa-
tion in the entire system, because the sum of mutual information in the parts is larger than or
equal to 0.

Practical measures of integrated information with empirical distribution. The original
measure @ assumes the distribution of the past states to be the maximum entropy distribution,
which limits the practical application of ® for two reasons. First, the maximum entropy distri-
bution can be applied only when the states of a system are discrete. If the states are represented
by discrete variables, the maximum entropy distribution is the uniform distribution over all
possible states of X'"*. When the states of a system are described by continuous variables, the
maximum entropy distribution cannot be uniquely defined [15, 16]. Second, the transition
probability matrix of a system, p(X|X"") must be known for all possible past states X'~* for
obtaining the mutual information I(™* X"~%X"). However, it is nearly impossible to estimate
such a complete transition probability matrix experimentally in an actual neural system,
because some states may not occur during a reasonable period of observation.

A simple remedy for the limitations of the original measure @ is not to impose the maxi-
mum entropy distribution on the past states but instead to use the probability distributions
obtained from empirical observations of the system. Barrett and Seth [15] adopted this strategy
to derive two practical measures of integrated information from Eqs 2 and 3 by substituting the
maximum entropy distribution with the empirical distribution as follows:

®, = I(X'75X) = > 1(M; M), )
i=1
= Y H (M M) - H(X"[X). (6)
i=1

Note that @; and @y are not equal when the empirical distribution is used for the past states,
because the entropy of the whole system H(X' ") is not equal to the sum of the entropy of the
subsystems, > . H(M; ™). @ was also derived from a different perspective from IIT, i.e. the
perspective of information geometry, as a measure of spatio-temporal interdependencies and is
termed “stochastic interaction” [25, 26].

Although these two measures appear as natural modifications of the original measure, they
do not satisfy the theoretical requirements as a measure of integrated information. We discuss
the problems of ®; and @y in detail later.

Integrated information measure based on mismatched decoding. Here, we propose an
alternative practical measure of integrated information that satisfies the theoretical require-
ments which we call ®* (phi star) (Fig 1). ®*, which uses the empirical distribution, can be
applied to actual neuronal recordings. Similar to ®@;, we will derive @* based on the original
measure @ in Eq 2 based on mutual information. Given the problem of ®;in Eq 5, we should
refine the second term of Eq 5, while the first term, the mutual information in the whole
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Matched decoding I(X*~7; X?)

Xt T
Decodmg

p(Xt Xt T)

Mismatched decoding I*( Xt~ 7; Xt)

Decoding

g(XXTT)
= [[p(M} M)
7

Integrated information ¢* = I(X!™7; X?) — I*(X'~7: X1)

Fig 1. Integrated information based on the concept of mismatched decoding. The figure shows a
system with five neurons in which the arrows represent directed connectivity and the colors represent the
states of the neurons (black: silence, white: firing, gray: unknown). The past states X' are decoded given the
present states X'. The “true” conditional distribution p(X|X*™") is used for matched decoding, while a “false”
conditional distribution g(X'|X"~") is used for mismatched decoding where the parts of a system M, and M, are
assumed independent. The amount of information about the past states that can be extracted from the
present states using matched and mismatched decoding is quantified by the mutual information /(X*-";X") and
the “hypothetical” mutual information /*(X"~";X) for mismatched decoding, respectively. In this framework,
integrated information, ®*(X*~";X"), is defined as the difference between /(X" ";X") and /* (X" ";X").

doi:10.1371/journal.pcbi.1004654.g001

system, is unchanged. The second term should be a quantity that can be interpreted as infor-
mation generated independently by the parts of a system and should be less than information
generated by the system as a whole.

To derive a proper second term in Eq 5, we interpret the mutual information from a decod-
ing perspective and introduce the concept of “mismatched decoding”, which was developed by
information theory [17] (see S1 Text for details). Consider that the past states X'~ " are decoded
given the present states X'. From the decoding perspective, the mutual information can be
interpreted as the maximum information about the past states that can be obtained knowing
the present states. To extract the maximum information, the decoding must be performed opti-
mally using the “true” conditional distribution,

P(thxr_r) :p(Miﬂ'"vM:n|M;_Tv"'7M:n_T)' (7)

Note that the expression on the right explicitly accounts for interactions among all the parts. The
optimal decoding can be performed using the maximum likelihood estimation. In the above set-
ting, the maximum likelihood estimation chooses the past state that maximizes p(X'|X"™") given a
present state. Decoding that uses the true distribution, p(X'|X"™"), is called “matched decoding”
because the probability distribution used for decoding matches the actual probability
distribution.

Decoding that uses a “false” conditional distribution, g(X'|X'"), is called “mismatched”
decoding. To quantify integrated information, we consider specifically the mismatched
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©PLOS

COMPUTATIONAL

BIOLOGY

Measuring Integrated Information from the Decoding Perspective

decoding that uses the “partitioned” probability distribution g(X*|X*"),

m

g(X'|x) = [ [ p(0|n;), (8)

i=1

where a system is partitioned into parts and the parts M; are assumed to be independent.
q(X‘|X""™) is the product of the conditional probability distribution in each part p(M!|M'~).
The distribution, g(X’|X*™"), is “mismatched” with the actual probability distribution, because
parts are generally not independent in reality. As is matched decoding, mismatched decoding
is also performed using the maximum likelihood estimation, wherein the past state that maxi-
mizes q(X'|X*™) is selected. The amount of information obtained from mismatched decoding
is necessarily degraded compared with that obtained from matched decoding. The best decod-
ing performance can be achieved only when matched decoding is used with the actual probabil-
ity distribution p(X'|X"7).

We consider the amount of information that can be obtained from mismatched decoding,
I (X" %;X"), as a proper second term of Eq 5 (see Methods for the mathematical expression of
I). The difference between I(X'~;X") and I* (X' ;X’) provides a new practical measure of inte-
grated information (Fig 1),

O (X X)) = [(X5 X)) — I (X5 X). (9)

®* quantifies the information loss caused by mismatched decoding where a system is parti-
tioned into independent parts, and the interactions between the parts are ignored. ®* satisfies
the theoretical requirements, because I* is greater than or equal to 0 and is less than or equal to
the information in the whole system I. ®* is equivalent to the original measure @ if the maxi-
mum entropy distribution is imposed on the past states instead of an empirical distribution
(see S1 Text for the proof). Thus, we can consider ®* as a natural extension of @ to the case
when the empirical distribution is used.

Analytical computation of ®* using Gaussian approximation

Although using an empirical distribution instead of the maximum entropy distribution makes
integrated information feasible to calculate, it is still difficult to compute ®* in a large system,
because the summation over all possible states must be calculated. The number of all possible
states grows exponentially with the size of the system and therefore, computational costs for
computing @ also grow exponentially. Thus, for practical calculation of ®*, we need to
approximate ®* in some way such as approximating the probability distribution of neural
states using the Gaussian distribution [15]. ®* can be analytically computed using the Gaussian
approximation (see Methods). The Gaussian approximation significantly reduces the computa-
tional costs and makes @* practically computable even in a large system.

Theoretical requirements are not satisfied by previously proposed
measures

In this section, by considering two extreme cases, we demonstrate that the previously proposed
measures @ and @;[15] do not satisfy either the lower or upper bound.

When there is no information. First, we consider the case where there is no information
between the past and present states of a system, i.e. I[(X'"5X") = 0. In this case, integrated infor-
mation should be 0. As expected, ®* and @; are 0, because the amount of information for mis-
matched decoding, I* (X" %;X), and the mutual information in each part, I(M'~"; M!), are both
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0 when I(X"5X") = 0;

However, @ is not 0. @ can be written as

®, =Y H(M™)—H(X"™). (12)

® is not 0 even when the information I(X" %X") is 0 because @y is not based on the mutual
information but on the conditional entropy (see Eq 6). Therefore, @ does not necessarily
reflect the amount of information in a system.

As a simple example that shows the above problem of @y, consider the following linear
regression model,

X'=AX"'+E. (13)

Here, X is the state of units, A is a connectivity matrix, and E’ is multivariate Gaussian noise
with zero mean and covariance (E). E' is uncorrelated over time. For simplicity, consider a
system composed of two units (the following argument can be easily generalized to a system
with more than two units). We set the connectivity matrix A and the covariance matrix of
noise X(E) as follows:

where a and c are parameters that control the strengths of connections and noise correlation,
respectively. We compute measures of integrated information using the above model. The time
difference 7 is set to 1. We assume that the prior distribution of the system is the steady state dis-
tribution, where the covariance of the past states, Z(X"™!), and that of the present states, Z(X"),
are equal, i.e. (X = (X)) = 2(X). The covariance of the steady state distribution 2(X) can be
calculated by taking the covariance of both sides of Eq 13,

T(X) = AZ(X)A" + Z(E). (16)

We consider a case where the connection strength a is 0. Fig 2 shows an exemplar time
series when the strength of noise correlation c is 0.9. Because there are no connections, includ-
ing self-connections within each unit, each unit has no information between the past and pres-
ent states, i.e., I; = I, = 0. As can be seen from Fig 2, however, the two time series correlate at
each moment because of the high noise correlation.

We varied the degree of noise correlation, ¢, from 0 to 1 while keeping the connection
strength a as 0 (Fig 3(A)). ®* and @, stay 0 independent of noise correlation. However, an
entropy-based measure, @y, increases monotonically with ¢, irrespective of the amount of
information in the whole system (Fig 3(A)). As shown in Eq 12, @y is the difference between
the sum of entropy within each part and entropy in the whole system. When the parts correlate,
the entropy in the whole system decreases. In contrast, the sum of entropy of each part does
not change, because the degree of noise within each part (the diagonal elements of E) is fixed.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004654 January 21,2016 8/18
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#1

#2

Fig 2. Exemplar time series when there is no information between the past and present states. The
connection strength a and the strength of noise correlation c are setto 0 and 0.9, respectively in the linear
regression model (Eq 13). /1 and /> represent the mutual information in units 1 and 2. Because there is no
connection, there is no information between the past and present states of the system: /; and /> are both 0. In
this case, ®* and @, are 0 as they should be, yet @, is positive.

doi:10.1371/journal.pchi.1004654.g002

8 8 8
(A) O™ Oy Oy
6 6 6
4 4 4
2 2 2
0 0 0
0 02 04 06 0.8 0 02 04 06 08 0 02 04 06 08
(B) C C C
O O Oy 8
0.1 0.1
0 0 6
-0.1 -0.1
-0.2 -0.2 4
-0.3 -0.3
-0.4 -0.4 2
-0.5 -0.5
0 .................
0 02 04 06 08 0 02 04 06 08 0 02 04 06 08
C C C

Fig 3. Violation of theoretical requirements as a measure of integrated information. The behaviors of ®*, ®,, and ®,, are shown in the left, middle, and
right panels, respectively, when the strength of noise correlation c is varied in a linear regression model (Eq 13). Red lines indicate the regime where the
theoretical requirements are violated, and the blue lines indicate that the theoretical requirements are satisfied. Dotted black lines are drawn at 0. (A)
Violation of the upper bound. The strength of connections a is set to 0. In this case, there is no information between the past and present states of the system
but @4 is not 0, i.e., P violates the upper bound. (B) Violation of the lower bound. The strength of connections a is set to 0.4. At the right ends of the figures
where cis 1, the two units in the system are perfectly correlated. @, is negative, i.e., ®, violates the lower bound when the degree of correlation is high.

doi:10.1371/journal.pcbi.1004654.9003
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1,=0.33

#1

®=1-(1+1)=-0.15

Fig 4. Exemplar time series when correlation is high. The strength of noise correlation c and the

connection strength a are set to both 0.4 in the linear regression model (Eq 13). /y and I, represent the mutual
information in unit 1 and 2, and / represents the mutual information in the whole system. In this case, the sum
of the mutual information in the parts exceeds the mutual information in the whole system and @, is negative.

doi:10.1371/journal.pcbi.1004654.9g004

Thus, @ increases as the degree of noise correlation ¢ increases without reflecting the amount
of information in the system.

When parts are perfectly correlated. Next, we consider the case where the parts are per-
fectly correlated. More specifically, consider the case where the two parts M; and M, are equal
at every time, i.e. M{™* = MJ" = M'"* and M| = M;, = M'. Here, ®" is 0 because the amount
of information extracted by mismatched decoding would not degrade even if the other part is
ignored for decoding (see S1 Text for the mathematical proof).

O = 0. (17)

Regarding @y, the mutual information of each part is equal to each other, I(M!™*; M}) =
I(MT; MY) = I(M'™"; M') and the mutual information in the whole system is equal to the
mutual information of each part, I(X'"5X") = I(M"";;M"). Thus, the second term in Eq 5 is twice
the value of the first, and @ is the negative value of the mutual information in one part,

®, = —I (M M). (18)

Thus, @; does not satisfy the lower bound as a measure of integrated information. @ is given
by
O®, =H(X""|X") —2H(M"*|M"), (19)

which is larger than or equal to 0 (@4 is always larger than or equal to 0 because it can be writ-
ten as the Kullback-Leibler divergence.).

We considered again the same linear regression model presented in the previous section (Eq
13). We varied the degree of noise correlation, ¢, from 0 to 1 while keeping connection strength
a as 0.4. When c is 1, the two units correlate perfectly. Fig 4 shows an exemplar time series
when c is 0.4 and a is 0.4. @, takes positive values when c is less than ~ 0.2 but takes negative
values when c is greater (Fig 3(B)). ®* decreases monotonically with ¢ and becomes 0 when c is
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Fig 5. Measures of integrated information and mutual information computed in monkey ECoG data.
Time lag 7 is varied from 1 to 500 ms. The behaviors of ®* (red line), ®, (green line), ®, (blue line), and
mutual information / (black line) are shown. ®, and ®, violate the theoretical requirements.

doi:10.1371/journal.pcbi.1004654.9g005

1. @y increases monotonically with ¢ reflecting the degree of correlation between the units. The
detailed behaviors of @*, ®; and @ when a and ¢ are both varied are shown in S1 Fig.

Electrocorticogram data analysis. The problems of ®; and ®; can manifest in their appli-
cation to real neural recordings from the brain. Fig 5 shows the measures of integrated informa-
tion, @*, @;, @y, and the mutual information I computed from the electrocorticogram (ECoG)
recordings in an awake monkey as a function of the time lag 7 (See Methods for details).

As we can see, the mutual information between X* and X’~" monotonically decreases as
increases. ®* is positive, peaks around 7 = 20 ms, and less than the mutual information, always
satisfying the theoretical requirements. However, @ is negative when 7 is small and @y
remains large even when I approaches 0 with increasing 7, both violating the theoretical
requirements.

Discussion

In this study, we consider the two theoretical requirements that a measure of integrated infor-
mation should satisfy, as follows: The lower and upper bounds of integrated information
should be 0 and the amount of information generated by the whole system, respectively. The
theoretical requirements are naturally derived from the original philosophy of integrated infor-
mation [3, 6], which states that integrated information is the information generated by a system
as a whole above and beyond its parts. The original measure of integrated information @ satis-
fies the theoretical requirements so that we can interpret a measure of integrated information
according to the original philosophy. To derive a practical measure of integrated information
that satisfies the required lower and upper bounds, we introduced a concept of mismatched
decoding. We defined our measure of integrated information ®* as the amount of information
lost when a mismatched probability distribution, where a system is partitioned into
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“independent” parts, is used for decoding instead of the actual probability distribution. In this
framework, ®* quantifies the amount of information loss associated with mismatched decod-
ing where interactions between the parts of a system are ignored and therefore quantifies the
amount of information integrated by the interactions. We show that ®* satisfies the lower and
upper bounds, that ®; does not satisfy the lower bound, and that @z does not satisfy the upper
bound. We consider ®* a proper measure of integrated information that can be generally used
for practical applications.

Here, we briefly note a potential reason why the previous study [15] failed to identify these
problems of ®; and @y;. Although they calculated their measures in small networks by using
the autoregressive model in Eq 12, they did not extensively vary the connectivity matrix A and
the Gaussian noise E. In particular, they fixed the covariance of the Gaussian noise E to 0. As
we can clearly see in Fig 3 and S1 Fig, both connectivity strength a and the covariance of the
noise ¢ strongly affect the amount of integrated information. In particular, when the covariance
of E is large, @; and @y violate the theoretical requirements. For future investigations of calcu-
lating integrated information in networks described by autoregressive model, we should note
that it is very important to take account of not only the effects of connectivity matrix A but also
the effects of covariance of E on the amount of integrated information.

The basic concept of Integrated Information Theory (IIT) was tested by conducting empiri-
cal experiments, and the evidence accumulated supports the conclusion that when conscious-
ness is lost, integration of information is lost [10-14]. In particular, Casali and colleagues [14]
found that a complexity measure, motivated by IIT, successfully separates conscious awake
states from various unconscious states due to deep sleep, anesthesia, and traumatic brain inju-
ries. Although their measure is inspired by the concept of integrated information, it measures
the complexity of averaged neural responses to one particular type of external perturbation
(e.g. a TMS pulse to a target region) and does not directly measure integrated information.

There are few studies that directly estimate integrated information in the brain [27, 28]
using the measure introduced in IIT 1.0 [2] or ®. Our new measure of integrated information,
®*, will contribute to experiments designed to test whether integrated information is a key to
distinguishing conscious states from unconscious states [29-31].

We considered the measure of integrated information proposed in IIT 2.0 [3, 6], because its
computations are feasible. There are several updates in the latest version, II'T 3.0 [8]. In IIT 2.0,
integrated information is quantified by measuring how the distribution of the past states differs
when a present state is given (see S1 Text for details) whereas in IIT 3.0, it is quantified by mea-
suring how the distribution of the past and future states differs when a present state is given. In
other words, IIT 2.0 considers only the information flow from the present to the past while IIT
3.0 additionally considers the information flow from the present to the future. Our measure ®*
does not asymmetrically quantify integrated information from the present to the past or from
the present to the future, because the mutual information is a symmetric measure for the time
points ¢t — Tand . An unanswered question is how integrated information should be practically
calculated taking account of the both directions of information flow, using an empirical
distribution.

An unresolved difficulty that impedes practical calculation of integrated information is how
to partition a system. In the present study, we considered only the quantification of integrated
information when a partition of a system is given. II'T requires that integrated information
should be quantified using the partition where information is least integrated, called the mini-
mum information partition (MIP) [3, 6]. To find the MIP, every possible partition must be
examined, yet the number of possible partitions grows exponentially with the size of the sys-
tem. One way to work around this difficulty would be to develop optimization algorithms to
quickly find a partition that well approximates the MIP.
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Besides the practical problem of finding the MIP, there remains a theoretical problem of
how to compare integrated information across different partitions. Integrated information
increases as the number of parts gets larger, because more information is lost by partitioning
the system. Further, integrated information is expected to be larger in a symmetric partition
where a system is partitioned into two parts of equal size than in an asymmetric partition. IIT
2.0 [6] proposes a normalization factor, which considers these issues. However, there might be
other possible ways to perform normalization. It is unclear whether there is a reasonable theo-
retical foundation that adjudicates the best normalization scheme. Moreover, it is unclear if the
normalization factor, which is proposed for systems whose states are represented by discrete
variables, is appropriate for systems whose states are represented by continuous variables. The
normalization factor, which is based on the entropies of the parts of a system, can be negative
because entropy can be negative for continuous variables. Thus, we need a different normaliza-
tion factor when we deal with continuous variables. Further investigations are required to
resolve the practical and theoretical issues related to the MIP.

Although we derived ®*, because we were motivated by IIT and its potential relevance to con-
sciousness, @* has unique meaning from the perspective of information theory, which is inde-
pendent of IIT. Thus, it can be applied to research fields other than research on consciousness
[32]. ®* quantifies the loss of information when interactions or connections between the units in
a system are ignored. Thus, @* is expected to be related to connectivity measures such as Granger
causality [33] or transfer entropy [34]. It will be interesting to clarify mathematical relationships
between ®* and the other connectivity measures. We expect that information geometry [25, 26,
35, 36] plays an important role for studying the properties of these quantities. Here, we indicate
only an apparent difference between them as follows: ®* intends to measure global integrations
in a system as a whole, while traditional bivariate measures such as Granger causality or transfer
entropy intends to measure local interactions between elements of the system. Consider that we
divide a system into parts A, B, and C. Using integrated information, our goal is to quantify the
information integrated among A, B, and C as a whole. In contrast, what we quantify using
Granger causality or transfer entropy is the influence of A on B, Bon C, C on A and the reverse.
It is not obvious how a measure of global interactions in the whole system should be defined and
derived theoretically from measures of the local interactions. As an example, one possibility is
simply summing up all local interactions and considering the sum as a global measure [37]. Yet,
more research is required to determine whether such an approach is a valid method to define
global interactions [36]. ®*, in contrast, is not derived from the local interaction measures but is
derived directly by comparing the total mutual information in the whole system with hypotheti-
cal mutual information when the system is assumed to be partitioned into independent parts.
Thus, the interpretation of ®* is straightforward from an information theoretical viewpoint. Our
measure, which we consider a measure of the global interaction, may provide new insights into
diverse research subjects as a novel tool for network analysis.

Methods
Mathematical expression of /*

The amount of information for mismatched decoding can be evaluated using the following
equation,

FXX) = =7 p(x)log 3 p(X)q(x'|x )
Xt Xt-t

20
-3 O X logax X,

Xt-t xt
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where S is the value that maximizes I'*. The maximization of I'* with respect to A is performed
by differentiating I* and solving the equation, dI*(8)/d = 0. In general, the solution of the
equation can be found using the standard gradient ascent method, because I* is a convex func-
tion with respect to [17, 18].
For comparison, the mutual information is given by
I X = = 3 plx)logp(X') + 3 p(x~*, X log (XX, @)
Xt Xt Xt

If a mismatched probability distribution g(X'|X"™) is replaced by the actual distribution p(X'| X’
7" in Eq 20, the derivative of I* becomes 0 when 3 = 1. By substituting g = p and 8= 1 into Eq
20, one can check that I* is equal to I in Eq 21, as it should be. The amount of information for
mismatched decoding, I*, was first derived in the field of information theory as an extension of
the mutual information in the case of mismatched decoding [17]. I* was first introduced into
neuroscience in [18] and was first applied to the analysis of neural data by [19]. However, I* in

the prior neuroscience application [18, 19] was quantified between stimuli and neural states, not
between the past and present states of a system, as described in the present study.

Analytical computation of ®* under the Gaussian assumption
Assume that the probability distribution of neural states X is the Gaussian distribution,

where N is the number of variables in X, X is the mean value of X, and X(X) is the covariance
matrix of X. The Gaussian assumption allows us to analytically compute ®*, which substan-
tially reduces the costs for computing ®*. When X'"* and X are both multivariate Gaussian
variables, the mutual information between X' *and X/, I(X" X", can be analytically computed
as

1 =X

I(X'75XY) =< log

2 8 o) )

where Z(X**|X") is the covariance matrix of the conditional distribution, p(X**|X"), which is
expressed as

(XX = (X)) — (XL XDZ(X) IR, X (24)
where Z(X"7, X') is the cross covariance matrix between X'~ and X’, whose element
(X, X);; is given by cov(X[ ", X).
Similarly, we can obtain the analytical expression of I* as follows:

F(B) = 5 Tr(S(X)R) + 1 log(1Ql2(x)) — B, (25)

where Tr stands for trace. Q and R are given by

Q=Z(X") "+ BT, (X ) E, (X XTI, (XX (XL X EL(XT) T, (26)

R = BZ,(X|X)"

‘ (27)
— B (XX ) (X, X (X)) QTS (X)) T E (X X S, (XX )
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where Zp(X7), Zp(X, X'77) and p(X|X*7) are diagonal block matrices. Each block matrix is
a covariance matrix of each part, Z(M; %), Z(M;, M/ "), and X(M;|M;*) where M, is a subsys-
tem. For example, £,(X"™) is given by

(M)

= (M) 0
pI (XH) = ) . (28)

(M)

The maximization of I* with respect to 3 is performed by solving the equation dI*(8)/dS = 0.
The derivative of I*(f5) with respect to § is given by

dr(p) 1 ~ dR 1 ,.dQ N

where
dR_ tyvt—1\—1
5= Sl )
—2BE (XX ) (X X, (X) QI (X) TR (X X ) S, (XX )T (30)
(X)X 00 () 0 B (X

dQ _ T X)TE (XLXTY) T (XXT) IR (XL XO)E (X)) 31

d—ﬂ—u()p(7)n(\)p(,)n(), (31)
and

dQ’  dQ
= —QE,(XT) E, (XL X)L (XX E, (X X T)EL(X ) QT (33)

Inspection of the above equations reveals that dI* (8)/df = 0 is a quadratic equation with
respect to . Thus, B can be analytically computed without resorting to numerical optimization
such as gradient ascent.

Electrocorticogram (ECoG) recording

The detailed recording protocols were described in [38]. Here, we briefly describe the aspects
of the protocols that are relevant for our analysis. We used customized multichannel ECoG
electrode arrays. An array of ECoG electrodes was embedded in an insulating silicone sheet.
The surface of the sheet was dimpled to expose the surface of ECoG electrodes with the diame-
ter of 1 mm. The electrodes were made of platinum discs, and inter-electrode distance was 5
mm. We implanted 128 ECoG electrodes in the subdural space in four adult macaque mon-
keys. The ECoG electrodes covered the left hemisphere over the frontal, parietal, temporal, and
occipital lobes. ECoG signal was recorded at a sampling rate of 1 kHz. All experimental and
surgical procedures were performed in accordance with the protocols approved by the RIKEN
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ethics committee. During the experiments, the monkeys were seated in a primate chair with
both arms and head restrained. We analyzed the data recorded when the monkeys were awake.

Data processing and calculation of integrated information ®*

To remove line noise and reduce artifacts in the ECoG data, we computed bipolar re-referenced
signals between two neighboring electrodes. We calculated integrated information ®* using all
the bipolar re-referenced signals (64 in total). We considered the simplest partition scheme,
“atomic partition” [39], in which the system is partitioned into its individual elements. For this
data set, it meant that we computed ®* assuming that all the 64 channels are independent. The
atomic partition gives the upper bound of ®* among all the possible partitions because it quan-
tifies the amount of information loss when all the interactions in the system are ignored for
decoding.

We approximated the probability distributions of the continuous ECoG signals with the
Gaussian distribution. Under the Gaussian assumption, we analytically computed ®* by using
the equations derived in Methods. We estimated the covariance matrices of the data with a time
window of 2s and a time step of 2s. Then, we averaged the covariance matrices over 600s and
used the average of the covariance matrices for computation of ®*.

Supporting Information

S1 Text. Mathematical details of integrated information.
(PDF)

S1 Fig. Theoretical requirements are not satisfied by previously proposed measures.
(PDF)
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