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Abstract

The uncertainty response has grounded the study of metacognition in nonhuman animals. Recent 

research has explored the processes supporting uncertainty monitoring in monkeys. It revealed that 

uncertainty responding in contrast to perceptual responding depends on significant working 

memory resources. The aim of the present study was to expand this research by examining 

whether uncertainty monitoring is also working memory demanding in humans. To explore this 

issue, human participants were tested with or without a cognitive load on a psychophysical 

discrimination task including either an uncertainty response (allowing the decline of difficult 

trials) or a middle-perceptual response (labeling the same intermediate trial levels). The results 

demonstrated that cognitive load reduced uncertainty responding, but increased middle 

responding. However, this dissociation between uncertainty and middle responding was only 

observed when participants either lacked training or had very little training with the uncertainty 

response. If more training was provided, the effect of load was small. These results suggest that 

uncertainty responding is resource demanding, but with sufficient training, human participants can 

respond to uncertainty either by using minimal working memory resources or effectively sharing 

resources. These results are discussed in relation to the literature on animal and human 

metacognition.
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Humans have feelings of knowing and not knowing, of confidence and doubt. Their ability 

to accurately identify these feelings and to respond to them adaptively are the focus of the 

research literature on metacognition (e.g., Benjamin, Bjork, & Schwartz 1998; Flavell, 1979; 

Koriat & Goldsmith, 1994; Metcalfe & Shimamura, 1994; Nelson, 1992; Scheck & Nelson, 

2005; Schwartz, 1994). Metacognition refers to the ability to monitor and control one’s own 

perceptual and cognitive processes (Nelson & Narens, 1990; 1994). This ability plays an 

important role in learning and memory.
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The monitoring component of metacognition has been widely investigated in humans (e.g., 

Begg, Martin, & Needlham, 1992; Dunlosky & Nelson, 1992; Hart, 1967; Koriat, 1993; 

Koriat & Goldsmith, 1996; Lovelace, 1984; Metcalfe, 1986) and nonhuman animals (e.g., 

Beran, Smith, Coutinho, Couchman, & Boomer, 2009; Beran, Smith, Redford, & Washburn, 

2006; Call & Carpenter, 2001; Fujita, 2009; Hampton, 2001; Kornell, 2009; Smith, Beran, 

Redford, & Washburn, 2006; Smith et al., 1995; Smith, Shields, Allendoerfer, & Washburn, 

1998; Smith, Shields, Schull, & Washburn, 1997). In humans, metacognitive monitoring is 

normally assessed by asking participants to make judgments of learning (JOLs), feelings of 

knowing judgments (FOKs), or confidence ratings (for review see Koriat, 2007). In animals, 

the most common method of assessment is the uncertainty-monitoring paradigm because it 

does not rely on verbal reports or verbal knowledge. This method involves presenting 

subjects with stimulus trials varying in objective difficulty and providing them with a 

response (the uncertainty response) that allows them to decline any trial they choose. The 

idea behind this test is that subjects who have access to their mental states of uncertainty—

knowing when they do not know—will complete trials for which they know the answer 

(easy trials) and skip the ones for which they do not know the answer (difficult trials). 

Subjects who do not have access to such states will not show this pattern. Thus, it is 

expected that the frequency of uncertainty responses for subjects who are capable of 

monitoring their mental states will be higher for the objectively difficult items.

In the uncertainty monitoring paradigm, it is adaptive for subjects to decline trials that they 

are unsure of because errors can result in timeouts, unpleasant sounds, and (in humans) a 

point loss. When subjects skip error-prone trials, they not only avoid these negative 

consequences, but they also increase their chance to earn points (in the case of humans) or 

pellets (in the case of animals) because they don’t waste time on timeouts. Therefore, using 

the uncertainty response for trials they cannot discriminate produces significant point gains 

compared to guessing.

Since the uncertainty-monitoring paradigm was proposed, a number of studies have been 

conducted investigating whether animals have the ability to monitor their mental states (e.g., 

Beran et al., 2006; Couchman, Coutinho, Beran, & Smith, 2010; Shields, Smith, & 

Washburn, 1997; Smith et al., 2006; Smith, Redford, Beran, & Washburn, 2010; Smith et 

al., 1995; 1997; Smith, Shields, & Washburn, 2003; Washburn, Gulledge, Beran, & Smith, 

2010; Washburn, Smith, & Shields, 2006). These studies demonstrated that monkeys 

(Macaca mullata), similar to humans, used the uncertainty response adaptively—that is, 

they used it to decline only the trials that were difficult and prone to error. But despite the 

similarity in uncertainty responding across species, the appropriate interpretation of these 

findings is still sharply debated (e.g., Couchman et al., 2010; Crystal & Foote, 2009; 

Hampton, 2009; Jozefowiez, Staddon, & Cerutti, 2009; Smith, Beran, & Couchman, 2012; 

Smith, Beran, Couchman, & Coutinho, 2008). Some researchers argue that uncertainty 

responding in animals reflects their ability to monitor their mental states, whereas others 

believe it is based on perceptual, associative processes.

To clarify this issue, Smith, Coutinho, Church and Beran (2013) conducted a study to assess 

the role of executive resources in uncertainty and perceptual responding in rhesus monkeys. 

They hypothesized that if the uncertainty response is a high-level decisional response, 
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cognitive load should have a differential effect on uncertainty and perceptual responding. It 

should disrupt uncertainty responding but not perceptual responding, or at least not to the 

same degree. The results of this study confirmed their hypothesis. These results provide 

strong evidence that the uncertainty response is qualitatively different from perceptual 

responses, and that monkeys may be capable of monitoring their mental states.

In line with the findings from Smith et al. (2013), a study conducted with humans found that 

some metacognitive judgments, such as tip-of-the-tongue states (TOTs) depend on working 

memory resources (Schwartz, 2008). Interestingly, a similar pattern of results was not 

observed for FOKs. This dissociation suggests that different types of monitoring judgments 

may tap different processes that are more or less dependent on working memory resources. 

Neuroimaging studies have also provided support for this claim (e.g., Maril, Simons, 

Mitchell, Schwartz, & Schacter, 2003; Maril, Wagner, & Schacter, 2001). For instance, 

researchers reported differential patterns of neural activity during TOTs and FOKs 

judgments. In particular, TOTs judgments were associated with an increase in neural activity 

in regions that had been previously reported to be involved in working memory activities, 

such as the anterior cingulate, right dorsolateral and right inferior prefrontal cortex regions 

(see Ruchkin, Grafman, Cameron, & Berndt, 2003). On the other hand, FOKs judgments 

were mostly associated with differences in neural activity within the left prefrontal and 

parietal regions.

One possible reason why TOTs depend on working memory resources and FOKs do not is 

that TOTs unlike FOKs may be mediated by processes such as conflict detection and 

conflict resolution which are both controlled (for more information about controlled 

processes, see Shiffrin & Schneider, 1977). These two processes may be essential for TOTs 

because TOTs involve a conflict between what one feels certain one knows, and the 

incapacity to recall that information despite having a feeling of imminent recall. 

Additionally, given that TOTs are commonly preceded by the retrieval of a variety of 

information that is related to the to-be-recalled item, in order for individuals to have TOTs, 

they first need to decide whether the information retrieved is leading to the recall of the 

target or interfering with it. Thus, they need to solve the conflict about the value of the 

information being retrieved. On the other hand, FOKs may be mediated primarily by 

interpreting processing fluency, and with experience this may become automatic. 

Individuals may base their FOKs on how familiar or how fluent the information to be 

remembered is, and this may be a process that humans have lots of experience doing.

Evidence that metacognitive monitoring is resource-consuming has also been demonstrated 

across individuals of different ages during recall. Stine-Morrow, Shake, Miles, and Noh 

(2006) tested younger and older adults on a memory task that either required them to make a 

metacognitive judgment before they were asked to recall an item, or not. They found that 

when older adults made these judgments, performance level decreased whereas no change in 

performance was observed for the younger group. This suggests that the act of monitoring 

one’s recall processes consumes resources that would otherwise be employed in the memory 

task.
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Considering that different types of metacognition in humans may be mediated by different 

processes and uncertainty monitoring in monkeys clearly depends on working memory 

resources, it is important to ask whether the processes supporting uncertainty monitoring in 

humans are similar to those in animals. That is, does working memory also play a role in 

uncertainty monitoring in humans? If it does, this would suggest a possible continuity in the 

processes mediating uncertainty monitoring in humans and monkeys, which could 

potentially shed light on the evolutionary development of the metacognitive capacity.

To explore whether the processes supporting uncertainty monitoring in humans are working 

memory intensive (as they are in monkeys), we conducted three experiments assessing the 

effect of concurrent load on uncertainty and perceptual-middle responding at different levels 

of practice with these responses.

Experiment 1

Experiment 1 evaluated the effect of a concurrent load on uncertainty and middle responding 

during perceptual discrimination learning. It was hypothesized that if uncertainty responding 

draws resources from working memory (as it does for monkeys), then concurrent load 

should reduce uncertainty responding to a greater degree than middle responding.

In this experiment, participants performed a Sparse-Uncertain-Dense (SUD) or a Sparse-

Middle-Dense (SMD) discrimination task with or without concurrent load. For the SUD 

task, participants were asked to judge pixel boxes varying in difficulty as Sparse or Dense, 

and were also provided with an option of declining to make a response by selecting the 

uncertainty response. They were told that this response should be used when they were not 

sure which category the stimulus belonged, and it would help them gain points by avoiding 

timeouts. Uncertainty responses were not followed by a reward or a penalty. Participants 

simply moved to the next trial. Pixel boxes were designated as Sparse or Dense based on 

their level of pixel density. Sparse stimuli had between 1,085 and 1,550 pixels whereas 

dense stimuli had between 1,578 and 2,255 pixels. For the SMD task, participants were 

asked to discriminate the same pixel boxes into three categories (Sparse, Middle, and Dense) 

by selecting their corresponding responses (Sparse, Middle, or Dense). In this task, all three 

responses behaved exactly the same way—that is, correct responses resulted in a reward and 

incorrect responses yielded a penalty. Sparse, Middle, and Dense stimuli had between 1,085 

and 1,470, 1,496 and 1,636, and 1,665 and 2,255 pixels, respectively. Participants either 

performed the SUD or SMD tasks alone, or with a concurrent load. In the concurrent load 

condition, participants were presented with a pair of digits prior to each discrimination trial 

and were required to hold the size and value of two digits in mind while making a 

discrimination response. This manipulation gave rise to four different conditions: uncertain 

non-concurrent (UN), uncertain concurrent (UC), middle non-concurrent (MN), and middle 

concurrent (MC).

Methods

Participants—One hundred and twelve undergraduates from the University at Buffalo 

participated in a 52-minute session to fulfill a course requirement. They were assigned 

randomly to the uncertainty or middle tasks and to the no concurrent load or concurrent load 
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conditions. Participants who completed fewer than 225 test trials in the task, or who were 

not able to perform above 60% correct with the five easiest trial levels at both the sparse and 

dense ends of the stimulus continuum were not included for further analysis. In the end, 2 

participants from the UC and 10 from the MC condition were excluded based on these 

criteria. The data from 24, 26, 24, and 26 participants, respectively, were included for 

analysis in the UN, UC, MN, and MC conditions.

Design—A 2 × 2 × 42 mixed factorial design was used with task (SUD and SMD) and 

condition (Concurrent Load and No Concurrent Load) serving as between-participant 

variables and stimuli level (1 to 42) serving as a within-participant variable. The dependent 

variable was the proportion of intermediate responding (uncertainty and middle).

Stimulus continuum—The discriminative stimuli were unframed 200 × 100 pixel boxes 

presented in the top center of the computer screen. The area of the box was filled with a 

variable number of randomly placed lit pixels. The pixel density of the boxes varied along a 

continuum running from 1,085 pixels (Level 1) to 2,255 pixels (Level 42). Given the 

maximum possible number of lit pixels (20,000), these pixel counts correspond to 5.4% 

density for the sparsest stimulus and 11.3% density for the densest stimulus. Each successive 

level had 1.8% more pixels than the last. Each trial level’s pixel count was given by the 

formula PixelsTrial Level = round (1066 × 1.018Trial Level). The sparsest and densest trials of 

the stimulus continuum are shown in Figure 1.

Sparse-Uncertain-Dense (SUD) task—The participant’s task was to identify boxes that 

had pixel densities falling within the sparser or denser portion of the stimulus continuum. 

Twenty-one trial levels—Level 1 (1,085 pixels) to Level 21 (1,550 pixels)—were designated 

Sparse and were rewarded in the context of sparse responses. Twenty-one trial levels—

Level 22 (1,578 pixels) to Level 42 (2,255 pixels)—were designated Dense and were 

rewarded in the context of dense responses. Of course the trials near Level 1 and Level 42 

are easy sparse and dense trials, respectively. The trials near the breakpoint of the 

discrimination at Level 21–22 are the most difficult.

Along with the stimulus box on each trial, participants saw a large S to the bottom left of the 

pixel box and a large D to the bottom right of the pixel box. The uncertainty icon was a ? 

placed below and between the S and D icons. These different responses were selected by 

pressing labeled keyboard keys arranged to duplicate the spatial layout of the response icons 

on the screen. For correct and incorrect responses, respectively, participants heard a 

computer generated 0.5 s reward whoop or an 8 s penalty buzz, they gained or lost one 

point, and they saw a green or red text banner announcing “Right Box” or “Wrong Box.” 

The next trial followed this feedback. The uncertainty response did not bring either positive 

or negative feedback. It simply canceled the present trial and advanced the participant to the 

next randomly chosen trial. Participants generally adaptively use this response for the 

difficult trial levels surrounding the discrimination breakpoint (e.g., Smith et al., 2006). 

Participants were explicitly instructed that they should use the ? key when they were not 

sure how to respond, that it would let them decline any trials they chose, and that it would 

let them avoid the 8 s error buzz and the point penalty.
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Sparse-Middle-Dense (SMD) task—The participant’s task was to identify boxes that 

had pixel densities falling within the sparser, middle, or denser portion of the stimulus 

continuum. Eighteen trial levels—Level 1 (1,085 pixels) to Level 18 (1,470 pixels)—were 

designated Sparse and were rewarded in the context of sparse responses. Eighteen trial 

levels—Level 25 (1,665 pixels) to Level 42 (2,255 pixels)—were designated Dense and 

were rewarded in the context of dense responses. Six trial levels—Level 19 (1,496 pixels) to 

Level 24 (1,636 pixels)—were designated Middle and were rewarded in the context of 

middle responses. We deliberately made the middle response region narrower than the 

sparse and dense response regions. We did this to equate the middle response region with 

the levels of the stimulus continuum where humans typically make uncertainty responses 

(Smith et al., 2006; 1997; Zakrzewski, Coutinho, Boomer, Church, & Smith, 2014).

The S and D icons were placed exactly as in the SUD task. The M icon was located below 

and between the S and D icons, exactly where the uncertainty icon was for the SUD task. 

Participants made their responses by pressing labeled keyboard keys. Correct and incorrect 

responses generated the same feedback as described in the SUD task. The M response also 

received this feedback.

Concurrent task—The stimuli for the concurrent task were digits that were presented top-

left and top-right on the computer screen. The two digits varied in physical size as follows. 

One digit was presented in a large font within Turbo-Pascal 7.0—it was about 3 cm wide 

and 2.5 cm tall as it appeared on the screen. One digit was presented in a smaller font—it 

was about 1.5 cm wide and 1 cm tall on the screen. The digits were never equal in size—

participants were always able to judge which digit was physically smaller or larger. The two 

digits varied in numerical size from 3 to 7. They were never equal in quantity—participants 

were always able to judge which digit was numerically smaller or larger.

On each concurrent-task trial, the two digits appeared top-left and top-right on the monitor. 

After 2 seconds, the digits were masked with white squares, then the digits and squares were 

cleared from the screen. Participants had to remember the digit-size and digit-quantity 

information until a memory cue appeared top-middle. The cue was "big size,” Ȭbig value,” 

“small size,” or “small value”. Participants were supposed to select the response icon under 

the former position of the physically or numerically bigger or smaller digit. For correct and 

incorrect responses, respectively, participants heard a computer generated 0.5 s reward 

whoop or an 8 s penalty buzz. Participants gained/lost 2 points for each concurrent-task trial, 

and they saw text banners that said “Right number”/”Wrong number”. The next trial 

followed this feedback. The 2-point gain/loss helped participants focus effort and cognitive 

resources toward the concurrent task. We also motivated participants to optimize 

performance in the discrimination and concurrent tasks by awarding $10 prizes to the 

participants who earned the most points in each condition.

Training trials—Participants received 20 training trials that taught either the Sparse-Dense 

or Sparse-Middle-Dense discriminations. These trials randomly presented the easiest Sparse/

Dense stimuli (Level 1, Level 42) in the case of the SUD discrimination, and the easiest 

Sparse/Middle/Dense stimuli (Level 1, Level 21, Level 42) in the case of the SMD 
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discrimination. Participants in the UC and MC conditions also received 20 training trials on 

the concurrent task alone.

Test trials—Following the training phase(s), participants received discrimination trials that 

could vary in difficulty. Now, stimuli were chosen randomly from across the 42-level 

continuum. Now, too, the uncertainty response became available during discrimination trials 

for those participants in the SUD task. Participants in the non-concurrent conditions (UN 

and MN) received no simultaneous cognitive load. Participants in the concurrent conditions 

(UC and MC) experienced memory and discrimination trials interdigitated as follows. First, 

the memory digits were presented on the computer screen for two seconds, and then masked 

and erased. Second, the pixel box appeared on the screen along with the discrimination-

response options and participants made their response, responding Sparse, Dense, Middle or 

Uncertain as allowed within their particular task assignment. Third, feedback for the 

discrimination trial was delivered. Fourth, the memory cue and the memory-response 

options were presented on the computer screen and participants made their response. Fifth, 

feedback for the memory trial was delivered. After that, this cycle of trials was repeated 

multiple times until the duration of the experimental session was equal to 52 minutes.

Modeling performance and fitting data—We instantiated formal models of the present 

tasks. Our models were grounded in Signal Detection Theory (MacMillan & Creelman, 

2005). Signal Detection Theory assumes that performance in perceptual tasks is organized 

along an ordered series (a continuum) of psychological representations of changing impact 

or increasing strength. Here, the continuum of subjective impressions would run from 

clearly sparse to clearly dense. Given this continuum, Signal Detection Theory assumes that 

an objective event will create subjective impressions from time to time that vary in a 

Gaussian distribution around the objective stimulus level presented. This perceptual error is 

part of what produces errors in discrimination and part of what may foster uncertainty in the 

task. Finally, Signal Detection Theory assumes a decisional process by which criterion lines 

are placed along the continuum so that response regions are organized. Here, by the overlay 

of Sparse-Uncertain (SU) and Uncertain-Dense (UD) criteria, for example, the stimulus 

continuum would be divided up into Sparse, Uncertain, and Dense response regions.

Our models took the form of a virtual version of the tasks as humans in the present studies 

would experience them. We then placed simulated observers in those task environments for 

10,000 trials.

The simulated observers experienced Perceptual Error. The value of Perceptual Error—that 

is, the standard deviation of the Gaussian distribution that governed misperception—was 

one free parameter in our model. On each trial, given some stimulus (Levels 1–42), 

simulated observers misperceived the stimulus obedient to this Gaussian distribution. Given 

a Perceptual Error of 4, for example, they could misperceive a Level 12 stimulus generally 

in the range of Level 8 to Level 16. This misperceived level became the subjective 

impression on which the simulated observer based its response choice for that trial.

The simulated observers were also given individually placed criterion points. The 

placements of the SU and UD criterion points, or the Sparse-Middle (SM) and Middle-
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Dense (MD) criterion points, defined three response regions for the simulated observer that 

determined its response choice to a subjective impression. The placements of SU and UD (or 

SM and DM) were two more free parameters that could be adjusted to optimally fit the data.

To fit observed performance, we vary a set of parameters of the model (i.e., Perceptual 

Error, the placement of the lower criterion [SU, SM], and the placement of the upper 

criterion [UD, MD]). The simulated observer’s predicted performance profile is produced by 

finding its response proportions for 42 stimulus levels for each of the parameter 

configurations. We calculated the sum of the squared deviations (SSD) between the 

corresponding observed and predicted data points. We minimized this SSD fit measure to 

find the best fitting parameter configuration. For this best fitting configuration, we also 

calculated a more intuitive measure of fit—the average absolute deviation (AAD). This 

measure represents the average of the deviations between observed and predicted response 

levels (with the deviations always signed positively). (For more information about the 

application of this model in studies of human and nonhuman animal uncertainty monitoring, 

see Smith et al., 2006; 2013)

Results

Overall statistical analysis: uncertainty-middle responding—Participants in the 

UN, UC, MN, and MC conditions completed on average 927, 345, 647, and 286 

discrimination trials, respectively. Participants in the concurrent conditions completed fewer 

discrimination trials than those in the non-concurrent conditions because they also 

performed the working memory task. The average proportions of intermediate (uncertain or 

middle) responding for the four conditions were .11, .02, .14, and .25, respectively.

To statistically explore participants’ uncertain and middle responding across the four 

conditions, we conducted a General Linear Model with Level (1–42) as a within-participant 

variable and Task (SUD and SMD) and Condition (non-concurrent and concurrent) as 

between-participants variables. Figure 2 shows the four response curves overlain, to help 

readers interpret the effects. All the statistical analyses had an alpha level of .05, two-tailed.

There was a main effect of trial level, F (41, 3936) = 43.19, p< .001, ηp
2 = .31. This was due 

to the increase in the use of the intermediate responses (uncertain or middle) for the trial 

levels near the midpoint of the stimulus continuum. There was also a main effect of task, F 

(1, 96) = 77.67, p< .001, ηp
2 = .45. Participants in the SUD and SMD tasks used their 

intermediate responses at rates of .0575 and .2003, respectively. There was a task by 

condition interaction, F (1, 96) = 37.41, p< .001, ηp
2 = .28. Planned comparisons revealed 

that concurrent load significantly decreased uncertainty responding for the most difficult 

trial levels (levels 19 to 24), t (48) = 3.41, p =.001, Cohen’s d = .959, whereas it increased 

middle responding, t (48) = 3.81, p< .001, Cohen’s d = 1.08. Finally there were milder, 

intuitive interactions involving task by level, F (41, 3936) = 17.38, p< .001, ηp
2 = .15 and 

condition by level, F (41, 3936) = 2.02, p< .001, ηp
2= .02. These interactions signify that the 

response curves in Figure 2 were differentially affected across levels by task (SUD vs. 

SMD) and by condition (concurrent vs. non-concurrent) because the task and condition 

dependent differences are primarily affecting the middle levels. There were no other 

significant main effects and interactions, all F’s < 2.
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Concurrent task performance—Performance on the memory task was very high and 

did not differ based on which task participants performed, t (50) = 1.05, p = .29. The average 

proportion correct for the SUD and SMD tasks was .91 (SD = .08) and .93 (SD = .05), 

Cohen’s d = 0.29, respectively.

Model fits—We used Signal Detection Theory to model group performance for each of the 

four conditions. The best-fitting predicted performance profiles for the four conditions are 

shown in Figure 3. The model yielded very good fits. The SSD measures of fit were 0.0789, 

0.0581, 0.0985, and 0.1418 for UN, UC, MN, and MC groups respectively. The intuitive 

measures of fit (AAD) for all four groups were less than .03 (i.e., .0207, .0161, 0207, and .

0238). This means that the model’s predictions had an error of less than 3% per data point 

on average.

The model estimated that participants in the UN condition placed their SU and UD criteria at 

levels 20 and 23, whereas participants in the UC condition placed both criteria at level 20. 

This means that the UC group did not have an uncertainty region. They stopped responding 

uncertain. For the MN and MC groups, the model estimated that participants placed their 

SM and MD criteria at levels 19 and 24, and levels 14 and 24, respectively. Thus, the 

concurrent load increased the middle region by 5 steps. The modeling confirms the 

statistical findings that the concurrent load affected uncertainty and middle responding in 

opposite ways. It eliminated uncertainty responding but increased middle responding.

To better understand whether this effect was due to differences in participants’ ability to 

discriminate the items across the continuum, we looked at the Perceptual Error for each of 

the four groups. The Perceptual Error for UN, UC, MN, and MC were 9, 8, 8, and 9, 

respectively. This means that each stimulus could have been misperceived by 8 or 9 steps. 

For example, given a Perceptual Error of 8, a stimulus of level 10 could have been 

misperceived as any subjective stimulus impression generally in the range of 2 to 18 of the 

42-level continuum. The similarity in Perceptual Error across conditions suggests that 

concurrent load did not change participants’ perceptual processes.

Discussion

The results of Experiment 1 demonstrated that the concurrent load significantly reduced the 

use of the uncertainty response whereas it increased the use of the middle response. These 

results provide support for the hypothesis that the uncertainty response is not simply a 

perceptual-middle response, although both of them may rely on working memory resources. 

Most importantly, the decrease in uncertainty responding is consistent with the findings of 

Smith et al. (2013) showing a similar pattern in rhesus monkeys. The similarity between the 

results of the present experiment and those from Smith et al. (2013) may suggest that 

uncertainty monitoring in humans and monkeys tap similar working memory intensive 

processes.

The drop in uncertainty responding observed in the current experiment may reflect 

participants’ inability to accurately monitor their mental states when they don’t have 

sufficient cognitive resources available to employ. Or, it may reflect participants’ choice not 

to monitor their mental states given that they know it is a cognitively demanding process. 
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Regardless of whether the drop in uncertainty responding is caused by a deliberate strategy 

or by unintentional monitoring failure, they suggest that uncertainty monitoring is working 

memory intensive for humans like it is for monkeys, even though interpreting ease-of-

processing in memory monitoring (FOK’s) is not (Schwartz, 2008).

In contrast to uncertainty responding, the proportion of middle responses increased with 

concurrent load. Participants broaden the middle region by incorrectly assigning sparse and 

dense stimuli to the middle category. The increased middle responding with the introduction 

of concurrent load may reflect decisional processes that change based on the availability of 

working memory resources. For instance, participants who were tested with the concurrent 

load may not have noticed as easily as the no-load participants that the middle region was 

smaller than the sparse and dense regions. Thus, their representations of a middle region 

may have been broader than the actual objective region because they assumed equal lengths 

for the regions (sparse, middle, and dense) of the continuum. The no-load participants have 

greater working memory resources to allow them to hypothesis test why they are initially 

getting middle responses wrong. This would allow them to understand that they need to use 

the middle response more conservatively than originally assumed. This would reduce their 

middle responding and confine it to a more conservative region. Perhaps the participants’ 

inability to easily consult their mental states of uncertainty drive both the decrease in 

uncertainty responding and the increase in middle responding because participants cannot 

use their feelings of uncertainty about the outer edges of the middle response to drive more 

conservative responding.

It is also possible that the concurrent load affected middle responding because the process of 

categorizing middle stimuli is intrinsically very difficult. There are only six stimulus-levels 

that belong to the middle category and for this reason even the middle-most middle stimulus 

(level 21) is difficult to categorize because this stimulus is only a few steps away from the 

SM and MD boundaries. The same is not true for sparse and dense categories because each 

of them includes 18 stimulus-levels. Thus, even if participants misperceive a stimulus of 

level 2 by 8 steps, their response would still be correct because a stimulus of level 10 is also 

sparse. On the other hand, if participants misperceive a middle stimulus of level 21 as a level 

29, their response would be incorrect because a stimulus of level 29 is dense. Given that, 

middle responding may require considerably more careful decisional processes than sparse 

and dense responding, and therefore may require more working memory to choose to 

respond more conservatively.

In many respects the present findings are similar to those found with rhesus monkeys, and 

the methodologies in the human and monkey experiment have many similarities. Therefore, 

there is reason to suggest that some uses of the uncertainty response are working memory 

intensive for humans, as they are for monkeys. Our findings also complement those of 

Zakrzewski et al. (2014) who showed that uncertainty responses, but not primary perceptual 

responses, were reduced by strict response deadlines. Thus, uncertainty responses, at least in 

some uses, may be more working memory and time intensive.

However, there is an important difference between the monkey experiments and the 

experiment described here. The monkeys had significant experience with the uncertainty and 
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middle responses before the concurrent load was introduced to the task. The humans in the 

present study had no experience with the uncertainty response prior to test, but they were 

familiarized with the middle response beforehand. As a result, there is a possibility that the 

differential training with these two responses interacted with the effect of concurrent load. 

They had to learn the functionality of the uncertainty response while they had a memory 

load. This was not true for the perceptual responses including the middle response which 

had a short training session before the concurrent load was introduced. To clarify this issue, 

we conducted two other experiments.

Experiment 2

In Experiment 2, we carefully equated the initial experience with the middle and uncertainty 

responses so that both groups had the same experience with the responses and clearly knew 

their functions before testing. We did this to rule out the possibility that the dissociation 

between uncertain and middle responding observed in Experiment 1 was due to differential 

training with these responses.

Methods

Participants—One hundred and eighteen undergraduates participated to fulfill a course 

requirement. They were assigned randomly to the conditions. Six participants were excluded 

from the analysis based on the same criteria used in Experiment 1 (2 MN, 1 MC, 1 UN, and 

2 UC). Twenty-eight participants in each condition were included in the analyses.

Design, Stimuli, & Procedures—The design, stimuli, and procedures were identical to 

Experiment 1 except for a couple small changes in the training procedure for the SUD and 

SMD tasks. The first change was that both tasks included levels 1, 21, 22, and 42. 

Previously, the SUD included levels 1 and 42 only, and the SMD task included levels 1, 21, 

and 42. The second change was that the uncertainty response was available during training 

for the SUD task. These two changes were made so that participants had comparable 

experience with the uncertainty and middle responses during training.

Results

Overall statistical analysis: uncertainty-middle responding—Participants 

completed, on average, 933 and 669 discrimination trials in the UN and MN conditions, and 

311 and 296 trials in the UC and MC conditions. Participants in the SUD task declined to 

answer 10% of the trials across the 42-level continuum when tested without a concurrent 

load and 3% of the trials when tested with a concurrent load. Participants in the SMD task, 

on the other hand, increased middle responding by 7% with the introduction of a concurrent 

load (7% to 14%).

As in Experiment 1, we conducted a General Linear Model to measure participants’ 

intermediate responding across the four conditions. In general, the results of the analysis 

were very similar to those of Experiment 1. As before, we found an effect of trial level, F 

(41, 2952) = 4.407, p< .001, ηp
2 = .04, and an effect of task, F (1, 72) = 7.45, p = .007, 

ηp
2= .06. These results show that participants used the intermediate responses more often for 

trial levels near the midpoint of the stimulus continuum, and that on average they responded 
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middle more frequently than they did uncertain (Figure 4). Additionally, there was an 

interaction involving task by level, F (41, 2952) = 1.89, p = .001, ηp
2 = .02. This interaction 

indicates that the pattern of intermediate responding across levels varied between tasks 

(SUD and SMD). Most importantly, the analysis revealed a task by condition interaction, F 

(1, 72) = 12.38, p = .001, ηp
2= .10 and a task by condition by level interaction, F (41, 2952) 

= 1.85, p = .001, ηp
2= .02. These results show that the concurrent load affected uncertainty 

and middle responding differently across levels. Planned comparisons revealed that the 

concurrent load reduced uncertainty responding from .16 to .03, t (54) = 3.5, p =.001, 

Cohen’s d =0.936, for the most difficult trial levels (levels 19 to 24), but it increased middle 

responding, .15 to .28, t (54) = 2.4, p = .02, Cohen’s d = 0.642, for the same levels.

Concurrent task performance—Performance in the working memory task was 

relatively high and did not differ between SUD and SMD tasks, t (54) = .12, p = .9. The 

average proportions correct were .93 (SD = .04 and .03), Cohen’s d = 0.03, for participants 

in both the SUD and SMD tasks.

Model fits—Similar to Experiment 1, we used a Signal Detection Theory model to fit 

group performance for each of the conditions (UN, UC, MN, and MC). Figure 5 shows the 

best fitting performance profiles for the modeling data. As before, the model produced very 

good fits. The SSD measures of fit were 0.0704, 0.1169, 0.0622, and 0.0765 for UN, UC, 

MN, and MC conditions respectively. The ADD measures of fit were once again very small. 

They were .0188, .0237, .0173, and .0198 for the UN, UC, MN, and MC conditions 

respectively.

The model estimated that participants in the UN condition placed the SU criterion at level 20 

and the UD criterion at level 23. Analogous to Experiment 1, the estimated SU and UD 

criteria for participants in the UC condition was placed at level 20. For the MN and MC 

conditions, the estimated SU and UD criteria were placed at levels 20 and 22, and 18 and 23, 

respectively. As observed before, the uncertainty region narrowed and the middle region 

widen with the introduction of the concurrent load. The Perceptual Error for the UN, UC, 

and MC conditions was 9 and for the MN condition, it was 8. This suggests that participants 

misperceived the items at equivalent rates.

Discussion

Experiment 2 demonstrated that even when participants are exposed at the same rate to 

middle and uncertainty responses during training, the effect of the concurrent load on these 

responses differed. Middle responding increased with load whereas uncertainty responding 

decreased. This study thus replicated the findings of Experiment 1, indicating that the 

dissociation first observed between uncertain and middle responding was not due to 

differential training of these two responses but instead to qualitative differences between 

them.

One hypothesis that has not been discussed yet relates to the usefulness or importance of the 

different responses. The middle response, unlike the uncertainty response, may seem 

essential for accomplishing the goal of the task—that is, classifying the stimuli into three 

groups (Sparse, Middle, and Dense). On the other hand, because the uncertainty response is 
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not tied to any stimuli via contingences of reward, its role within the SUD may seem 

optional. This hypothesis is in line with recent findings showing that people are inclined to 

drop criteria that are not essential for reaching a task goal under conditions of cognitive load 

(Benjamin, Diaz, & Wee, 2009; Benjamin, Tullis, & Lee, 2013). Given this, it is important 

to note that the real probabilities of this task make the uncertainty response the more 

important response to keep. However, middle responses increased and their response region 

broadened while uncertainty responding was eliminated. Because the middle region is small, 

this broadened response only increases the possible points by a small amount compared to 

dropping middle responses altogether. On the other hand, dropping the uncertainty response 

decreases possible points by more than twice as much as dropping the middle response when 

comparing with similar over use (more than 3 times with optimal use). This difference 

seems to suggest that the processes required for the uncertainty response are creating a 

larger burden than middle responding. Even though it is more important for optimization, it 

gets dropped.

The methodology of the present experiment was more similar to the one used with monkeys 

(Smith et al., 2013) given that participants were equally exposed to the uncertainty and 

middle responses during training. But one important difference between these studies is that 

humans had very little practice with the uncertainty response (20 trials) prior to test phase 

whereas monkeys needed to show proficiency using the uncertainty response in order to be 

tested with the concurrent load. (In Smith et al. 2013, the two monkeys performed at least 

983 and 1,517 discrimination trials before being tested with the concurrent task). For 

monkeys, it is clear that uncertainty monitoring is working memory intensive even with 

extensive practice with the uncertainty response. On the other hand, whether humans would 

continue to find uncertainty responding demanding after more practice is less clear. To 

explore the working memory demands of uncertainty monitoring in a discrimination task 

during highly practiced monitoring, we conducted a third experiment.

Experiment 3

The purpose of Experiment 3 was to examine the effect of concurrent load on uncertainty 

and middle responding after participants had plenty of experience (like the monkeys) with 

these responses. To do so, we added 150 training trials to the 20 training trials that were 

included in Experiment 2. In addition to increasing the number of training trials, we 

provided participants with information about their current level of performance on these 

trials. At the end of every 50-trial block of the 150 training trials, the total number of points 

gained, lost, and the potential points saved (in the case of the SUD task) by uncertainty 

responding were displayed on the screen. This feedback was added to the task with the aim 

of teaching participants about the functionality and benefits of the various responses. The 

increase in training trials and also the inclusion of performance summaries allowed us to test 

whether uncertainty responses are still working memory intensive after the task and all its 

possible responses are well-trained.

Methods

Participants—One hundred and sixty-eight undergraduates participated to fulfill a course 

requirement. Participants were randomly assigned to conditions. Participants who completed 
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fewer than 150 test trials, or who were not able to perform above 60% correct with the five 

easiest sparse or dense trial levels were excluded (3UC, 1 MN, and 4 MC). Forty 

participants from each condition were included in the analysis.

Design, Stimuli, and Procedure—The design, stimuli, and procedures were the same as 

in Experiment 2 except that all participants received 150 additional training trials including 

stimuli from the entire continuum. Greater training resulted in somewhat fewer test trials 

because the amount of time on task stayed the same. Along with the standard trial by trial 

feedback, participants also received a summary feedback after completing a block of five 

trials for the additional 150 training trials.

Results

Overall statistical analysis: uncertainty-middle responding—The average number 

of discrimination trials completed by participants in the SUD and SMD task without and 

with load were 714 and 608 and 457 and 376, respectively. The rate of uncertainty and 

middle responding for the concurrent and non-concurrent conditions were .12 and .08, and .

09 and .08, respectively.

Like before, we conducted a General Linear Model to measure participants’ intermediate 

responding across the four conditions. Similar to Experiments 1 and 2, an effect of level was 

found, F (41, 6396) = 54.4, p< .001, η2 = .26, reflecting the increase in intermediate 

responding for the trial levels near the midpoint (Figure 6). In contrast to previously reported 

findings, there was no effect of task, or task by condition interaction. Participants used the 

intermediate responses at similar rates across tasks, F (1, 156) = 1.02, p = .315, η2 = .01, and 

the proportion of intermediate responding did not reliably vary based on concurrent load, F 

(1, 156) = 1.48, p = .225, η2 = .01. The proportion of uncertainty responses across all 42 trial 

levels went from .12 to .08, t (78) = 1.7, p = .09, Cohen’s d =0.336, with the introduction of 

concurrent load, and the proportion of middle responses went from .09 to .08, t (78) = .6, p 

= .3, Cohen’s d = 0.148. In addition, there was a significant condition by level interaction, F 

(41, 6396) = 1.67, p = .04, η2 = .01, and a significant condition by level by task interaction, 

F (41, 6396) = 1.59, p = .009, η2 = .01. These interactions reflect the differential effect that 

the concurrent load had on the pattern of uncertain and middle responding across levels. In 

order to better understand this differential effect on the patterns, we conducted separate 

analyses looking at condition and stimulus level within each task. These analyses revealed 

no main effect of condition or level by condition interaction for the SMD task, F’s <1. On 

the other hand, the effect of condition for the SUD task approached significance, F (1, 78) = 

2.93, p = .09, η2 = .04, and the pattern of uncertainty responding across trial levels varied 

depending on condition, F (41, 3198) = 2.14, p<.001, η2 = .03. These results showed that 

although the concurrent load affected uncertainty responding differently across levels, it did 

not influence middle responding. To better understand the effect of concurrent load on 

uncertainty responding, we conducted planned comparisons like those done in Experiments 

1 and 2. This analysis showed that unlike Experiments 1 and 2, the concurrent load only 

marginally significantly reduced uncertainty responding for the most difficult trial levels, t 

(78) = 1.78, p = .078, Cohen’s d = 0.398, and had no effect on middle responding, t <1. Post 

hoc tests revealed that the significant interaction between condition and level for the SUD 

Coutinho et al. Page 14

Mem Cognit. Author manuscript; available in PMC 2016 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



task was caused by a decrease in uncertainty responding for levels 19, 20, and 25 (p < .05). 

Taken together, these results indicate that when participants receive more practice with the 

responses, the effect of concurrent load on the middle response disappears and the effect on 

the uncertainty response is smaller.

Concurrent task performance—Performance on the concurrent task did not vary based 

on task (SUD and SMD), t <1. It was .89 (SD = .09), Cohen’s d = .003, for participants in 

both groups.

Model fits—For this experiment, we also used the Signal Detection Theory model to fit the 

data for all conditions. The predicted values of the model for each of the four groups (UN, 

UC, MN, and MC) are shown in Figure 7. The SSD measures of fit were 0.0434, 0.0741, 

0.0615, and 0.061 for the UN, UC, MN, and MC conditions respectively. The AAD 

measures of fit were .0141, .0184, .0171, and .0168 for the UN, UC, MN, and MC 

conditions respectively. These were excellent fits.

The model estimated that participants in the UN condition placed their SU and UD criteria at 

levels 20 and 24, and participants in the UC condition placed them at levels 19 and 22. The 

uncertainty region went from 4 to 3 levels wide with the introduction of the concurrent load. 

The concurrent load barely disrupted uncertainty responding in the SUD task. For the MN 

and MC groups, the model estimated that participants placed their SM and MD criteria at 

levels 20 and 23, and levels 20 and 22, respectively. The concurrent load also barely 

changed intermediate responding in the SMD task. Both the uncertainty response and the 

middle response, once fully trained, were robust in the face of the concurrent load.

The Perceptual Error was 8 for both the UN and UC groups and 7 for both the MN and MC. 

Participants in the load and no load conditions misperceived items to similar degrees.

Discussion

Experiment 3 demonstrated that when participants receive more training, both responses 

continue to be used in the same way even when a working memory load is imposed. These 

results differ from Experiments 1 and 2’s findings of a decline in uncertainty monitoring and 

an increase in middle responding with load. Both effects disappear with more pre-training. A 

plausible explanation for the disappearance of the uncertainty response is that the processes 

mediating uncertainty monitoring in humans become more robust and skilled because—in a 

sense—they are automatizing. The idea that with practice, uncertainty monitoring places less 

demands on the cognitive system is in line with Koriat and colleagues’ proposal that 

metacognitive judgments are supported by two distinct processes, a controlled one which 

prevails during early stages of learning and an experienced-based one which is predominant 

during later stages of learning (Koriat, 1997; Koriat, Nussinson, Bless, & Shaked, 2008). 

Humans may base their uncertainty judgments at first on explicit evaluations of their ability 

to discriminate different types of stimuli, but over time they come to rely more on 

interpreting the speed or strength with which a particular response pulls them. This could be 

thought of as a type of response fluency, and it may be less working memory intensive.
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However, it is also possible that participants do not change the way that they make their 

metacognitive judgments with learning, but rather uncertainty judgments are always made 

on the basis of response fluency. With more training, perceptual discrimination improves 

increasing perceptual-response fluency, making the judgment easier. This increase in correct 

perceptual discrimination could also explain the stabilization of the middle response. 

However, the Signal Detection Theory modeling suggests that the differences in actual 

discrimination ability (reductions in perceptual error) between the groups with more or less 

training were quite small (7 or 8 steps versus 8 or 9 steps). This suggests that although 

increases in perceptual discrimination may contribute to the stabilization of both responses, 

changes in decision processes with learning are probably necessary to fully explain the 

findings.

Another alternative hypothesis is that what people learn with more training is that the 

uncertainty response is objectively useful and so they should try to maintain it even under 

load. As pointed out earlier, this means that uncertainty monitoring is inherently resource 

intensive and participants are aware of this, choosing either to let the response go or 

maintain it. It is true that with more training and the possibility of summary feedback, 

participants have more experience with how much they can improve performance if they use 

the uncertainty response. This may have increased their motivation to maintain a resource 

intensive response, explaining why there is still a small drop in the uncertainty response, but 

no sign of increase in the middle response. Once participants have realized that their criteria 

for the middle response need to be more conservative, the working memory demanding job 

is done. However, if judging uncertainty still makes demand, it must share resources. If this 

hypothesis is correct, then the processes involved in uncertainty monitoring do not become 

less resource demanding with learning but rather people learn (or choose) to share their 

limited resources more evenly. These would suggest that this relatively simple form of 

monitoring is very demanding on working memory resources even after training. The small 

drop in concurrent task accuracy between Experiments 2 and 3 (93% vs. 89%) might be 

taken as supporting evidence for this. However, it is important to interpret this performance 

cautiously because this small difference is well within the normal variance, and research 

examining FOK and confidence ratings suggests that the ability to interpret memory fluency 

is not particularly resource demanding (Mickes, Hwe, Wais, & Wixted, 2011; Mickes, 

Wixted, & Wais, 2007; Schwartz, 2008). This hypothesis about uncertainty monitoring is 

possible. However, since it is not clear why it should be more demanding than metamemory 

processes, without a large reduction in concurrent task performance, the present experiment 

cannot reasonably lead to this strong claim.

General Discussion

Three experiments were conducted to examine the role of working memory resources in 

uncertainty monitoring in humans. To investigate this issue, participants were tested with or 

without a concurrent load on a psychophysical discrimination task including either an 

uncertainty or a middle response. Experiment 1 demonstrated that with limited task 

experience concurrent load significantly reduced uncertainty responding whereas it 

increased middle responding suggesting that although these two responses are qualitatively 

different, they may both place demands on working memory. Middle responding may rely 

Coutinho et al. Page 16

Mem Cognit. Author manuscript; available in PMC 2016 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on working memory resources because the decisional processes involved in categorizing 

middle stimuli is inherently very difficult since participants need to attend to very small 

variations in density level across stimuli. Only six stimuli within the 42-level continuum are 

middle, and even the easiest of these stimuli (level 21) is difficult to categorize because it is 

only a few steps away from the SM and MD boundaries. In regard to the drop in uncertainty 

responding, it was unclear if this occurred because concurrent load interfered with 

participants’ ability to monitor their states of uncertainty during early stages of learning or 

because it prevented them from learning the utility of the uncertainty response. The results 

of Experiments 2 and 3 provided support for the former explanation. In Experiment 2, in 

spite of knowing the function and utility of the uncertainty response, and being told that 

using it for difficult trials would help them gain points, participants were still unable to use it 

optimally when tested with a concurrent load. Furthermore, Experiment 3 showed that when 

participants received more training with the uncertainty response, the effect of concurrent 

load on uncertainty responding was relatively small. These results suggest that uncertainty 

monitoring places demands on working memory but the level of the demands may decrease 

as a result of practice with the task or with the uncertainty response, or both. It is also 

possible that uncertainty monitoring remains working memory intensive even after practice, 

but people better understand its utility; so they deliberately distribute their resources 

between tasks. Either way, it is clear that, uncertainty monitoring places demands on 

working memory.

Given the evidence that training can reduce a task’s demands on working memory (e.g., 

Ruthruff, Johnston, & Van Selst, 2001; Ruthruff, Van Selst, Johnston, & Remington, 2006; 

Van Selst, Ruthruff, & Johnston, 1999), and the evidence that well practiced memory 

monitoring abilities like confidence judgments require fewer resources (Mickes, et al., 2011; 

Mickes, et al., 2007), it could be considered surprising that a basic monitoring ability like 

judging uncertainty ever makes demands on working memory resources in healthy adult 

humans. However, the empirical evidence from these experiments is clear. Whether people 

choose to avoid making uncertainty judgments or are unable to make them when working 

memory is stressed, at least in a new discrimination task, monitoring uncertainty and acting 

on it place demands on working memory. This finding has important implications for 

understanding our ability to make metacognitive judgments about perception under different 

situations. It also shows a striking similarity with uncertainty monitoring in monkeys, even 

though the monkeys have much less working memory capacity.

The findings of the present study along with those of Smith et al. (2013) showed that 

working memory resources seem to play a critical role in uncertainty monitoring in humans 

and monkeys even though its role is not exactly the same. These results suggest some 

continuity in the processes supporting uncertainty monitoring across species, though humans 

seem to be much more able to automate (or successfully share resources with) these initially 

working memory intensive processes than the monkeys. This interpretation is in line with 

Charles Darwin’s statement in the Descent of the Man that “ … the difference in mind 

between man and the higher animals, great as it is, is certainly one of degree and not of 

kind” (1871/2006, p. 837).
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Given the similarities between the results of the current experiment and those from Smith et 

al. (2013), it is possible that working memory resources are one of the factors supporting the 

development of metacognition in animals and humans. It is possible that the development of 

metacognitive capacity relies on the development of working memory. Thus, smaller and 

less efficient forms of working memory may give rise to less sophisticated forms of 

metacognition. To better understand the role of working memory resources in the 

development of metacognition, future studies should look at the relationship between these 

resources and uncertainty monitoring in primates who are evolutionarily closer to humans, 

such as orangutans, gorillas, chimpanzees, and bonobos. These studies could shed light on 

the evolutionary origins of metacognition.

Furthermore, the present study makes an important contribution to research in human 

metacognition. It complements studies showing that sophisticated forms of metacognitive 

judgments (e.g., JOLs, TOTs, and FOKs) place different demands on working memory by 

showing that more basic forms of metacognition (uncertainty responding) also place these 

demands (although primarily during unpracticed stages). Considering these findings, it is 

important to ask what leads some metacognitive judgments to be more demanding than 

others, and why does uncertainty monitoring place different demands over the course of 

learning. Is this change caused by a shift from controlled processes to less controlled ones? 

Does it reflect a reduction in resources needed to perform the monitoring, or is it a shift in 

willingness to share limited resources? Future research is needed to fully understand the 

nature of these learning related changes. We believe that this type of research may further 

clarify issues about the emergence of more sophisticated forms of metacognition, like those 

observed in humans, and the role of working memory in these processes.
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Figure 1. 
Examples of pixel-box stimuli used in the present Sparse-Middle-Dense and Sparse-

Uncertain-Dense discriminations. Shown are the easiest Sparse trial level (Level 1) and the 

easiest Dense trial level (Level 42).
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Figure 2. 
Mean proportion of middle or uncertainty responses (black circles), sparse responses (open 

diamonds) and dense responses (open triangles) for participants in each condition of the first 

experiment. A: Uncertain No-Concurrent, B: Uncertain Concurrent, C: Middle No-

Concurrent, D: Middle Concurrent.
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Figure 3. 
The best-fitting predicted profile for the four conditions of the first experiment.A: Uncertain 

No-Concurrent, B: Uncertain Concurrent, C: Middle No-Concurrent, D: Middle Concurrent. 

The black circle illustrates the predicted proportions of intermediate (uncertainty or middle) 

responding. The open diamonds and open triangles show the predicted proportions of sparse 

and dense responding, respectively.
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Figure 4. 
Mean proportion of middle or uncertainty responses (black circles), sparse responses (open 

diamonds) and dense responses (open triangles) for participants in each condition of the 

second experiment. A: Uncertain No-Concurrent, B: Uncertain Concurrent, C: Middle No-

Concurrent, D: Middle Concurrent.
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Figure 5. 
The best-fitting predicted profile for the four conditions of the second experiment. A: 

Uncertain No-Concurrent, B: Uncertain Concurrent, C: Middle No-Concurrent, D: Middle 

Concurrent. The black circle illustrates the predicted proportions of intermediate 

(uncertainty or middle) responding. The open diamonds and open triangles show the 

predicted proportions of sparse and dense responding, respectively.

Coutinho et al. Page 26

Mem Cognit. Author manuscript; available in PMC 2016 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Mean proportion of middle or uncertainty responses (black circles), sparse responses (open 

diamonds) and dense responses (open triangles) for participants in each condition of the 

third experiment. A: Uncertain No-Concurrent, B: Uncertain Concurrent, C: Middle No-

Concurrent, D: Middle Concurrent.
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Figure 7. 
The best-fitting predicted profile for the four conditions of the third experiment. A: 

Uncertain No-Concurrent, B: Uncertain Concurrent, C: Middle No-Concurrent, D: Middle 

Concurrent. The black circle illustrates the predicted proportions of intermediate 

(uncertainty or middle) responding. The open diamonds and open triangles show the 

predicted proportions of sparse and dense responding, respectively.
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