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Abstract
In addition to causing cirrhosis and hepatocellular 
carcinoma, hepatitis C virus (HCV) is thought to cause 
hypolipidemia, hepatic steatosis, insulin resistance, 
metabolic syndrome, and diabetes. The viral life cycle 
of HCV depends on cholesterol metabolism in host 
cells. HCV core protein and nonstructural protein 5A 
perturb crucial lipid and glucose pathways, such as 
the sterol regulatory element-binding protein pathway 
and the protein kinase B/mammalian target of 
rapamycin/S6 kinase 1 pathway. Although several lines 
of transgenic mice expressing core or full HCV proteins 
exhibit hepatic steatosis and/or dyslipidemia, whether 
they completely reflect the metabolic alterations in 
humans with HCV infection remains unknown. Many 
cross-sectional studies have demonstrated increased 
prevalences of metabolic alterations and cardiovascular 
events in patients with chronic hepatitis C (CHC); 
however, conflicting results exist, primarily due to 
unavoidable individual variations. Utilizing anti-HCV 
therapy, most longitudinal cohort studies of CHC 
patients have demonstrated the favorable effects of 
viral clearance in attenuating metabolic alterations 
and cardiovascular risks. To determine the risks of 
HCV-associated metabolic alterations and associated 
complications in patients with CHC, it is necessary to 
adjust for crucial confounders, such as HCV genotype 
and host baseline glucose metabolism, for a long 
follow-up period after anti-HCV treatment. Adipose 
tissue is an important endocrine organ due to its 
release of adipocytokines, which regulate lipid and 
glucose metabolism. However, most data on HCV 
infection and adipocytokine alteration are inconclusive. 
A comprehensive overview of HCV-associated metabolic 
and adipocytokine alterations, from bench to bedside, 
is presented in this topic highlight.
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Core tip: Hepatitis C virus (HCV) is thought to cause 
hypolipidemia, hepatic steatosis, insulin resistance, 
and diabetes. Its life cycle depends on host cholesterol 
metabolism. HCV core protein and nonstructural 
protein 5A perturb crucial metabolic pathways. Many 
cross-sectional studies have demonstrated increased 
cardiometabolic risks in HCV patients. Utilizing anti-
HCV therapy, most cohort studies have demonstrated 
the favorable effects of HCV clearance in attenuating 
cardiometabolic risks. Adipose tissue is an important 
endocrine organ due to its release of adipocytokines, 
which strongly regulate metabolism. A comprehensive 
overview of HCV-associated metabolic and adipocyto-
kine alterations, from bench to bedside, is presented in 
this topic highlight.
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INTRODUCTION
Hepatitis C virus (HCV) infection is a substantial global 
health burden. HCV infects an estimated 170 million 
people globally, with millions newly infected each year, 
and chronic infections are established in the majority 
of infected individuals[1]. Its variants can be classified 
into 6 major genotypes, which differ in 30%-35% 
of the nucleotides in the complete genome[1]. HCV 
causes cirrhosis and hepatocellular carcinoma and 
is thought to cause metabolic alterations resulting in 
hypolipidemia, hepatic steatosis, insulin resistance 
(IR), metabolic syndrome (MS), and diabetes[2,3]. 
Much of the HCV life cycle is closely associated with 
lipid metabolism, and this association includes entry 
into naïve cells, infectivity, RNA replication, viral 
assembly and viral secretion[2]. Furthermore, HCV 
core protein[4-10] and nonstructural (NS) protein 5A 
participate in crucial lipid and glucose metabolic 
pathways in host cells[11-14]. Additionally, some 
organelles harbor virions and/or viral proteins during 
the HCV life cycle, leading to increased oxidative 
stress[15], which in turn modifies cellular metabolism. 
These factors contribute to a cascade of systemic 
metabolic alterations in the host. Although several 
lines of transgenic mice expressing either HCV 
core[16-21] or full HCV proteins[22,23] have demonstrated 
phenotypes revealing metabolic alterations and have 
revealed potentially altered pathways, whether these 
mice completely reflect the effects of human HCV 
infection remains unknown. Furthermore, conflicting 
data exist among various cross-sectional human 
studies on HCV-associated metabolic alterations. 

The inconsistencies primarily result from individual 
variations, including the different viral and host 
factors studied. The eradication of HCV by either 
interferon-based therapy[24] or direct-acting antiviral 
(DAA) drugs[25] provides the opportunity to study 
the causal relationship between HCV infection and 
metabolic alterations in the same individuals without 
individual variation. In contrast, hepatitis B virus 
(HBV), which infects 350 million individuals worldwide, 
is another main pathogen leading to liver cirrhosis 
and hepatocellular carcinoma[26], and conflicting data 
regarding its association with hypolipidemia have been 
reported[27,28]. Chronic HBV infection is not associated 
with hepatic steatosis, IR, or diabetes[29]. Hepatic 
steatosis may even promote spontaneous hepatitis B 
surface antigen seroconversion[30]. Furthermore, data 
on HBV-associated metabolic alterations are mainly 
based on case-control studies rather than cohort 
studies to view the influence of viral clearance[31]. 
Together, host metabolic alterations are much less 
associated with HBV infection than with HCV infection. 

Adipose tissue has emerged as an important 
endocrine organ due to its release of adipocytokines[32], 
which regulate lipid and glucose metabolism via the 
adipoinsular axis[33]. Because both HCV infection and 
alterations in adipocytokines are critical in lipid and 
glucose metabolism, their potential relationship has 
attracted attention[34,35]. However, most data regarding 
HCV infection and adipocytokine alterations are 
inconclusive. 

Thus, the current review aims to provide a com-
prehensive overview of HCV-associated metabolic and 
adipocytokine alterations, from bench to bedside, to 
serve as a cornerstone for future research and clinical 
practice. 

HCV GENOME, PROTEINS AND LIFE 
CYCLE
HCV, a member of the Hepacivirus genus within the 
Flaviviridae family, has a viral genome consisting 
of single-stranded RNA with positive polarity that is 
approximately 9.5 kb long[36]. Untranslated regions 
(UTRs) located at the 5’ and 3’ ends of the genome 
flank a single open reading frame (ORF), which 
encodes a polyprotein of approximately 3000 amino 
acids[36]. The polyprotein is processed by viral and 
cellular proteases that produce mature viral structural 
and NS proteins. Structural proteins, including the core 
protein and envelope glycoprotein 1 (E1) and E2, are 
encoded in the N-terminal region of the ORF, whereas 
NS proteins, including NS1, NS2, NS3, NS4B, NS5A 
and NS5B, reside in the C-terminal region (Figure 
1). HCV core protein is not only a component of the 
viral nucleocapsid but also a multifunctional protein 
that modulates viral and cellular gene expression[37]. 
The assembly of HCV requires a platform of cellular 
lipid droplets and interactions between NS5A and the 
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core protein[38] (Figure 2). Thus, most HCV-associated 
metabolic alterations in hosts involve HCV core[4-10] 
and NS5A[11-14] proteins. Assembled particles bud into 
the endoplasmic reticulum (ER) and traffic through 
the secretory pathway, from which they are exported 
from the cell in conjunction with lipoprotein secre-
tory pathways[39,40]. In the blood, HCV particles are 
heterogeneous in size and density as a result of their 
association with serum lipoproteins, namely, lipoviral 
particles (LVPs)[41] (Figure 2).

METABOLIC ALTERATIONS AND HCV: IN 
VITRO STUDIES
Most clinically isolated HCV is difficult to replicate 
in cultured cells[42]. Therefore, cells harboring HCV 
subgenomic replicons are widely used to study HCV 
replication[43]. Although very effective at replication, the 
replicon system is unable to produce infectious HCV 
particles. In contrast, a strain of genotype 2 (G2) HCV 
is capable of replicating in Huh7 cells and producing 
HCV particles that are infectious in cultured cells[44,45]. 
HCV particles produced through cell culture (referred 
to as HCVcc) are able to establish long-term infections 
in chimpanzees and in mice containing human liver 
grafts[46]. Pseudoparticles of HCV (HCVpps) are 
retroviral nucleocapsids surrounded by a lipid envelope 
containing authentic HCV glycoprotein complexes[47]. 
HCVpp is an ideal system for studying receptor 
binding and entry and has been used to characterize 
neutralizing antibodies[48]. Most data from in vitro HCV 
studies use the aforementioned systems.

Lipid metabolism 
The HCV life cycle is closely associated with the 
cholesterol and lipogenesis pathways in hepatocytes. 

HCV influences host lipid metabolism in three ways, 
causing enhanced lipogenesis, impaired degradation 
and impaired export[2] (Figure 3). Hepatic steatosis 
arises from these conditions.

Enhanced lipogenesis: Inhibiting sterol regulatory 
element-binding protein (SREBP) activation by 
treatment with 25-hydroxycholesterol[49], cholesterol 
25-hydroxylase[50], nordihydroguaiaretic acid[51] 
and subtilisin/kexin-isozyme-1 or site-1 protease[52] 

blocks HCV replication. Fatty acid synthase (FAS), an 
enzyme primarily involved in the de novo synthesis of 
fatty acids, is up-regulated during HCV infection, and 
the inhibition of FAS activity inhibits HCV replication 
and release[53,54]. One product of the mevalonate 
pathway produced during the synthesis of cholesterol, 
geranylgeranyl lipid, that is required for HCV RNA 
replication, as shown by experiments in which the 
inhibition of HCV RNA replication by lovastatin was 
overcome by the addition of geranylgeraniol[55,56]. 
This finding is further supported by the observation 
that HCV replication can be blocked by an inhibitor 
of geranylgeranyl transferase I[55]. Inhibitors of 
the synthesis of triacylglycerides and cholesterol 
esters, triacsin C and YIC-C8-434, which inhibit 
long-chain acyl-CoA synthetase and acyl-CoA:
cholesterol acyltransferase, respectively, reduce HCV 
RNA synthesis[57]. These observations highlight the 
importance of up-regulating the de novo synthesis of 
fatty acids and cholesterol to enhance the availability 
of important lipid constituents and to establish 
efficient HCV replication[2]. Altered pathways have 
been documented in HCV replicon-expressing cells 
using the Kyoto Encyclopedia of Genes and Genomes 
Pathway database; these pathways include mitogen-
activated protein kinase, steroid biosynthesis, steroid 
biosynthesis and sphingolipid metabolism pathways, 
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Figure 1  Diagram of the hepatitis C viral genome. Hepatitis C virus is a single-stranded RNA virus, and its genomic organization shows highly conserved 5’ and 3’ 
nonstructural proteins. UTR: Untranslated region; C: Core protein; E1 and E2: Envelope glycoprotein 1 and 2; NS: Nonstructural protein.
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reported[8]. It has been suggested that HCV core 
protein directly interacts with retinoid X receptor 
α, a transcriptional regulator that controls many 
cellular functions, including lipid metabolism[9]. HCV 
core protein acts as a pathogenic factor involved 
in lipid droplet accumulation, changes in lipogenic 
gene expression, and/or the activity of lipogenic 
proteins in a genotype-specific manner[62]. Amino acid 
substitutions at positions 182 and 186 of genotype 3a 
(G3a) HCV and at amino acid 70/Q of genotype 1b 
(G1b) HCV affect lipid metabolism and contribute to 
the development of steatosis[63]. Hepatic steatosis is 
most common in patients infected with genotype 3 (G3) 
HCV, possibly due to the direct effects of G3 HCV core 
proteins[64]. However, HCV core protein may not be the 
only viral protein involved in HCV-induced steatosis. 
An interaction between HCV NS5A and apolipoprotein 
AI was observed in vitro, and core protein/NS5A 
colocalization was observed in cytoplasmic lipid 
droplets after transfection[12,13]. The expression of HCV 
NS5A in human hepatoma cells increased lipid droplet 
formation through enhanced lipogenesis and the 
transcriptional expression of PPARγ coactivator (PGC)-
1α and diacylglycerol acyltransferase-1 but reduced 
the transcriptional expression of MTTP and PPARγ[11,12]. 

MicroRNA 122: Although microRNA 122 (miR-122) 

which are required for efficient HCV replication[58]. 

Impaired degradation: HCV impairs mitochondrial 
lipid β-oxidation, which results in low lipid combustion 
and the inhibition of mitochondrial trifunctional protein 
by HCV, as noted in HCV-infected hepatocytes[59]. 
Additionally, a systems biology approach identified the 
mitochondrial fatty acid oxidation enzyme dodecenoyl 
coenzyme A delta isomerase as a bottleneck protein 
controlling host metabolic reprogramming during HCV 
infection[60]. 

Impaired export: HCV has been shown to impede 
lipid export from the liver by reducing microsomal 
triglyceride transfer protein (MTTP) activity in animal 
studies[16].

Viral proteins and associated alterations to 
lipid metabolism: HCV infection, mainly through 
the activity of the HCV core protein, decreases the 
expression and activity of peroxisome proliferator-
activating receptor (PPAR)-α/γ in hepatocytes[61]. HCV 
core protein localizes in the membrane of lipid vesicles 
and induces hepatic fat accumulation by activating 
SREBP-1c[6,7]. An in vitro interaction between HCV 
core protein and apolipoprotein AII has also been 
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Figure 2  Life cycle of hepatitis C virus in the hepatocyte. Hepatitis C virus (HCV) LVPs enter hepatocytes via receptor-mediated endocytosis. Released viral RNA 
is translated at the endoplasmic reticulum (ER), producing a single polyprotein precursor that is cleaved by host and viral proteases. The viral NS proteins (e.g., NS5A 
protein) form RNA replication complexes in lipid rafts, where positive-strand RNA is replicated via a negative-strand intermediate. Newly synthesized positive-strand 
RNA is encapsidated by the HCV core protein in close proximity to LDs, and envelope glycoproteins are acquired through budding into the ER lumen. LVPs mature in 
the ER through interactions with lipoproteins and exit the cell via the cellular Golgi apparatus. LD: Lipid droplet; LVP: Lipoviral particle; Golgi: Golgi apparatus.
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promotes the accumulation of HCV RNA through 
a direct interaction with viral RNA and stimulates 
the mevalonate pathway in the liver, the inhibition 
of miR-122 has negligible effects on the rate of 
3-hydroxy-3-methyl-glutaryl-CoA reductase RNA 
synthesis. These findings suggest that miR-122 does 
not directly affect HCV RNA abundance through the 
mevalonate pathway[65]. 

Glucose metabolism 
Altered pathways: HCV down-regulates glucose 
transporter 2 (GLUT2), which transports glucose 
to hepatocytes, and up-regulates the genes for 
phosphoenolpyruvate carboxykinase (PEPCK) and 
glucose 6-phosphatase (G6Pase), which are rate-
limiting enzymes for hepatic gluconeogenesis. PEPCK 
and G6Pase are regulated by the transcription factor 
forkhead box O1 (FoxO1)[66]. The phosphorylation of 
FoxO1 was diminished in HCV-infected cells, resulting 
in an increased nuclear accumulation of FoxO1[67]. 
Additionally, increased hepatic expression of PGC-
1α has been implicated in the elevation of G6Pase 
secondary to HCV infection[68]. HCV modulates the 
protein kinase B/mammalian target of rapamycin/S6 
kinase 1 (Akt/mTOR/S6K1) signaling cascades by 

increasing tumor necrosis factor production while 
enhancing the activity of suppressor of cytokine 
signaling 3 (SOCS-3)[66,69] in inhibiting insulin receptor 
substrate (IRS) function to perturb glucose metabolism 
via the down-regulation of GLUT4 and the up-
regulation of PCK2 for IR[10,70] (Figure 3).

Viral proteins and associated alterations to 
glucose metabolism: HCV proteins associate with 
mitochondria and the ER to promote oxidative stress, 
which involves p38 mitogen-activated protein kinase 
and activates nuclear factor kappa B[71]. HCV core 
protein induces the proteasomal degradation of IRS-1 
and IRS-2, blocking intracellular insulin signaling[10]. 
Genotype-specific impairment of insulin signaling 
was observed during HCV infection; the expression of 
the G3 HCV core protein led to the down-regulation 
of PPARγ and the up-regulation of SOCS-7, whereas 
the G1 core protein activated mTOR[72]. HCV NS5A 
was directly linked to FoxO1-dependent increased 
gluconeogenesis[67] and to cellular hexokinase 2, the 
first rate-limiting enzyme of glycolysis[14]. HCV NS5A 
also increased the serine phosphorylation of IRS-1, 
thereby hampering metabolic activity and contributing 
to IR[11] (Figure 3). 
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HCV and cellular organelles: Evidence suggests 
that the impairment of mitochondrial functions, 
including the modification of metabolic fluxes, fatty 
acid oxidation, the generation and elimination of 
oxidative stress, Ca2+ signaling and apoptosis, plays a 
central role in HCV-associated metabolic alterations, 
particularly as several HCV proteins localize to 
mitochondria[73]. Attention has been focused on 
the PPARs due to their role in controlling liver lipid 
metabolism[74]. HCV infection also induces ER stress 
that results in the up-regulation of PGC-1α[75]. Upon 
envelopment at the ER, HCV exits the cell via the 
secretory pathway, as shown by the localization of HCV 
core protein to the Golgi and its co-trafficking with 
components of the recycling endosome[76].

Generalized metabolic alterations: Proteomic and 
lipidomic profiling performed in acute HCV-infected 
Huh-7.5 cells has shown that HCV induces early 
perturbations in glycolysis, the pentose phosphate 
pathway, and the citric acid cycle; these changes 
favor host biosynthetic activities supporting viral 
replication and propagation. These effects are followed 
by a compensatory shift in metabolism aimed at 
maintaining energy homeostasis and cell viability 
during elevated viral replication and increasing cellular 
stress. Thus, HCV infection may be associated with a 
delay in cell cycle progression that is accompanied by 
an adaptive metabolic response aimed at channeling 
substrates from synthetic to energetic purposes[77]. 
In a persistently HCV-infected cell line displaying 
prominent steatosis and supporting HCV infection 
for more than 2 years, the citric acid cycle was 
preferentially facilitated over the glycolysis pathway 
with marked increases in most amino acids[78]. Another 
study involving transcriptome sequencing, microarray 
analysis, and proteomic analyses of HCV infection in 
Huh 7.5 cells showed that HCV caused X receptor/
retinoic acid receptor activation as a potential host 
antiviral response, and integrin-linked kinase signaling 
served as an entry factor. These responses also led 
to increases in cellular cholesterol and free fatty acid 
levels, which were associated with a profound and 
specific decrease in cellular glucose levels[79]. 

METABOLIC ALTERATIONS AND HCV: 
ANIMAL STUDIES
Studies using constitutional HCV core transgenic mice 
have demonstrated the augmented production of 
oxidative stress and the activation of the scavenging 
system, including catalase and glutathione[17,79]. 
Together with the observed activation of PPARα[80], 
these findings may account for the hepatic steatosis 
induced by HCV infection[17]. In another line of cons-
titutional HCV core transgenic mice, core expression 
led to reductions in MTTP activity and in the particle 
size of nascent hepatic very low-density lipoprotein 

cholesterol, hampering lipid export from the liver[16]. 
Using a line of conditional HCV core transgenic mice, 
we have shown the topological relationship between 
HCV core protein and hepatic lipid vesicles[19]; we 
also demonstrated that HCV core-induced nonobese 
hepatic steatosis is associated with the down-
regulation of the leptin gene in visceral fat and con-
current hypoadiponectinemia[20], and gene expression 
analyses in HCV core transgenic mice revealed SREBP 
pathway activation and the dysregulation of genes 
involved in lipid metabolism, including 3-hydroxy-3-
methylglutaryl-coenzyme A synthase 1, apolipoprotein 
AII, apolipoprotein CI, acyl-CoA thioesterase I, and 
fatty acid binding protein 1[21]. In transgenic mice 
expressing the full-length HCV ORF, hepatic steatosis 
was associated with reduced plasma triglyceride 
levels. Triglyceride secretion was impaired, whereas 
activated lipogenesis was evidenced by increased 
lipogenic enzyme transcription resulting from the 
maturational activation and nuclear translocation of 
SREBP1c[22]. Another transgenic mouse line expressing 
all HCV proteins showed that fatty acid synthase was 
redistributed from its normal periportal expression into 
the midzone of the lobule. The alteration of zonation 
was not limited to lipogenic enzymes and appeared to 
be driven by systemic signaling via the Wnt/β-catenin 
pathway. These results help to explain the systemic 
effects of HCV on liver metabolism, which are triggered 
by a minority of infected cells[23]. HCV-infected Tupaia 
belangeri chinensis demonstrated a perturbation of the 
taurine, hypotaurine, ether lipid, glycerophospholipid, 
arachidonic acid, tryptophan, and primary bile acid 
metabolism pathways[81]. 

METABOLIC ALTERATIONS AND HCV: 
HUMAN STUDIES
Cross-sectional studies
In cross-sectional human studies, HCV genotype, 
baseline glucose profile and ethnicity were crucial 
confounders for metabolic alterations[82-90]. The 
metabolic alterations and complications associated 
with HCV infection are discussed below (Figure 4): 

Hepatic steatosis and hypolipidemia: The overall 
prevalence of hepatic steatosis in patients with HCV 
infection is 55.54%, which is higher than in uninfected 
individuals[91]. In contrast to non-alcoholic fatty 
liver disease (NAFLD), which is usually associated 
with hyperlipidemia[92], chronic hepatitis C (CHC) 
is strongly linked to hypolipidemia, including hypo-
cholesterolemia, hypo-triglyceridemia and low low-
density lipoprotein (LDL) cholesterol levels[93,94]. The 
presence of NAFLD in patients with HCV is strongly 
associated with features of MS and is a risk factor for 
advanced fibrosis[95]. In G3-HCV infections, hepatic 
steatosis is related to viral load and hypolipidemia 
but not to metabolic factors and is termed “viral 
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steatosis.” In G1, G2, or G4 HCV infections, steatosis 
appears to be secondary to IR/MS and is regarded as 
“metabolic steatosis”[85,96-98]. MTTP may play a central 
role in HCV-related steatosis because it is modulated 
by different genotype-specific mechanisms, mainly 
hyperinsulinemia in non-G3 CHC patients, and by 
more profound and direct virus-related effects in G3 
CHC individuals[99]. Viral steatosis as observed in G3 
CHC does not contribute significantly to liver fibrosis. 
IR, rather than steatosis, was independently associated 
with fibrosis for both G1 and G3 HCV[100]. However, 
other studies with 160 to 3026 CHC patients confirmed 
the positive role of steatosis in G3 CHC in accelerating 
fibrosis[101,102]. HCV-associated hypolipidemia is most 
prominent in G3 CHC[103]. A proportional relationship 
between serum lipid profiles and G2 HCV viral load 
has been reported based on a study of more than 500 
Asian CHC patients[87]. Concordantly, triglyceride levels 
have been shown to be associated with HCV levels in 
Western G1 CHC patients[104]. In a study of the impacts 
of genetics on metabolic alterations, Caucasian G1 
CHC patients with the CC polymorphism in interleukin-
28B (IL28B) had higher levels of total cholesterol and 

LDL-cholesterol, lower levels of triglycerides, and a 
lower prevalence of IR and moderate-severe steatosis 
than patients without this genotype[105]. Moreover, an 
inverse correlation between microvesicular steatosis 
and level of autophagy was reported[106]. The activation 
of hepatic cannabinoid receptor 1 [CB(1)] is associated 
with steatosis and fibrosis, and CB(1) is up-regulated 
and is associated with increased steatosis in G3 CHC 
patients[107].

IR, diabetes, MS and obesity: High prevalences 
of IR, diabetes, MS and obesity (increased levels of 
mesenteric fat) in CHC patients compared with controls 
have been demonstrated in several studies[82,107-110]. IR 
was shown to be associated with high serum HCV RNA 
levels in G1, G2, G3 and G4 patients[82,83], but IR was 
more common in patients with G1 and G4 than in those 
with G2 and G3[84], or more common in those with 
G1, 2, and 4 than in those with G3 HCV infection[85]. 
Whether a dose-response relationship between the 
HCV RNA level and the presence of IR exists in Asian 
G1 and G2 CHC patients remains unclear[86,88,105]. MS 
was more frequent in G1 patients than in G2 patients, 
and MS and G1 were significantly related to SOCS-3 
overexpression[89]. Among nondiabetic CHC patients, 
IR does not seem to be associated with viremia[90]. 
Ethnicity and BMI might be individually associated 
with the progression of fibrosis and the presence of 
cirrhosis[111,112] because Hispanics had the highest 
fibrosis indices and prevalences of cirrhosis, whereas 
African Americans had the lowest[112]. Visceral obesity 
was associated with high viral loads and histological 
damage in elderly (≥ 60 year) patients with reduced 
adiponectin levels[113]. In a study of the effects of 
genetics on IR, G2 CHC patients carrying the patatin-
like phospholipase domain containing 3 protein 
(PNPLA3) I148M allele had increased IR and lower viral 
loads at baseline[114]. However, among non-diabetic 
G1 and G4 CHC patients, the rs738409 (PNPLA3) GG 
genotype was associated with advanced fibrosis and 
steatosis but not with IR. In contrast, the IL28B non-
CC genotype was an independent risk factor for IR[115].

Cardiovascular events: Despite the favorable 
lipid profile caused by HCV infection noted above, 
many studies have shown an unfavorable role of 
HCV infection in cardiovascular events. Higher waist 
circumferences, hypertension rates[116,117], prevalences 
of late chronic kidney disease[118], stroke and past 
ischemic heart disease[119], intima-media thicknesses 
(IMT, an index of early atherosclerosis)[120], rates of 
congestive heart failure[117], serum homocysteine 
levels[121] and rates of carotid atherosclerosis (CA)[122] 
were noted in CHC patients compared with normal 
controls. However, a Japanese study of 88 CHC 
patients showed that carotid IMT was reduced in CHC 
patients compared with controls[123]. Notably, IMT, 
carotid plaques and coronary heart disease were found 
to be significantly associated with HCV infection only 
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Figure 4  Hepatitis C virus-associated metabolic alterations and 
cardiovascular events,  data from human studies. CA: Carot id 
atherosclerosis; IMT: Intima-media thickness; IHD: Ischemic heart disease; 
CHF: Congestive heart failure; FL: Fatty liver; H/T: Hypertension; WC: Waist 
circumference; IR: Insulin resistance; DM: Diabetes; CKD: Chronic kidney 
disease. 
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after adjustment for “classical” cardiovascular risk 
factors, particularly LDL cholesterol and systolic blood 
pressure[110]. These results may suggest that HCV 
affects cardiovascular risk mainly via non-conventional 
pathways rather than by virus-induced metabolic 
modifications, such as IR and good lipoprotein profiles, 
which may balance one another[124]. Furthermore, HCV 
RNA levels were found to be independently associated 
with CA in both the early phases of IMT lesions and the 
advanced phases of plaques[122]. Direct viral invasion 
of cardiovascular tissues and systemic inflammation 
caused by HCV infection are potentially responsible 
for the high rates of cardiovascular events in CHC 
patients[125]. 

Longitudinal studies 
The combination of pegylated interferon (Peg-IFN)-α 
and ribavirin has provided a “cure” for a considerable 
proportion of patients with CHC, particularly in patients 
with the favorable IL28B genotype[24]. These cure rates 
were further improved by replacing interferon-based 
therapy with potent DAA drugs[25]. Thus, the many 
longitudinal studies of CHC patients receiving Peg-IFN-
based or DAA therapy provide a landscape in which 
to study metabolic alterations and the associated 
manifestations caused by HCV clearance by comparing 
pre- and post-anti-HCV treatment metabolic profiles. 

Predictors for the therapeutic failure of anti-
HCV therapy: High waist circumference[126], high 
homeostatic model assessment (HOMA)-IR (for G1b, 
G2, G3 and G4 HCV infection)[105,127-129], high pre-
anti-HCV treatment HCV RNA level, old age (for 
G1b)[128], low serum total and LDL-cholesterol and 
oxidative stress (for G1, 2 and 3)[130], steatosis (for 
non-G3)[131,132], DM[133], IL28B non-CC genotype 
(for G1 and 4)[129] and high serum uric acid level[134] 
predict anti-HCV treatment failure. Although hepatic 
steatosis is associated with lower sustained virological 
response (SVR), this effect is attenuated by IL28B in 
G1 Caucasian CHC patients[135]. Furthermore, studies 
of 96 to 932 CHC patients have shown that steatosis 
independently predicts relapse in G3 CHC patients with 
SVR[136,137]. However, IR does not predict rapid virologic 
responses or SVRs in CHC patients without MS[138,139]. 

Hepatic steatosis and hypolipidemia: Although the 
reversal of both hepatic steatosis and hypolipidemia 
has been reported only in G3 CHC patients and is not 
shared by other genotypes[140], accumulating evidence 
demonstrates that the reversal of hypolipidemia is not 
genotype specific[3,141]. In a study of genotype-specific 
HCV-associated lipid alteration, G2 CHC patients were 
shown to benefit more than G1 CHC patients from viral 
clearance resulting from lipid alterations, particularly 
in those without baseline IR[3]. Using a targeted paired 
cholesterol metabolomics study of CHC patients who 
received anti-HCV therapy, G3 but not G2 HCV was 
shown to selectively interfere with the late cholesterol 

synthesis pathway, as shown by lower distal sterol 
metabolites and preserved lanosterol levels. This distal 
interference resolves with SVR[142].

IR, diabetes, MS and obesity: Among CHC patients 
without baseline glucose abnormalities, HCV clearance 
did not reduce the risk of glucose intolerance[143]. 
However, another study showed that among non-
diabetic CHC patients, HCV ameliorates β-cell 
function[144]. The data on genotype-specific effects 
are even more diverse. For example, the eradication 
of HCV was thought to reduce the incidences of type 
2 diabetes in both G1 and G2 patients[145]. However, 
reduced IR at 12 wk after treatment was observed 
in G1 but not G2 or G3 patients with SVR[146]. 
Concordantly, a study based on Virahep-C showed that 
among G1 CHC patients with IR before treatment, viral 
clearance results in improvements in the HOMA-IR 
index 24 wk after treatment completion[147]. Although 
a prospective study that enrolled non-diabetic G1, 
2, 3 and 4 CHC patients failed to demonstrate any 
differences between the mean pre- and 24 wk post-
anti-HCV treatment HOMA-IR values in patients with 
SVR, there was an increased rate of de novo IR in 
non-SVR patients compared with SVR patients 24 
mo after treatment completion, regardless of viral 
genotype[148]. All of the above results indicate that 
follow-up > 24 wk after treatment completion is 
essential for studying favorable glucose metabolism 
alterations after HCV viral clearance, especially in G1 
CHC patients, after adjusting for baseline metabolism. 
In a study of patients who underwent orthotopic liver 
transplantation (OLT) in the setting of recurrent HCV 
after OLT, MS was strongly associated with long-term 
fibrosis progression[149]. CHC subjects were more likely 
to be overweight and obese at the time of transplant, 
and these conditions are associated with a higher risk 
of post-transplant diabetes that persists for up to 5 
years post-transplant compared with that for CHB 
patients[150]. Interestingly, a study of G1 CHC patients 
showed that a high visceral adiposity index score is 
independently associated with steatosis and has a 
direct correlation with viral load[151].

Cardiovascular events: A retrospective United 
Kingdom cohort study of 4809 HCV-infected patients 
and 71668 controls failed to demonstrate different 
incidences of myocardial infarction between HCV-
infected and HCV-uninfected patients during a median 
follow-up of 3.2 years[152]. In contrast, a community-
based prospective Taiwanese cohort study of 1095 anti-
HCV seropositive and 18541 anti-HCV seronegative 
patients showed higher circulatory and renal disease 
mortality in anti-HCV seropositive than in anti-HCV 
seronegative patients during an average follow-up 
period of 16.2 years[153]. Several large population-
based cohort studies using the Taiwan National Health 
Insurance Research Database have recently shown 
that anti-HCV therapy is associated with decreased 
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8-year cumulative cardiovascular incidences in CHC 
patients[154,155]. These conflicting reports suggest the 
importance of follow-up duration (likely more than 8 
years) when evaluating the effects of HCV infection on 
cardiovascular complications.

The HCV-associated cardiometabolic diseases and their 
recoverability after viral clearance, which were mainly 
obtained from longitudinal studies, are listed in Table 1. 

HCV infection and adipocytokine alterations
Adipocytokines, including leptin[156], adiponectin[157-162,164-167], 
plasminogen activator inhibitor-1 (PAI-1)[168], visfatin[169], 
retinol-binding protein 4 (RBP4)[170,171] and resistin[172-176], 
are discussed below:

Leptin: In a study of 42 patients, the serum leptin 
levels in CHC patients were higher than in controls[156]. 

Adiponectin: The data regarding adiponectin 
alteration and its correlation with HCV viral load are 
quite diverse among studies involving various HCV 
genotypes. For example, G3 CHC patients showed 
lower adiponectin levels than those of patients with 
other genotypes[157]. High HCV load and G2 were 
significantly associated with lower serum adiponectin 
levels[158]. Adiponectin level increases with the 
progression of hepatic fibrosis but is not related to 
viral load in G4 CHC patients[159]. In G1 or G3 CHC 
patients, adiponectin was associated with steatosis 
only in males and paradoxically increased with hepatic 
inflammation[136]. IR was associated with a decrease 
in adiponectin in G3 but not G1 CHC patients[160]. 
Adiponectin levels were significantly decreased in G1 
and G3 CHC patients[161]. Whether HCV viral clearance 
leads to hyper- or hypo-adiponectinemia remains 
unclear and may differ between G3 and G4 HCV[159,163]. 
The lack of clarity regarding HCV infection and 
adiponectin alterations may stem from heterogeneous 
hepatic pathologies, metabolic conditions and immune 
reactions of the patients involved in various studies. In 
patients with CHC, fibrosis and steatosis are associated 
with hyperadiponectinemia and hypoadiponectinemia, 
respectively[164,165]. Furthermore, adiponectin is negatively 
correlated with IR, hepatic steatosis and MS[166]. The 

positive role of serum adiponectin in anti-HCV specific 
immune responses has been demonstrated[161]. Thus, 
after SVR, the decrease in adiponectin in G4[159] patients 
may reflect the reversal of hepatic fibrosis and hypo-
triglyceridemia, whereas the increase in adiponectin in 
G3[163] patients may indicate an improvement in hepatic 
steatosis, which is most evident in G3 CHC[167]. 

PAI-1: Serum PAI-1 levels were identified as positive 
predictors of interferon-based therapeutic response[168].

Visfatin: No correlation between visfatin and HCV 
genotypes, viral load, or treatment response to Peg-
IFN/ribavirin therapy has been shown[169]. 

RBP4: CHC patients had lower RBP4 levels than did 
control subjects. Higher RBP4 levels were linked to 
lower alanine aminotransferase, hyperlipidemia and 
high HOMA-IR in CHC patients[170]. Only patients with 
SVR had higher post-anti-HCV treatment RBP4 levels 
than pre-anti-HCV treatment levels[171].

Resistin: Hyper-resistinemia in CHC patients has 
been consistently reported[172-175]. This condition is 
reversed after viral clearance[176] and determines 
moderate to severe fibrosis[174] but is not associated 
with therapeutic response[176].

CONCLUSIONS AND PROSPECTIVE 
STUDIES 
Using in vitro systems and animal models, the 
basis for HCV-associated metabolic alterations 
has been elucidated in detail in the literature. 
However, in human studies, various viral factors, 
especially HCV genotype, and host factors, including 
IL28B genotype, ethnicity and baseline metabolic 
conditions, may obscure metabolic alterations and 
complications attributed to HCV. By using anti-HCV 
therapy, prospective studies of CHC patients with 
viral clearance after anti-viral therapy followed by 
long periods of off-therapy observation provide the 
opportunity to study genuine metabolic homeostasis 
and establish personalized care for CHC patients. The 
future challenge for hepatologists, in an era in which 
almost all HCV is eradicable by potent DAAs, will be 
to determine whether hepatitis C virus-associated 
metabolic alterations and cardiovascular events are 
completely reversible or whether some are aggravated 
after viral clearance by anti-hepatitis C therapy. These 
discoveries will help to provide personalized care for 
patients with chronic or past HCV infection.
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Table 1  The reversibility of hepatitis C virus-associated 
cardiometabolic diseases after viral clearance

HCV-associated 
cardiometabolic diseases

Reversible after viral 
clearance

Ref.

Hypolipidemia Yes [3,110,140-142]
Hepatic steatosis Yes [140]
Obesity No [110]
Glucose intolerance, insulin 
resistance and diabetes

No [110,143]
Yes [145-148]

Cardiovascular events No [152]
Yes [153-155]

HCV: Hepatitis C virus.
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