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Abstract
Host-hepatitis C virus (HCV) interactions have both 

informed fundamental concepts of viral replication 
and pathogenesis and provided novel insights into 
host cell biology. These findings are illustrated by the 
recent discovery of host-encoded factors that restrict 
HCV infection. In this review, we briefly discuss these 
restriction factors in different steps of HCV infection. 
In each case, we discuss how these restriction factors 
were identified, the mechanisms by which they inhibit 
HCV infection and their potential contribution to viral 
pathogenesis.
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Core tip: Hepatitis C is a liver disease caused by the 
hepatitis C virus (HCV), which chronically infects 
approximately 130-150 million people. The ultimate 
outcome of HCV infection depends on host-viral 
interactions. Host cells encode multiple proteins to 
suppress HCV infection, known as host restriction 
factors. In this review, we will summarize the host 
restriction factors in different steps of the HCV life 
cycle. The possible mechanisms of the host restriction 
factors will also be discussed.
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INTRODUCTION
Hepatitis C virus (HCV) infection is a major cause 
of liver disease, with approximately 130-150 million 
people chronically infected[1]. Chronic HCV infection 
frequently develops into liver fibrosis, cirrhosis, 
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hepatocellular carcinoma (HCC), and eventually 
death[2]. Currently, there are two strategies for curing 
hepatitis C, including interferon (IFN)/ribavirin and 
direct-acting antiviral agents (DAAs)[3,4]. 

HCV is a single-stranded positive RNA enveloped 
virus that belongs to the family Flaviviridae. The viral 
RNA is 9.6 kb long and encodes a large polyprotein 
precursor of approximately 3000 amino acid residues. 
HCV polyprotein is proteolytically processed by cellular 
and viral proteases into structural (core, E1, and 
E2) and nonstructural (p7, NS2, NS3, NS4A, NS4B, 
NS5A and NS5B) proteins[5]. The majority of host-
virus interactions are beneficial for the virus, including 
HCV[6]. Recently, a group of intracellular proteins/
peptides that specifically evolved to interfere with HCV 
was identified. These proteins/peptides are collectively 
called host restriction factors[7,8]. Host restriction factors 
affect almost all stages of the HCV life cycle, including 
viral entry, replication, assembly and secretion. 
However, the involvement of these host restriction 
factors in the regulation of the HCV life cycle has not 
been fully elucidated. A better understanding of the 
interactions between HCV and host restriction factors 
will help to facilitate the identification of potential novel 
molecular targets for anti-HCV therapies. 

IFNs belong to a family of cytokines that respond 
to external stimuli, such as viral infection[9]. IFNs 
activate the JAK-STAT signal amplification cascade and 
induce expression of a number of interferon stimulated 
genes (ISGs), including double-stranded RNA-depen-
dent protein kinase R (PKR)[10], 2’-5’-oligoadenylate 
synthetase (OAS)[11], myxovirus resistance 1 (MxA)[12], 
and interferon-induced protein 56 (IFI-56K)[13]. However, 
for most ISGs, little is known regarding their specific 
targets or their modes of action. 

The development of selectable subgenomic RNAs 
(replicons)[14], cell culture infection systems[15] and 
animal models has enabled the identification of ISGs 
responsible for suppressing HCV replication and their 
molecular mechanisms (Table 1). One strategy from 
Metz and coworkers involved identifying candidate 
genes up-regulated by IFNs in the HCV replicon 
system using cDNA microarray technology[16]. Next, 
they devised an siRNA-based rescue assay by 
individually knocking down each candidate gene in 
IFN-treated cells and screening for the subsequent 
restoration of HCV replication. Finally, overexpression 
of newly identified HCV restriction factors confirmed 
their antiviral activity[16]. In contrast to this RNA 
interference (RNAi)-based “loss of function” assay, 
“gain of function” studies can also be designed using 
an overexpression screening approach[17,18].

RESTRICTION FACTORS IN HCV ENTRY
Some restriction factors have been shown to inhibit 
HCV entry, including interferon-induced transmembrane 
protein 1 (IFITM1)[19], ficolin-2[20] and ezrin-moesin-
radixin (EMR) protein[21]. HCV E1 and E2 are viral 

envelope glycoproteins that mediate membrane fusion 
during virus uptake into hepatocytes[22]. HCV enters 
hepatocytes through a multi-step process that employs 
numerous host factors. Glycosaminoglycans[23,24] and 
low-density lipoprotein receptor (LDLR)[25] are thought 
to facilitate initial attachment, followed by interactions 
with CD81[26], scavenger receptor class B type 1 
(SRBI)[27], the tight junction proteins claudin-1[28] and 
occludin[29], EGFR[30], the cholesterol uptake receptor 
Niemann-Pick C1-like 1[31], transferrin receptor 1[32] 
and the cell-death-inducing DFFA-like effector b 
(CIDEB)[33].

The IFITM family proteins, including IFITM, 
IFITM2 and IFITM3, have recently been shown to 
inhibit a number of viruses, including influenza A 
virus, SARS corona virus, West Nile virus and human 
immunodeficiency virus (HIV)[34-36]. IFITM1 was 
identified as a potential anti-HCV effector through a 
high-throughput genomics screen of ISGs, indicating 
a link between IFITM1 and its antiviral effects[37]. 
A previous study showed that IFITM1 restricts 
HCV replication, although the mechanism remains 
unclear[38]. A recent study defined IFITM1 as a hepatic 
tight junction protein and an ISG with activity against 
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Table 1  Summary of host restriction factors for hepatitis C 
virus

Host restriction factor HCV life cycle 
step

IFN induceble 
or not

Ref.

IFITM1 Entry Y [19] 
IFITM1 Replication Y [38]
Ficolin-2 Entry N [20]
EMR Entry N [21]
Moesin Replication N [21]
TRIM14 Replication Y [16]
NOS2 Replication Y [16]
IFITM3 Replication Y [16]
ISG56 Replication Y [38]
Viperin Replication Y [17,58,59]
CIDEB Replication N [33,63]
Xrn1 Replication N [66-70]
Xrn2 Replication N [67,68]
APOBEC3G Replication N [76,77]
Sac1 Replication N [83,84]
ACBD3 Replication N [91]
SOCS3 Replication N [97]
MSR1 Replication N [103]
BST-2 Particle 

production and 
release 

Y [125-127]

PKD Secretion and 
release 

N [132]

YB-1 Particle 
production

N [137,138]

HCV: Hepatitis C virus; IFN: Interferon; IFITM1: Interferon-induced 
transmembrane protein 1; EMR: Ezrin-moesin-radixin; TRIM14: Tripartite 
motif containing 14; NOS2: Nitric oxide synthase 2; IFITM3: Interferon-
induced transmembrane protein 3; CIDEB: Cell-death-inducing DFFA-like 
effector b; APOBEC3G: Apolipoprotein B messenger RNA-editing enzyme 
catalytic polypeptide-like 3G; ACBD3: Acyl-coenzyme A binding domain 
containing protein 3; SOCS3: Suppressor of cytokine signaling 3; BST-2: 
Bone marrow stromal cell antigen 2; PKD: Protein kinase D; YB-1: Y-box-
binding protein 1. 



HCV entry. IFITM1 can disrupt the coordination of HCV 
coreceptor interactions, including that of CD81 and 
occludin, to suppress viral entry[19].

Ficolin-2 (L-ficolin/p35) is a lectin-complement 
system activator that recognizes surface carbohydrates 
of microorganisms, and it plays an important role in 
innate immunity[39,40]. Ficolin-2 can specifically bind to 
N-glycans of the HCV envelope glycoproteins E1 and 
E2, which leads to activation of the lectin-complement 
pathway[41]. Recently, ficolin-2 was identified as a 
new HCV entry restriction factor regardless of the 
viral genotype[20]. Ficolin-2 blocks the attachment of 
HCV cell entry by interfering with HCVcc binding to 
the LDL and SRBI receptors and also weakly to the 
CD81 receptor. The C-terminal fibrinogen domain of 
ficolin-2 is the critical binding region of HCV-E1-E2. 
Ficolin-2 appears to bind to the HCV envelope surface 
glycoproteins E1 and E2 and inhibits HCV entry by 
blocking the interactions between HCV and LDLR, 
SR-B1, and CD81[20].

The ezrin-moesin-radixin (EMR) family includes 
closely related cytoskeletal regulatory proteins that 
regulate retroviral infection by modulating stable 
microtubule formation[42,43]. Chronic HCV infection-
induced expression of moesin and radixin, but not 
ezrin, was found to be significantly decreased in 
Huh7.5 cells and liver biopsies from patients. This 
decrease in moesin and radixin was associated with 
an increase in stable microtubule formation. The EMR 
family differentially modulates HCV infection. CD81 
engagement by HCV E2 induces spleen tyrosine kinase 
(SYK) phosphorylation[44]. SYK induces phosphorylation 
of ezrin/radixin and mostly likely modulates post-entry 
HCV trafficking towards the endoplasmic reticulum 
(ER). Only moesin plays a role in HCV RNA replication 
in the Con1 HCV replicon system[21].

RESTRICTION FACTORS IN HCV 
REPLICATION
After successful binding to a target cell, HCV 
penetrates the cell membrane and hijacks many host 
factors for the next step of its lifecycle. Although the 
HCV viral positive-strand RNA is translated on the 
endoplasmic reticulum, its RNA genome replicates 
within a ribonucleoprotein complex on ER-derived 
membranous structures termed the “membranous 
web”[45-47]. It is thought that the membranous structure 
is enriched in cholesterol[48] and unsaturated fatty 
acids[49]. NS3, NS4A, NS4B, NS5A and NS5B form 
the replicase complex, which is essential for viral RNA 
replication[14]. Here, we will summarize a series of host 
restriction factors suppressing the replication of HCV, 
such as tripartite motif containing 14 (TRIM14), nitric 
oxide synthase 2 (NOS2), IFITM3, ISG56, viperin, 
CIDEB, Xrn1, Xrn2, apolipoprotein B mRNA-editing 
enzyme catalytic polypeptide-like 3G (APOBEC3G), 
Sac1, acyl-coenzyme A binding domain containing 

protein 3 (ACBD3), suppressor of cytokine signaling 3 
(SOCS3), and class A scavenger receptor 1 (MSR1).

TRIM14, NOS2 and IFITM3 were identified as 
novel IFN-α and IFN-γ stimulated genes contributing 
to the suppression of HCV replication through an RNA 
interference (RNAi)-based “gain of function” screen[16]. 
Overexpression of each gene inhibited viral replication, 
whereas this inhibition was less efficient than that 
of IFN, indicating the IFN-induced antiviral effects 
against HCV are caused by the combined action of 
multiple ISGs. Raychoudhuri et al[38] recently showed 
that ISG56 (also known as IFIT1), which is induced in 
response to type Ⅰ IFNs, also serves to restrict HCV 
infection. It was previously implicated in the antiviral 
action of IFNs against West Nile virus and LCMV[50], and 
it inhibits human HPV DNA replication by binding to 
the viral protein E1[51]. Transient expression of ISG56 
suppresses subgenomic HCV RNA replication, whereas 
knockdown of ISG56 enhances HCV RNA replication[38]. 

Viperin is an evolutionarily conserved types Ⅰ and Ⅱ 
ISG[52]. Previous studies have suggested that viperin, 
in combination with other antiviral ISGs, has antiviral 
effects against HCV in vitro[53,54] and many other 
viruses, including human cytomegalovirus (HCMV)[55], 
yellow fever virus[56], influenza, alphaviruses, HIV 
and dengue[57]. Viperin localizes to both lipid droplets 
(LDs) and the ER, and the localization of viperin 
to LDs via its N-terminal amphipathic α-helix may 
reflect the mechanism that viperin uses to limit HCV 
replication[58]. Recent studies have found that viperin 
exerts its anti-HCV effect via its C-terminus. Viperin 
suppresses replication of HCV in both replicon and 
HCVcc systems, and it interacts with HCV NS5A via its 
C-terminal region at the LDs interface and within the 
HCV replication complex[17]. Moreover, viperin inhibits 
HCV replication, possibly through binding to VAP-A via 
its C-terminal region and interfering with its interaction 
with HCV NS5A[59]. 

The cell death-inducing DFFA-like effector (CIDE) 
family of proteins, including CIDEA, CIDEB, and 
CIDEC/fat-specific protein 27, were initially identified 
based on their homology to the N-terminal domain of 
DNA fragmentation factors, and they were implicated 
in the induction of apoptosis[60]. Of these three 
members, CIDEB is expressed in liver tissue and 
regulates hepatic lipid homeostasis[61]. A potential 
interaction of CIDEB with the HCV protein NS2 was 
identified by a yeast-two hybrid assay[62]. Recently, 
CIDEB was suggested to be an essential cofactor in a 
late step of HCV entry, and it may facilitate membrane 
fusion between HCV and endosomes[33]. By contrast, 
Singaravelu and colleagues recently demonstrated that 
CIDEB can act as an anti-HCV host factor against HCV 
replication. They showed that HCV activates CIDEB 
expression in a human serum differentiated hepatoma 
cell line. CIDEB overexpression inhibits HCV replication, 
whereas siRNA-mediated knockdown of CIDEB 
expression promotes HCV replication and secretion 
of viral protein. Furthermore, CIDEB inhibits HCV 
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ARFGAP1 (the GTPase-activating protein for ARF1) to 
remove the COP-I cargo Sac1 from the HCV replication 
area to maintain a PI4P-enriched microenvironment in 
favor of HCV replication[84]. 

ACBD3, also known as GCP60 and PAP7, is a 
highly conserved Golgi protein involved in several 
signaling pathways and cellular regulation[85]. Recent 
work has demonstrated that ACBD3 functions as a 
novel interaction partner of PI4KB to regulate the 
replication of picornaviruses through a different mode 
of action, including members of the Enteroviruses 
(poliovirus, coxsackieviruses and human rhinoviruses) 
and Kobuviruses (Aichi virus)[86-90]. Moreover, ACBD3 
exhibits a genotype-dependent antiviral role in HCV 
replication. Overexpression of GFP-ACBD3 was found 
to inhibit HCV replication, while knockdown of ACBD3 
by siRNA clearly enhanced the core protein level 
in HCV-infected Huh7.5.1 cells. Furthermore, HCV 
NS5A co-localized with ACBD3, and NS5A from OR6 
cells (GT1b) had higher binding affinity with ACBD3 
than that from JFH1-infected Huh7.5.1 cells (GT2a). 
Moreover, NS5A competed with PI4KB for binding 
to ACBD3, and the colocalization efficiency between 
PI4KB and PI4P in OR6 cells (GT1b) was higher than 
that in JFH1-infected Huh7.5.1 cells (GT2a)[91].

SOCS3 is a member of the SOCS (also known 
as JAB or SSI) family, and it acts in a negative 
feedback loop to regulate inflammatory responses 
and inactivate the JAK/STAT pathway. SOCS3 
abolishes STAT3 phosphorylation and inhibits phospho-
STAT1 expression, which impairs the IFN defense 
pathway[92,93]. Several groups have reported a role 
for SOCS3 during HCV infection. Among patients 
with chronic HCV infection, SOCS3 expression is 
significantly higher in patients nonresponsive to IFN 
treatment than in responders[93-95]. Bode et al[96] 
found that the HCV core protein can induce SOCS3 
expression and inhibit phospho-STAT1 expression 
to block the IFN-induced formation of ISGF3 in cell 
lines. Shao et al[97] demonstrated that SOCS3 exhibits 
antiviral effects, downregulating HCV replication in an 
mTOR-dependent manner. SOCS3 overexpression in 
OR6 cells and JFH1-infected Huh7.5.1 cells suppresses 
HCV core protein levels and HCV replication despite 
the SOCS3-related inhibition of classical type Ⅰ IFN 
signaling. Moreover, knockdown of SOCS3 enhances 
HCV protein and RNA levels. Furthermore, SOCS3 also 
downregulates mTOR expression, and inhibition of 
mTOR could reverse the inhibitory effects of SOCS3 on 
HCV replication[97]. 

MSR1, also known as SCARA1, SR-AI, or CD204, 
is a macrophage-specific trimeric integral mem-
brane glycoprotein that has been implicated in 
many macrophage-associated physiological and 
pathological processes, including Alzheimer’s disease, 
atherosclerosis and host defense. MSR1 can mediate 
the endocytosis of a range of ligands, such as 
acetylated LDL, bacterial cell wall constituents, and 
both ssRNA and dsRNA[98-100]. Recently, it was shown 

replication independently of its ability to regulate lipid 
metabolism. Interestingly, CIDEB-induced cell death 
and HCV inhibition occur in a caspase-independent 
manner[63]. 

The cytoplasmic 5’-3’ exoribonuclease Xrn1 plays 
an important role in the 5’ exonucleolytic mRNA 
decay pathway, whereas the nuclear exoribonuclease 
Xrn2 possesses similar 5’ exoribonuclease activity 
and regulates RNA polymerase Ⅱ transcription 
termination[64,65]. Recent studies have demonstrated 
that these two exoribonucleases are both responsible 
for the degradation of HCV RNA, against which 
miR-122 provides protection[66-69]. Xrn1 is a host 
restriction factor for all HCV strains tested, including 
JFH1, H77S.3, H77D and HJ3-5 viruses, but Xrn2 
restricts the replication of only JFH1 and H77D[67]. 
Depletion of either Xrn1 or Xrn2 affects HCV RNA 
stability. Xrn1 depletion causes significant decay of 
JFH1 and HJ3-5 virus RNA, whereas Xrn2 depletion 
has a relatively modest effect on JFH RNA decay and 
has no effect on HJ3-5 RNA decay[66-68]. However, 
the 5’ UTR IRES element for translation of HCV and 
bovine viral diarrhea virus represses the cellular 
Xrn1 exoribonuclease. Repression of Xrn1 activity 
results in general repression of cellular mRNA decay 
and thus dysregulation of cellular gene expression, 
which may promote viral-induced cytopathology and 
pathogenesis[70].  

Human APOBEC3G (hA3G) belongs to the APOBEC 
superfamily. Substantial evidence indicates that hA3G 
is a cellular restriction factor for a group of viruses, 
including HIV-1, hepatitis B virus, T-cell leukemia 
virus type 1, and parvoviruses[71-75]. Indeed, hA3G is 
also a host innate immunity factor for HCV infection. 
Introduction of external hA3G into HCV-infected Huh7.5 
cells inhibits HCV replication, whereas treatment of 
HCV-infected Huh7.5 cells with specific hA3G siRNA 
enhances HCV replication. Stabilization of hA3G 
with RN-5 or IMB-26, two known hA3G stabilizers, 
effectively suppresses HCV replication[76]. The antiviral 
molecular mechanism of hA3G for HCV occurs through 
the direct binding of its C-terminus to the C-terminus 
of the HCV non-structural protein NS3, which leads to 
a decrease of NS3 helicase activity and inhibition of 
HCV replication; this differs from HIV-1[77]. 

Sac1 is an evolutionarily conserved phospha-
tidylinositol phosphatase that dephosphorylates 
phosphatidylinositol-4-phosphate [PtdIns(4)P] and 
plays important roles at endoplasmic reticulum 
(ER)/plasma membrane contact sites and in Golgi 
localization, retention and trafficking[78-80]. Sac1 is an 
integral membrane protein and cycles continuously 
between the Golgi and ER via the canonical trafficking 
mechanisms involving coat protein complex Ⅰ (COP-I) 
and COP-Ⅱ[81,82]. Recent studies have uncovered 
the anti-HCV role of Sac1. Overexpression of Sac1 
inhibits HCV replication[83], whereas knockdown of 
Sac1 expression by siRNA significantly enhances HCV 
replication[84]. HCV NS5A hijacks the cellular factor 
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that MSR1 contributes to antiviral responses evoked 
by extracellular dsRNA[98]. MSR1-deficient mice exhibit 
a marked decrease in mLDL uptake and increased 
susceptibility to infection by Listeria monocytogenes or 
herpes simplex virus type-1[101]. MSR1 is required for 
induction of the Toll-like receptor 3 (TLR3)-mediated 
signaling that triggers pro-inflammatory responses 
in HCMV-exposed monocytes[102]. MSR1 is also an 
essential component of TLR3 sensing that exerts an 
antiviral role in HCV infection. Knockdown of MSR1 
blocks TLR3 sensing of HCV in infected cells, leading 
to increased cellular permissiveness to HCV infection. 
MSR1 mediates the establishment of a localized 
antiviral state in neighboring uninfected hepatocytes 
and restricts viral replication in cell culture. As a result, 
MSR1 limits the effect of HCV proteins that disrupt IFN 
responses in infected cells, restricting the spread of 
HCV in the human liver[103]. 

RESTRICTION FACTORS IN HCV 
PROPAGATION
The late stage of the HCV life cycle includes virus 
assembly, production and secretion. The HCV viral 
replication complex is assembled close to cytosolic 
lipid droplets (cLDs), and all viral proteins participate 
in this process. The core protein localizes around the 
cLDs, where it recruits the viral replication complex 
by core-NSA interaction. NS2 is also a key player of 
viral assembly that engages in crosstalk with both 
structural and nonstructural proteins[104]. HCV particle 
production and secretion are tightly linked to cellular 
very low density lipoprotein components known as 
lipoviral particles (LVPs)[105]. LVPs consist of viral RNA, 
the capsid protein, envelop glycoproteins, cholesterol, 
triacylglycerol, apolipoprotein E (ApoE), ApoA1, 
ApoC1, ApoB, and microsomal triglyceride transfer 
protein[106-112]. Although the HCV virion secretory 
pathway has not been completely characterized, 
it is believed to occur through the Golgi network, 
where HCV E1 and E2 glycoproteins undergo 
modifications[113,114]. Multiple host factors are involved 
and hijacked by HCV to promote HCV assembly, 
production and secretion; few cellular factors have 
been found to restrict this process, including bone 
marrow stromal cell antigen 2 (BST-2), protein kinase 
D (PKD), Y-box-binding protein 1 (YB-1) and its 
partners.

Bone marrow stromal cell antigen 2 (BST-2, also 
known as tetherin, CD317, or HM1.24) is an IFN-
induced glycosylated protein that is mainly localized 
to the cell membrane. It has recently been identified 
as a host restriction factor that inhibits the production 
and release of a wide range of enveloped viruses, 
including at least six virus families, Filoviridae (Ebola 
and Marburg viruses)[115,116], retroviruses (HIV-1, 
HIV-2, lentiviruses, and simian immunodeficiency 
virus or SIV)[117,118], Herpesviridae (Kaposi’s sarcoma-

associated herpesvirus)[119], Arenaviridae (Lassa 
fever virus)[116], Rabdoviridae (vesicular stomatitis 
virus)[120,121], and Paramyxoviridae (Sendai virus 
and Nipah virus)[122]. BST-2 tethers or traps budding 
virions on the cell surface to block their release, and 
they are subsequently endocytosed and degraded 
in lysosomes[123,124]. As for HCV, it has also been 
demonstrated that BST-2 restricts its production and 
release in human hepatocytes, including Huh7.5.1 
cells, primary human hepatocytes, and HepG2 
cells[125-127]. Amet et al[125] found that overexpression 
of BST-2 by stimulation with all three types of IFNs 
significantly suppresses HCV production, whereas 
knockdown of endogenous BST-2 markedly enhances 
HCV production. Knockdown of BST-2 expression 
attenuates IFN-mediated anti-HCV activity, indicating 
that BST-2 is directly involved in IFN-mediated inhibition 
of HCV production[125]. Another group showed that HCV 
production is inhibited by BST-2 overexpression in a 
concentration-dependent manner[127].

PKD is a serine/threonine kinase including three 
isoforms, PKD1, PKD2, and PKD3. PKD is implicated 
in multiple intracellular processes and signaling 
pathways, such as vesicle trafficking, cell motility, 
cell adhesion and survival responses[128]. It regulates 
the trafficking of secretory vesicles by promoting the 
fission of these vesicles from the trans-Golgi network 
to the plasma membrane[129]. Recent work has shown 
that ceramide transfer protein (CERT) and oxysterol 
binding protein (OSBP), which are both phosphorylated 
by Golgi-associated PKD, play crucial roles in Golgi lipid 
trafficking and biogenesis[130,131]. HCV maturation and 
secretion require sphingolipid biosynthesis, which also 
occurs in the Golgi and is affected by CERT and OSBP. 
Amako et al[132] found that PKD negatively regulates 
HCV secretion and/or release through the attenuation 
of CERT and OSBP function by phosphorylation 
inhibition. HCV infection downregulates PKD activation 
and subsequently impairs the secretory capacity 
of the host cell. PKD inhibition or downregulation 
promotes HCV secretion, whereas overexpression of 
a constitutively active form of PKD suppresses HCV 
secretion. Moreover, the suppressive effect of PKD on 
HCV secretion is subverted by the overexpression of 
nonphosphorylatable serine mutants of CERT (S132A) 
and OSBP (S240A). These observations indicate that 
the restrictive role of PKD in HCV secretion and/or 
release occurs through the Golgi network (Amako et 
al[132], 2011).

YB-1 belongs to a DNA/RNA-binding protein family, 
and it contains an evolutionary conserved cold-shock 
domain[133]. It was originally identified as a transcription 
factor that specifically binds to the Y-box (an inverted 
CCAAT box) in the promoter region of MHC class Ⅱ[134]. 
Subsequently, it was found to be a major component 
of a ribonucleoprotein complex in the cytoplasm of 
mammalian cells and to participate in various cellular 
processes, including DNA repair, RNA transcription 
and splicing, mRNA packaging, exon skipping, drug 
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resistance and cancer progression[135,136]. Using a 
powerful TAP approach and mass spectrometry, 
YB-1 was identified as a novel partner of NS3/4A 
and HCV genomic RNA. Importantly, knockdown of 
YB-1 expression impairs HCV RNA replication and 
unexpectedly stimulates HCV virus production and/
or release. Moreover, HCV infection induces YB-1 
redistribution to the surface of core-containing lipid 
droplets. These data show that YB-1 interacts with 
HCV NS3/4A, and it is involved in HCV replication 
and restricts HCV viral particle production[137]. 
Recently, the same group demonstrated that the YB-1 
ribonucleoprotein complex negatively regulates HCV 
virus production without affecting virus assembly in 
an NS3-dependent manner[138]. They identified 71 
YB-1-associated proteins using quantitative mass 
spectrometry. Among these candidates, they found 
a restrictive set of YB-1 partners, C1QBP, LARP-1, 
and IGF2BP2, which redistribute to the surface of 
lipid droplets upon HCV infection and also restrain 
late steps of HCV particle production. Moreover, the 
NS3 Q221L mutant virus partially restores YB-1-
complex-dependent negative regulation upon particle 
production[138]. 

CONCLUSION
HCV triggers a wide variety of cellular responses 
in different stages of its life cycle through intricate 
interactions between viral and host proteins. Here, 
we have briefly reviewed host restriction factors for 
HCV that have emerged in recent years (Table 1). 
Although great progress has been made in resolving 
the host restriction factors and HCV’s physical and 
functional networks, we have yet to understand 
how these factors protect hepatic cells from viral 
infection or how HCV possesses elaborate strategies 
to evade these restrictions. These intricate HCV 
restriction and counter-restriction mechanisms govern 
the ultimate outcome of HCV/cell infection. Powerful 
molecular virology tools and adequate experimental 
systems should be developed to further understand 
the molecular mechanisms underlying this delicate 
balance between restriction factors and HCV. A better 
understanding of this regulation may shed lights on 
more effective therapeutic approaches and may help 
to exploit the inhibitory properties of restriction factors 
to develop novel anti-HCV drugs and vaccines.  
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