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Abstract
Hepatic steatosis defined as lipid accumulation in 

REVIEW
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hepatocytes is very frequently found in adults and 
obese adolescents in the Western World. Etiologically, 
obesity and associated insulin resistance or excess 
alcohol intake are the most frequent causes of hepatic 
steatosis. However, steatosis also often occurs with 
chronic hepatitis C virus (HCV) infection and is also 
found in rare but potentially life-threatening liver 
diseases of pregnancy. Clinical significance and 
outcome of hepatic triglyceride accumulation are 
highly dependent on etiology and histological pattern 
of steatosis. This review summarizes current concepts 
of pathophysiology of common causes of hepatic 
steatosis, including non-alcoholic fatty liver disease 
(NAFLD), alcoholic fatty liver disease, chronic HCV 
infections, drug-induced forms of hepatic steatosis, 
and acute fatty liver of pregnancy. Regarding the 
pathophysiology of NAFLD, this work focuses on the 
close correlation between insulin resistance and hepatic 
triglyceride accumulation, highlighting the potential 
harmful effects of systemic insulin resistance on hepatic 
metabolism of fatty acids on the one side and the role 
of lipid intermediates on insulin signalling on the other 
side. Current studies on lipid droplet morphogenesis 
have identified novel candidate proteins and enzymes 
in NAFLD.
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Core tip: Fatty liver disease is a highly prevalent 
condition in the Western World. This article summarizes 
the most frequent causes and states of hepatic 
steatosis, including non-alcoholic fatty liver disease 
(NAFLD), alcoholic fatty liver, drug-induced forms, 
hepatitis C virus infections, and acute fatty liver 
of pregnancy. Important pathophysiological and 
cellular aspects of various forms of fatty liver disease 
are reviewed as well as the clinically relevant close 
interaction between hepatic triglyceride accumulation 
and insulin resistance in NAFLD.
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INTRODUCTION
Hepatic steatosis is defined by the accumulation of 
triglycerides resulting in more than 5% of hepatocytes 
containing visible lipid droplets in either a micro- or 
macrovesicular pattern. Most frequently, steatosis 
is histologically assessed by using a classification 
that was originally suggested for grading of non-
alcoholic fatty liver disease (NAFLD) by Javor et 
al[1]: grade 0: < 5% hepatocytes involved; grade 1: 
5%-33% hepatocytes involved; grade 2: > 33%-66% 
hepatocytes involved, grade 3: > 66% hepatocytes 
involved. At the cellular level, steatosis is an imbalance 
of hepatic fatty acid uptake, lipogenesis, β-oxidation, 
and triglyceride export in very low density lipoprotein 
(VLDL) particles.

Fatty liver might be caused by several conditions, 
diseases, or drugs; however, obesity, insulin resistance, 
and dyslipidemia as well as excess alcohol intake are 
the most frequent causes of NAFLD or alcoholic fatty 
liver disease (AFLD). Beyond metabolic or alimentary 
causes, fatty liver can also be found in patients 
with hepatitis C virus (HCV) infection and rarely in 
pregnancy. Other rare causes of fatty liver disease 
are summarized in Table 1[2]. This review will focus on 
the most frequent and important causes of fatty liver 
disease. 

The natural course of fatty liver is strongly depen-
dent on etiology and comorbidities. For example, 
in NAFLD, 20%-30% of patients with steatosis will 
develop non-alcoholic steatohepatitis (NASH), which 
is associated with increased total and cardiovascular 
mortality[3]. NASH is complicated by liver cirrhosis in 
2%-5% of patients[2]. Co-occurrence of steatosis and 
chronic HCV infection has been found to be associated 
with poorer outcome when compared to patients 
without steatosis[4].

NAFLD 
NAFLD has become the most common cause of 
elevated liver enzymes in the Western World, affecting 
30%-40% of men and 15%-20% of women in 
the general population[5] and up to 70% of type 2 
diabetics[6]. It is now considered the hepatic manife-
station of the metabolic syndrome, which comprises a 
spectrum of metabolic disorders, including overweight 
or obesity, insulin resistance, dyslipidemia, and 
hypertension[7,8]. According to estimates, NAFLD 
will become the most frequent indication for liver 
transplantation by 2030[9]. Beyond excess mortality 
rate from advanced liver disease, NAFLD is associated 

with significantly increased cardiovascular risk, mostly 
due to associated disturbances in glucose and lipid 
metabolism[9].

Intracellular lipid accumulation in NAFLD results 
from an imbalance between hepatic fatty acid uptake, 
lipid synthesis, lipid oxidation, and export via VLDL 
particles. Several studies have stressed the importance 
of adipose tissue lipolysis in the development of 
hepatic steatosis. Increased total fat mass in obesity 
is associated with elevated whole body lipolysis[10,11] 
and excess fatty acid uptake into the liver. Further 
highlighting the role of adipose tissue in triglyceride 
metabolism, Nye and colleagues[12] found that glycerol 
3-phosphate, which is essential for triglyceride 
synthesis, primarily originates from glyceroneogenesis 
and only to a lesser extent from glycolysis. Accordingly, 
mice lacking fatty acid transporter protein 5 (FATP 
5), which is the primary fatty acid transporter in the 
liver, are protected from diet-induced steatosis[13]. 
Underlining the importance of the adipose tissue in 
development of NAFLD, lipodystrophic patients who 
lack visceral and peripheral fat accumulation due 
to leptin deficiency display severe hepatic steatosis 
and insulin resistance[14,15]. Similarly, subjects with 
mutations of perilipin-1 - an inhibitor of adipose 
triglyceride lipase (ATGL) and stabilizer of lipid droplets 
in adipose tissue - have also profound hepatic steatosis 
and insulin resistance[16]. 

In addition to increased influx of fatty acids and 
their esterification, de novo lipogenesis (DNL), which 
from a quantitative point of view only plays a minor 
role in hepatic lipid accumulation, is also increased 
in NAFLD. In affected patients, DNL is significantly 
increased when compared to healthy controls[17-19]. 
Increased levels of ligand-activated transcription 
factor α (LXR α) and sterol regulating element binding 
protein 1c (SREBP-1c) have been described as major 
contributors to increased DNL in NAFLD[20,21]. Further 
highlighting the close connection between glucose 
and fatty acid metabolism, high glucose levels induce 
pyruvate production via stimulation of carbohydrate 
response element binding protein (ChREBP). Pyruvate 
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Table 1  Overview on potential causes of fatty liver (adapted 
from[2,121,122])

Etiologies of fatty liver disease

Frequent causes:
   Non-alcoholic fatty liver disease
   Alcoholic fatty liver disease
   Chronic hepatitis C virus infection
   Drug-induced steatosis
Less common or rare causes:
   Inborn errors of metabolism (Wilson disease, abetalipoproteinemia, 
   tyrosinaemia, hypobetalipoproteinemia)
   Lipodystrophy (congenital or acquired)
   Total parenteral nutrition
   Surgical procedures (e.g., biliopancreatic diversion extensive small 
   bowel resection)



is the principle source of acetyl-CoA in fatty acid 
synthesis[22]. Very recently, Perry and colleagues[23] 
found that white adipose tissue-derived hepatic 
acetyl-CoA is the critical determinant of insulin-
induced suppression of hepatic glucose production. By 
decreasing oxidation of fatty acids on the one side and 
inducing DNL on the other side, fructose consumption 
is a well-known highly effective driver of hepatic 
steatosis[24,25]. 

DNL is closely related to β-oxidation via SREBP-
1c. In addition to induction of lipogenic enzymes, 
SREBP-1c activates acetyl-CoA carboxylase 2 (ACC2), 
resulting in increased levels of malonyl-CoA, which 
decreases β-oxidation via diminishing shuttling of fatty 
acids into the mitochondrion by inhibiting carnitine 
palmitoyl transferase 1 (CPT-1). AMP activated protein 
kinase (AMPK) is also a key regulator of intracellular 
lipid metabolism. By sensing cellular AMP levels, 
activation of AMPK stimulates fatty acid β-oxidation 
and inhibits ATP-consuming processes, such as DNL[26]. 
Mitochondrial dysfunction and resulting impaired fatty 
acid oxidation have been suggested to significantly 
contribute to the pathogenesis of NAFLD[27,28]. 

On a cellular level, triglycerides are stored in lipid 
droplets (LD) that supply fatty acids for oxidation and 
VLDL secretion. As described in detail in a very recent 
review by Mashek and colleagues[29], LDs are formed 
within the lipid bilayer of the endoplasmic reticulum (ER) 
and subsequently budded. The latter process requires 
action of certain fat storage-inducible transmembrane 
proteins as well as seipin[30]. Growth of LDs is 
dependent on triglyceride and phospholipid synthetic 
enzymes that are present on the LD surface. LDs are 
catabolized via three different mechanisms: (1) ATGL/
patatin-like phospholipase domain-containing protein 
2 (PNPLA2) catalyzes the first step of triglyceride 
hydrolysis and partitions hydrolyzed fatty acids to 
β-oxidation[31]. Activity of ATGL is strongly influenced by 
LD-associated proteins, such as perilipins 2 and 5[32]. 
Sirtuin 1 (SIRT1) has been shown to regulate ATGL 
activity, probably via peroxisome proliferator-activated 
receptor α (PPARα)[33]; (2) LDs are degraded by 
lysosomal lipases, a process that is determined by the 
small guanosine triphosphatase RAB7[34,35]; and (3) LD 
catabolism is mediated by carboxylesterase 3 and cell 
death inducing DFF45-like effector B (CIDEB), which 
are involved in repacking of cytosolic LDs in the ER 
leading to synthesis of VLDL particles[36,37]. Increased 
expression of LD associated proteins, such as 17 β 
hydroxysteroid dehydrogenase 13 and perilipins 1, 2, 
3, and 5, have been reported in NAFLD[38-42]. PNPLA3 
polymorphisms have been identified as the strongest 
genetic factor associated with NAFLD[43].

Apolipoprotein A5 is a protein with extra- and 
intracellular effects on lipid metabolism[44]. In obese 
subjects undergoing bariatric surgery, improvements 
of hepatic steatosis were associated with decreased 
hepatic apoA5 expression. Direct involvement of 
apolipoprotein A5 in hepatic triglyceride accumulation 

has been shown in a hepatic cell culture model[45]. 
In adipocytes, apolipoprotein A5 has been found to 
surround lipid droplets[46], suggesting a potential role of 
apolipoprotein A5 in hepatic lipid droplet metabolism. 

Stressing the metabolic consequences of steatosis, 
hepatic triglyceride accumulation is associated with 
increased gluconeogenesis, decreased glycogen 
synthesis, and inhibition of insulin signalling[47,48] as 
well as alterations in hepatokine production[49]. Lipid 
intermediates of long-chain fatty acids (LCAF) have 
a crucial role in hepatic insulin resistance in NAFLD. 
In hepatocytes, LCAF are esterified with glycerol-3-
phosphate to form monoacylglycerol, diacylglycerol 
(DAG), and triacylglycerol[9]. Hepatic DAG content 
has been positively correlated with inhibition of insulin 
signalling in mice and humans with NAFLD[48,50,51]. 
Mechanistically, DAG induces increased translocation of 
protein kinase C ε to the plasma membrane, where it 
binds and inhibits the activity of the intracellular kinase 
domain of the insulin receptor, resulting in diminished 
activation of the canonical insulin pathway[52,53]. As a 
consequence, activation of glycogen synthesis and 
inhibition of gluconeogenesis is reduced[48]. Unes-
terified lipid intermediates also exert proinflammatory 
properties by inducing ER stress, which leads to the 
activation of c-janus N-terminal kinases and nuclear 
factor kappa B, resulting in decreased phosphorylation 
of insulin receptor substrate-2 (IRS-2)[9,54,55]. Accu-
mulation of ceramides in the plasma membrane 
have also been found to alleviate insulin signalling[56]. 
Pathophysiological aspects of NAFLD are summarized 
in Figure 1.

AFLD 
Chronic alcohol exposure is another frequent cause of 
fatty liver disease. More than 90% of alcoholics have 
fatty liver disease that will potentially resolve with 
abstinence from alcohol[57-59]. Chronic consumption of 
more than 30 g of pure alcohol was demonstrated to 
significantly increase the risk of chronic liver disease[60]. 
Susceptibility factors included female sex, obesity, 
and cigarette smoking as well as coexistence of 
other hepatic disorders, such as hepatitis B or C virus 
infection, NAFLD, or hemochromatosis[61]. 

Alcohol is metabolized via two main pathways in 
the liver, the oxidative pathway, which is mediated by 
the alcohol dehydrogenase (ADH) and acetaldehyde 
dehydrogenase (ALDH), and the non-oxidative cyto-
chrome P450 2E1 pathway[62-64].

Ethanol is converted by the cytosolic enzyme ADH 
to acetaldehyde and further metabolized to acetate 
by the mitochondrial enzyme ALDH. The reactions 
are both coupled to the reduction of nicotinamide 
adenine dinucleotide (NAD) to nicotinamide adenine 
dinucleotide-hydrogen (NADH)[65,66].

Excess NADH has deleterious effects on gluconeo-
genesis and fatty acid synthesis[67] Furthermore, 
acetaldehyde was found to induce lipogenesis by 
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the beneficial role of ALDH2 on hepatic steatosis and 
inflammation might be mediated through regulation of 
autophagy. 

Ceramide-induced inhibition of AMPK and impaired 
hepatic adiponectin effects might further contri-
bute to increased fatty acid synthesis and reduced 
fatty acid oxidation[78-80]. Besides β-oxidation and 
lipogenesis, VLDL export is also affected by alcohol: 
triglyceride export is impaired due to suppression of 
phosphatidylcholine, acetaldehyde-induced inhibition 
of microtubular assembly, and reduced apolipoprotein 
synthesis[81]. The role of perilipin 2, which is a major 
LD protein, was recently demonstrated in perilipin-
deficient mice that are protected from ethanol-
induced hepatic steatosis[82]. Several studies suggest 
that lipin-1, which is critically involved in triglyceride 
synthesis, might have a significant role in ALD. 
Liver-specific deficiency of lipin 1 was associated 

increasing SREBP-1c expression[68]. Increased fatty 
acid synthesis leads to the accumulation of fatty acid 
intermediates, such as malonyl-CoA, which suppresses 
fatty acid transport into the mitochondria and their 
oxidation by CPT-1[69]. Alcohol mainly via its metabolite 
acetaldehyde further inhibits PPARα, which is the main 
transcription factor for genes involved in oxidation, 
transport, and export of fatty acids[70-74]. In PPARα 
deficient mice, chronic ethanol feeding was associated 
with progressive intrahepatic triglyceride accumu-
lation due to reduced β-oxidation and alterations 
in tricarboxylic acid cycle and the electron transfer 
chain[75]. In a mouse model, alcohol feeding resulted 
in dysfunction of ALDH2 and aldehyde accumulation. 
Pharmacological activation of ALDH2 reversed 
alcoholic steatosis in these mice, underlining the 
deleterious effects of accumulating metabolic products 
of alcohol[76]. Very recently, Guo et al[77] reported that 
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Figure 1  Pathophysiological aspects of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. Both increased uptake of fatty acids due to 
elevated whole body lipolysis in states of insulin resistance and enhanced fatty acid synthesis are key features of non-alcoholic fatty liver disease. Increased de novo 
lipogenesis results from enhanced activation of LXR, SREBP-1c, and ChREBP in insulin resistance. SREBP-induced activation of ACC2 leads to accumulation of 
malonyl-CoA, which in turn inhibits CPT-1 activity, resulting in reduced β-oxidation. In the liver, triglycerides are stored in LDs that are formed within the lipid bilayer of 
the ER. Stabilization and growth of LDs are dependent on transmembrane proteins, seipin, and triglyceride and phospholipid synthetic enzymes that are located on 
the LD surface. LDs are catabolized via ATGL-dependent hydrolysis and β-oxidation of fatty acids, lysosomal lipases, and carboxylesterase 3- and CIDEB- mediated 
repacking of cytosolic LDs in the ER, leading to synthesis of VLDL particle. Intermediates of long chain fatty acids (DAG) inhibit insulin signalling further, exacerbating 
hepatic insulin resistance by exerting proinflammatory effects and reducing activation of the insulin receptor. LXRα: Ligand-activated transcription factor α; SREBP1c: 
Sterol regulating element binding protein 1c; CPT-1: Carnitine palmitoyl transferase 1; LD: Lipid droplet; ATGL: Adipose triglyceride lipase; CIDEB: Cell death inducing 
DFFA like effector B; DAG: Diacylglycerol; IRS: Insulin receptor substrate; ER: Endoplasmic reticulum; ChREBP: Carbohydrate response element binding protein; 
LXR: Ligand-activated transcription factor; DNL: De novo lipogenesis; ACC2: Acetyl-CoA carboxylase 2; PNPLA2: Patatin-like phospholipase domain-containing 
protein 2; ROS: Reactive oxygen species.

Ress C et al . Pathophysiology of hepatic steatosis



with increased hepatic triglyceride and cholesterol 
accumulation and inflammation in ethanol fed mice[83]. 
SIRT1, which is downregulated in mice models of ALD, 
was found to affect hepatic steatosis, inflammation, 
and fibrosis via lipin-1[84].

ChRONIC hCV INFeCTION
Steatosis is also found in up to 80% of patients with 
chronic HCV infection[85]. Co-occurrence of steatosis and 
chronic HCV infection are associated with progression 
of liver disease and poor response in interferon-α based 
treatment[4,86-89]. Prevalence of steatosis in chronic 
HCV infection is double than that found in patients 
with hepatitis B virus infection, suggesting that co-
occurrence of NAFLD and HCV does not fully explain 
the high prevalence of steatosis in patients with chronic 
HCV infection[85,90]. Additionally, probability of steatosis 
is significantly higher in genotype 3 than in non-3 
genotype HCV infections, which argues in favor of viral 
induction of fatty liver in genotype 3 HCV infection[4]. 
Accordingly, fatty liver was found to be associated with 
HCV RNA levels in genotype 3a and body mass index in 
genotype 1 HCV infection[91]. Interestingly, infection of 
the immortalized hepatoma cell line HepG2 with HCV 
genotype 1b was associated with suppressor of cytokine 
signalling 3 mediated impairment of insulin signalling 
when compared to HCV genotype 2 infected cells[92]. 
All HCV genotypes, but genotype 3 to a higher extent, 
exert direct effects on hepatic lipid metabolism resulting 
in occurrence of large droplets in hepatocytes[85,93]. 
HCV makes use of VLDL assembly and secretion 
pathways in production of infectious virus. In virion 
morphogenesis, LDs are targeted by virus-encoded 
proteins. LDs have also been shown to influence the 
course of the infection. The role of LDs in HCV infection 
has recently been reviewed extensively by Filipe et 
al[93]. Increased intracellular triglyceride accumulation in 
HCV infection might be due to both direct viral effects 
and indirect effects resulting from accompanying insulin 
resistance[93-105]. Decreased β-oxidation, increased 
gluconeogenesis, and DNL are key features of steatosis 
in HCV patients. Recently, it was shown that HCV blocks 
phosphorylation of forkhead box protein O1 (FOXO1), 
resulting in enhanced gluconeogenesis and promotion 
of lipogenesis by increasing the levels of SREBP-1c and 
fatty acid synthase (FAS)[94,96,105]. In addition to reduced 
phosphorylation of FOXO1, increased expression 
of gluconeogenic enzymes phosphoenolpyruvate 
carboxykinase and glucose-6-phosphatase was 
found to be due to enhanced cyclic AMP responsive 
element-binding protein phosphorylation, linking HCV-
induced ER stress with increased hepatic glucose 
output[106]. Viral proteins were also found to stimulate 
transcription of key enzymes of gluconeogenesis 
and diacylglycerol acyltransferase-1, which catalyses 
the final step in triglyceride synthesis and affects LD 
formation. Resulting insulin resistance might further 

contribute to increased lipogenesis. However, the exact 
mechanisms have not been fully elucidated in this 
setting. Furthermore infection with genotype 3 HCV 
strains has been found to be associated with reduced 
levels of phosphatase and tensin homolog, which is a 
negative regulator of insulin/phosphoinositide 3-kinase 
signalling. Remarkably, interaction of HCV with DDX3, a 
DEAD box protein, led to phosphorylation of inhibitor k 
B kinase α (IKKα) and, as a consequence, the induction 
of SREBP-induced lipogenesis and LD formation[102]. 
Beyond quantitative effects, HCV infection was 
recently shown to alter hepatic metabolic zonation 
by redistributing FAS from perilobular to mid-zone of 
the lobule[104]. Beta-oxidation is also reduced in virus-
infected cells due to decreased expression of short-
chain acyl-CoA dehydrogenase and medium-chain 
acyl-CoA dehydrogenase. In vivo data suggested that 
PPARα expression is also decreased as a consequence 
of increased suppression by microRNA 27 (miR27) 
in chronic HCV infection[99]. In contrast, Tanaka and 
colleagues[100] reported from a mouse model that 
permanent PPARα activation plays an essential role 
in development of hepatic steatosis in chronic HCV 
infection. Remarkably, HCV infection may also directly 
affect VLDL secretion, resulting in intracellular lipid 
accumulation. Triglyceride content of VLDL particles 
have been shown to be lower in HCV infected 
patients[101]. In the same study, hepatic lipogenesis was 
significantly higher and cholesterol synthesis lower in 
patients with chronic HCV infection when compared to 
healthy controls[101]. Low cholesterol levels have been 
associated with genotype 3 infection and, in contrast 
to non-responders, successful HCV treatment was 
accompanied by normalization of cholesterol levels[107].

DRUg-INDUCeD hepATIC sTeATOsIs
Several drugs have been identified that may induce 
reversible intrahepatic triglyceride accumulation. 
These include antimicrobials, such as tetracycline, 
glucocorticoids, tamoxifen, chemotherapeutic agents, 
methotrexate, anti-arrhythmics such as amiodarone 
as well as antiepileptic valproic acid, several antiviral 
agents, lipid lowering mipomersen and lomitapide, 
and non-steroidal anti-inflammatory drugs such 
as acetylsalicylic acid[108]. Mechanistically, drug-
induced (e.g., valproic acid) diminished mitochondrial 
β-oxidation of fatty acids leads to excessive reactive 
oxygen species generation and depletion of ATP, 
commonly resulting in development of microvesicular 
steatosis. Other pathophysiological mechanisms 
include enhanced cellular uptake of fatty acid due to 
increased fatty acid translocase expression or increa-
sed DNL resulting from elevated expression levels of 
SREBP1c or decreased AMPK levels. In contrast to 
the microvesicular steatotic pattern, macrovesicular 
steatosis is usually considered benign and is often 
reversible. Detailed mechanisms and outcome have 
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recently been reviewed by Amacher et al[108] (Table 2). 

ACUTe FATTy LIVeR OF pRegNANCy
Acute fatty liver of pregnancy is a rare life-threatening 
disease in late pregnancy. It is characterized by micro-
vesicular pattern of hepatic steatosis[109]. Incidence 
was estimated as 5/100000 pregnancies in the United 
Kingdom[110]. Mechanistically, fatty liver is due to a 
defect in mitochondrial β-oxidation. In late pregnancy, 
when the woman is increasingly dependent on fat as 
an energy source, the hitherto compensated defect 
in fatty acid metabolism results in mitochondrial 
dysfunction[111,112]. Remarkably, risk of acute fatty liver 
of pregnancy (AFLP) is highly increased when the 
fetus is homozygous or compound heterozygous for 
a defect in fatty acid oxidation (FAO)[113,114]. Urgent 
termination of pregnancy usually leads to significant 
improvements or normalization of AFLP[115], suggesting 
a pathophysiological role of the placenta in this 
disease. Mitochondrial dysfunction due to a defect 
in placental FAO leads to oxidative stress and, in 
parallel, accumulation of circulating toxic fatty acid 
intermediates, such as arachidonic acid. The latter has 
been shown to induce damage, apoptosis, and lipid 
accumulation in hepatocytes[116].

FUTURe peRspeCTIVes
Although knowledge on pathophysiology of fatty 
liver disease has significantly improved in the past 
years, treatment options, especially of NAFLD, are 
still very limited. Several studies have suggested 
the beneficial effects of weight loss on the course of 
NAFLD. Pharmacologically, thiazolidinedione (glitazones) 
and antioxidative vitamin E are the most promising 
therapies today. Novel expectant concepts include 
activation of SIRT-1 (e.g., reservatrol), which was found 
to be beneficial in murine models of NAFLD by exerting 
insulin-sensitizing, anti-inflammatory, and antioxidative 
effects[117,118]. Very recently, a liver specific LXR inverse 

agonist significantly reduced hepatic steatosis by 
reducing de novo lipogenesis[119]. The effect of simtu-
zumab, which is a humanized antifibrotic monoclonal 
antibody against lysyl oxidase like molecule 2, is 
currently under investigation in patients with advanced 
NAFLC[120]. FXR agonists, such as obeticholic acid, are 
probably the most promising therapeutic option under 
investigation in NAFLD. 
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