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Abstract Accurate segmentation of pulmonary nodules is a
prerequisite for acceptable performance of computer-aided
detection (CAD) system designed for diagnosis of lung can-
cer from lung CT images. Accurate segmentation helps to
improve the quality of machine level features which could
improve the performance of the CAD system. The well-
circumscribed solid nodules can be segmented using thresh-
olding, but segmentation becomes difficult for part-solid,
non-solid, and solid nodules attached with pleura or ves-
sels. We proposed a segmentation framework for all types
of pulmonary nodules based on internal texture (solid/part-
solid and non-solid) and external attachment (juxta-pleural
and juxta-vascular). In the proposed framework, first pul-
monary nodules are categorized into solid/part-solid and
non-solid category by analyzing intensity distribution in
the core of the nodule. Two separate segmentation meth-
ods are developed for solid/part-solid and non-solid nod-
ules, respectively. After determining the category of nodule,
the particular algorithm is set to remove attached pleural
surface and vessels from the nodule body. The result of
segmentation is evaluated in terms of four contour-based
metrics and six region-based metrics for 891 pulmonary
nodules from Lung Image Database Consortium and Image
Database Resource Initiative (LIDC/IDRI) public database.
The experimental result shows that the proposed segmenta-
tion framework is reliable for segmentation of various types
of pulmonary nodules with improved accuracy compared to
existing segmentation methods.
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Introduction

Lung cancer is the primary cause of cancer-related death
in USA [21]. Pulmonary nodules are early indication of
lung cancer and appear as round or oval opacity in lung
CT images [11]. The internal texture of pulmonary nod-
ules can be solid, part-solid, and non-solid as shown in
Fig. 1. The solid nodules completely obscure the entire
lung parenchyma within it. The non-solid nodules refer
to focal nodular opacity with hazy increase in attenuation
and do not obscure the underlying parenchymal structure
including vessels and airways. The part-solid nodules are
the combination of solid and non-solid nodules and show
large variations of intensity within it. Based on external
attachment, pulmonary nodules can be categorized into
well-circumscribed, juxta-vascular, and juxta-pleural [12]
as shown in Fig. 2.

Segmentation of pulmonary nodules is a prerequisite step
in the development of a CAD system for diagnosis of lung
cancer. Segmentation of pulmonary nodules with a mini-
mal amount of user interaction is desired for robust and
efficient CAD system design. The performance of segmen-
tation method depends on the correctness of removal of
pleural surface and blood vessels attached with it. Most of
the reported works focus on segmentation of solid nodules
[5–7, 12, 14, 17, 19]. Few methods are reported on segmen-
tation of non-solid nodules [24, 25], and only one method is
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reported on segmentation of solid, part-solid, and non-solid
nodules [13]. Hensckle et al. [8] reported that part-solid and
non-solid nodules have high risk of malignancy compared
to solid nodules. Many technical issues like design of a gen-
eral segmentation framework for various types of nodules
and quantitative evaluation of segmentation results are still
left.

In this paper, a robust segmentation framework is pro-
posed for solid, part-solid, and non-solid nodules. The pro-
posed segmentation method is applicable for nodules of the
wide range of size (3–30 mm). The non-solid nodules are
very different from the solid nodules, based on shape, pat-
tern, and boundary. Therefore, the segmentation algorithm
developed for solid/part-solid nodules are not applicable
for non-solid nodules. Hence, in the proposed framework,
pulmonary nodules are classified into solid/part-solid and
non-solid categories based on the analysis of intensity
distribution of core of the nodule, and separate segmen-
tation method is set for each category. The main parts of
two segmentation techniques applicable for solid/part-solid
and non-solid nodules are extraction of foreground region,
removal of pleural attachment, and removal of vascular
attachment. The idea of removal of pleural attachment is
borrowed from Kuhnigk et al. [14]. A vasculature prun-
ing technique is proposed for removal of blood vessels
from solid/part-solid nodules. Selective enhancement fil-
tering and adaptive thresholding is proposed for removal
of vessels from non-solid nodule. The quantitative results
of proposed segmentation method and few state-of-the-art
methods are reported.

The paper arrangements are as follows: “Reported
Work on Segmentation of Pulmonary Nodules” describes
the reported works on segmentation of pulmonary nodules,
“Materials and Methods” describes proposed segmentation
framework, “Performance Metric for Evaluation of Segmen-
tation Results” deals with various performance met-
ric required for evaluation of segmentation result, and
“Results” describes the results of segmentation and
“Discussion” focuses on discussion. In the last section,
“Conclusion,” conclusion and future scope of improvement
are stated.

Reported Works on Segmentation of Pulmonary
Nodules

Segmentation of Solid Pulmonary Nodules

Kostis et al. [12] applied iterative morphological filtering to
segment solid pulmonary nodules by removing vessel-like
structure. The orientation of pleural surface is determined
and a disk-shaped kernel is generated parallel to pleural

surface of appropriate size such that an opening operation
using this kernel can be used to remove the majority of
pleural surface while excluding the nodule. The process
is performed in an iterative way until pleural surface is
removed. The main difficulty for the morphological method
is to decide a suitable kernel size to deal with the trade-
off between removing the adjacent vessel and retaining
the boundary of the nodule. An iterative dilation algorithm
using subsequently decreasing kernel sizes was applied to
retain the boundary of the nodule. In this process of itera-
tive morphological opening operation, the micro-lobules or
spicules are lost.

Reeves et al. [19] developed a plane fitting technique for
pleural surface removal. A plane is constructed through the
center of the nodule and normal to direction d, where d is the
direction toward the pleural surface from the center of nod-
ule. The plane is moved toward the pleural surface and jump
in increment of volume is used to detect pleural attachment
within the volume of interest (VOI). As lung field has higher
curvature in the region of mediastinum and diaphragm com-
pared to chest wall, the plane fitting technique provides poor
result for the nodules, deeply attached with mediastinum
or diaphragm. Kuhnigh et al. [14] developed a pleural sur-
face removal technique by means of convex hull of the lung
parenchyma within the VOI. This method is based on an
assumption that lung field are mostly convex. This tech-
nique works fine for the nodules attached with chest wall
but produces lots of false positive for the nodules attached
with mediastinum or diaphragm due to the inclusion of pleu-
ral surface. Moltz et al. [17] improved the segmentation
algorithm of Kuhnigh et al. [14] using ellipsoidal approxi-
mation of nodule. The segmentation accuracy is improved
by minimizing the size of the VOI, using ellipsoid con-
taining the lung nodule. The boundary of the ellipsoidal is
identified using ray casting technique. Then, pleural sur-
face is removed using the method of Kuhnigh et al. [14].
The vascular attachments are removed using an adaptive
opening operation for both the method of Kuhnigh [14] and
Moltz et al. [17].

Dehmeshki et al. [5] developed an user-interactive seg-
mentation framework using 3D region growing on the fuzzy
connectivity map to segment pulmonary nodules. The steps
are extraction of foreground, relocation of the seed point,
creation of fuzzy connectivity map, and 3D region growing,
considering second order connectivity, i.e., 26 neighbor-
hood. An optimum seed point was determined using the
distance transformation of foreground. Then, a fuzzy con-
nectivity map was constructed, depending on the affinity
between the seed point and the particular voxel. The fuzzy
map was used for region growing process for the final seg-
mentation. The results were evaluated by radiologists, who
considered about 84 % of them acceptable. No quantita-
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Fig. 1 Pulmonary nodules
based on internal texture: a solid,
b part-solid, and c non-solid

tive performance measures were presented. Diciotti et al. [7]
also developed a semi-automated segmentation technique
using 3D region growing based on gray-level similarity and
shape of objects. The initial segmentation results are pro-
vided to the operator to confirm each pulmonary structure
picked by the algorithm as a correct detection or to discard
it. The knowledge of an expert is thus introduced into the
algorithm through a controlled user intervention. This seg-
mentation method was only validated on small nodules of
mean diameter 5–11 mm.

Diciotti et al. [6] developed an automated segmen-
tation refinement of small juxta-vascular solid nodules,
based on 3D local shape analysis without any user inter-
action. The correction procedure refines an initial nodule
segmentation in order to separate possible vessels from
the nodule. The method has the advantage that the cor-
rection is locally applied along vessel attachments lead-
ing to unaltered nodule boundary. This method is fully
focused only on small nodules (<10 mm), and segmentation
results for nodules with larger diameter (>10 mm) are not
reported.

Segmentation of Non-Solid Pulmonary Nodules

Zhou et al. [25] developed a segmentation method consid-
ering a non-parametric density estimation and likelihood
map based on the texture of non-solid nodule. The attached

blood vessels were removed based on the eigenvalue value
analysis of Hessian matrix. Their algorithm was tested on 10
non-solid nodules, and no quantitative segmentation results
were reported. Tao et al. [24] developed a segmentation
technique based on the determination of voxel-based prob-
ability map followed by multiscale blob enhancement filter.
The technique is applied on each voxel to obtain a volumet-
ric blobness likelihood map. The voxel-based probability
map and volumetric blobness likelihood map are multiplied
to obtain another probability map called shape prior refined
probability map. It helps to suppress spurious responses and
emphasize blob-like structures. The algorithm was tested
on 20 non-solid nodule and reported average volumetric
overlap is 0.68.

Segmentation of Solid, Part-Solid, and Non-Solid
Pulmonary Nodules

Kubota et al. [13] developed a nodule segmentation method
considering the convexity models of nodules. The segmen-
tation algorithm is applicable for nodules of various density
like solid, part-solid, and non-solid. The performance of the
technique is quantitatively evaluated in terms of segmenta-
tion overlap on two data set LIDC1 and LIDC2 consisting
of 23 and 82 nodules, respectively, from LIDC database
[16]. Among 23 nodules in LIDC1, 22 have slice thickness
of 0.66 mm. The mean and standard deviation of the volu-

Fig. 2 Pulmonary nodules
based on external attachment: a
well-circumscribed, b
juxta-vascular, and c
juxta-pleural
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metric overlap for LIDC1 were reported as 0.69 and 0.18,
respectively. In the case of LIDC2, the mean and standard
deviation of the volumetric overlap were reported as 0.59
and 0.19, respectively. The cause of relatively less value of
the volumetric overlap in LIDC2 is higher slice thickness. In
LIDC2 73 nodules out of 82 have slice thickness more than
1.25 mm. Moreover, LIDC2 contains few nodules which are
extremely subtle in nature.

Materials and Methods

Database of Lung CT Images

The proposed segmentation method is evaluated on 891
nodules in Lung Image Database Consortium and Image
Database Resource Initiative (LIDC/IDRI) public database
[2]. In LIDC/IDRI database, 928 lesions are annotated by

Fig. 3 Proposed framework for
segmentation of pulmonary
nodules
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all four radiologists [2]. Out of 928 nodules, the bound-
ary annotation by all four radiologists is available for 891
nodules. Hence, the proposed segmentation algorithm was
evaluated on 891 nodules. The boundaries of the pulmonary
nodules are annotated by all four radiologists based on con-
sensus among the radiologists. The boundary information
and various diagnostic information for all nodules for a par-
ticular subject are provided in XML file. Each CT image
slice consists of a matrix size of 512 × 512 pixels, and the
pixel size ranges from 0.5 to 0.8 mm with a 12-bit gray
scale in HU. A set of four ground truth is created by fill-
ing the internal region of annotated nodule, slice by slice.
In LIDC/IDRI, the nodules with texture index 1 are con-
sidered as non-solid, texture index 2 or 3 are considered
as part-solid, and texture index 4 or 5 are considered as
solid.

Segmentation Framework of Pulmonary Nodules

The block diagram of proposed segmentation framework is
provided in Fig. 3. The operator selects a seed point by
a mouse click on the pulmonary nodule in the first step.
A cubic VOI of size (40 mm × 40 mm × 40 mm) is
selected, enclosing the nodule. The CT images often pro-
vide anisotropic voxels. Isotropic resampling is applied on
the VOI for voxel equalization. In proposed segmentation
framework of pulmonary nodules, solid and part-solid are
grouped in one category and non-solid in another cate-
gory. In the next step, the pulmonary nodules are classified
into solid/part-solid or non-solid based on the analysis of
intensity distribution in the core of nodule. Finally, depend-
ing on the class level of pulmonary nodules (solid/part-
solid or non-solid) corresponding algorithm is set for
segmentation.

Classification of Pulmonary Nodule into Solid/Part-Solid
and Non-Solid

The classification of pulmonary nodules into solid/part-
solid and non-solid is performed based on the texture
analysis of the core of nodule. Kauczor et al. [10] reported
that the density distribution of non-solid nodules lies in the
range of [−750 HU, −300 HU]. The density distribution
of solid pulmonary nodules lies in the range of [−200 HU,
200 HU] [19]. Part-solid nodules are the mixture of solid
and non-solid tissue component [10]. The density distribu-
tion for a sample part-solid pulmonary nodule is given in
Fig. 4. The histogram plot shows that the density distribu-
tion for sample part-solid pulmonary nodule has range from
−733 HU to 295 HU. So, there is an overlap of internal
attenuation of part-solid pulmonary nodules with solid and
non-solid nodule. Due to the overlap of internal attenua-
tion, intensity-based thresholding is not enough to classify

Fig. 4 Histogram of part-solid nodule

pulmonary nodules into solid/part-solid and non-solid cate-
gory. Hence, intensity-based features are extracted from the
core of the nodule. The inscribed spherical region within the
nodule is considered as the core of the nodule.

To extract the core of nodule, VOI is thresholded at
−800 HU because minimum attenuation for non-solid nod-
ules is −750 HU [10]. The approximate boundary points of
the lung nodule are identified using ray casting technique.
Starting from the user given seed point, rays are traced out
through all the surface voxel of a (5 × 5 × 5) cube until the
rays reach either the boundary of the nodule, or the bound-
ary of the VOI. The distance of the nearest boundary point
from the seed point is denoted by d. The spherical region
with center as seed point and diameter as d is considered as
the core of the nodule. Several features like mean intensity,
variance of intensity, entropy, skewness, kurtosis, solid part,
and non-solid part are computed from the core of nodule.
The solid part is the ratio of voxel count in the range [−200
HU, 200 HU] and total number of voxel in the range of
[−750 HU, 200 HU]. The non-solid part is the ratio of voxel
count in the range of [−750 HU, −300 HU] and total num-
ber of voxel in the range of [−750 HU, 200 HU]. The value
of the area under curve (AUC) for a particular feature is
obtained from receiver operator characteristics (ROC) dur-
ing classification of pulmonary nodules into solid/part-solid
and non-solid category for the data sets D1 and D2 [see
section “Description of Training and Test Data Set” for the
composition of D1 and D2]. The values of the AUC for
various features are given in Table 1. The most relevant fea-
ture are identified by considering the maximum AUC. The
feature, non-solid part provide the highest value of AUC.
Hence, this single feature is considered for classifying the
pulmonary nodules.
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Table 1 List of texture features considering AUC for data set D1 and
D2. The entries are italicized to represent the highest value of AUC for
each column

Feature no. Feature name AUC for D1 AUC for D2

1 Mean intensity 0.93 0.86

2 Variance of intensity 0.94 0.81

3 Entropy 0.69 0.62

4 Skewness 0.86 0.79

5 Kurtosis 0.51 0.52

6 Solid part 0.82 0.75

7 Non-solid part 0.98 0.92

Preprocessing of VOI

A. Preprocessing of VOI containing solid/part-solid nod-
ules In the case of solid/part-solid nodule, VOI is thresh-
olded at −500 HU to separate the nodule from lung
parenchyma. The connected component analysis is per-
formed to obtain the object containing nodule. Sometimes,
the nodules contain holes within it. The holes present in
the nodule is filled up using morphological closing oper-
ation. Then, ellipsoid is fitted enclosing the nodule using
the method of Moltz et al. [17]. Moltz et al. restricted the
VOI using ellipsoid fitting technique for juxta-pleural solid
nodules. In the current work, the task of fitting of ellipsoid
is extended to all types of nodules irrespective of attach-
ment to reduce computation time, as well as false positive.
The approximate boundary of the lung nodules is identified
using ray casting technique. Starting from the user given
seed point, rays are traced through all the surface voxel of a

(5 × 5 × 5) cube around the seed point, until the rays reach
either the boundary of the nodule or the boundary of the
VOI. The points which are located on the boundary of nod-
ule (well-circumscribed and juxta-vascular cases) are used
for fitting the bounded ellipsoid around the nodules. In the
case of juxta-pleural nodules, few boundary points of pleura
will appear in the list of boundary points of nodule because
of connectivity of nodule with pleura. Hence, the boundary
points located on the boundary of pleura need to be elimi-
nated from the list of boundary points of nodule obtained by
tracking ray endpoints. The points below a certain distance
from the seed points are considered for fitting the bounded
ellipsoid around the nodule (Fig. 5a). The 95th percentile
of the distances of all the estimated boundary points pro-
vides a good threshold for selecting the boundary points of
nodule [17]. The binary mask of the nodule attached with
pleural surface is shown in Fig. 5b.

B. Preprocessing of VOI containing non-solid nodules
The non-solid nodules are very different from solid/part-
solid nodule based on internal texture. Hence, threshold-
based approach is inadequate to separate it from the back-
ground. In the first step of preprocessing of VOI containing
non-solid nodule, the lung parenchyma is removed using the
threshold of −800 HU which is well below minimum atten-
uation for non-solid nodule (−750 HU [10]). The connected
component analysis is performed to obtain the object con-
taining nodule. In the next step, anisotropic diffusion filter is
applied on the gray scale version of the thresholded image.
The value of the parameters like conductance, number of
iteration, and time step are 2, 10, and 0.0625, respectively
[18]. The holes present in the nodule is filled. Finally, the

Fig. 5 Description of pleural
surface removal using one juxta-
pleural nodule: a One slice in
the VOI containing juxta-pleural
nodule bounded by ellipsoid, b
binary mask of the nodule
attached with pleura, c binary
mask of removed pleural surface
using convex-hull operation as
suggested by Kuhnigh et al., d
binary mask of nodule obtained
after pleural surface removal
using the method of Moltz et al.,
e part of the nodule mask along
with small portion of pleura, and
f binary mask of nodule after
proposed refinement stage
applied on (e)
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ellipsoid is fitted enclosing the non-solid nodule using the
method of Moltz et al. [17] as described in the previous
paragraph.

Checking the Presence of Pleural Attachment
for Solid/Part-Solid and Non-Solid Nodules

The existence of pleural attachment is determined using
the method of Kuhnigk et al. [14]. The overlap of
boundary voxels of the segmented object (as obtained in
“Preprocessing of VOI”) with the boundary voxels of VOI
more than 10 % indicates the presence of pleural attachment
with pulmonary nodules [14]. Once presence of pleural
attachment is identified, it is removed using the method of
Moltz et al. [17] followed by proposed refinement step.

Removal of Pleural Surface for Solid/Part-Solid
and Non-Solid Nodules

The procedure of removal of pleural attachment is same for
solid/part-solid and non-solid nodules. The pleural surface
is efficiently removed by limiting the VOI in an ellipsoid
around the nodule which leads to less inclusion of pleural
surface within the VOI. The pleural surface removal tech-
nique of Kuhnigh et al. [14] is applied in the ellipsoid VOI.
Kuhnigh et al. considered that lung fields are mostly con-
vex, and the juxta-pleural nodules creates a concavity in its
shape. The convex hull of the lung parenchyma within the
bounded ellipsoid is used to mask out the chest wall part
from the VOI. The binary mask of the removed pleural sur-
face is shown in Fig. 5c. The binary mask of the nodule after
the removal of pleural surface is shown in Fig. 5d. After the
removal of pleural surface using the method of Kuhnigh et
al. [14], few small portion of pleural surface still remains as
shown using red circle in Fig. 5e. Both of the existing meth-
ods of Kuhnigh et al. and Moltz et al. applied morphological
opening to remove the blood vessels. So, the remaining por-
tions of pleural surface were removed during morphological
opening. In the proposed segmentation framework, vascula-
ture pruning technique is applied instead of morphological
opening. To remove these small parts, a refinement step is
proposed near the region of attachment of nodule and pleura.

Refinement step In the first step, the pixels adjacent to
pleura are identified. To accomplish it, the morpholog-
ical dilation is applied on the removed pleural surface
(Fig. 5c) using a disk shape structuring element of radius
3 pixels. The intersection of the dilated pleural surface
with segmented nodule obtained in the earlier step (dis-
cussed in “Removal of Pleural Surface for Solid/Part-Solid
and Non-Solid Nodules”) will produce the image contain-
ing part of the nodule along with small portion of pleura
(Fig. 5e). Then, the small isolated portions of pleural sur-
face (area less than 5 pixels) are removed. This procedure
will not erode the part of the nodule because its size is big-
ger than 5 pixels. As the refinement step is limited in the
region adjacent to the pleura, the rest of the nodule will not
be affected in any way by the refinement step. The image
after refinement step is given in Fig. 5f.

Removal of Blood Vessels

A. Removal of blood vessels for solid/part-solid nod-
ules A vasculature pruning technique is proposed for the
removal of vasculature from the region of attachment for
solid/part-solid nodules. From the anatomical point of view,
juxta-vascular nodules have limited portion of the nodule
boundary that is attached to the vessels. Moreover, vessels
attached to nodules are longer in structure than typical nod-
ule boundary irregularities. The main objective of proposed
vasculature pruning technique is to remove attached vessels
from the nodule. In this technique, the vessels are tracked
along its path and removed from the region of attachment.
The schematic diagram for vasculature pruning is shown in
Fig. 6, and details of algorithm are described below.

Algorithm for Vasculature Pruning Technique

Step 1 Determine foreground region In case of juxta-
pleural nodules, the region obtained after removal of
pleural surface is termed as foreground region (F).
The foreground region (F) for well-circumscribed and
juxta-vascular nodules is obtained by threshold-based

Fig. 6 Schematic diagram for vasculature pruning: a juxta-vascular nodules (shaded region indicates vessel), b removal of vessel in iteration-1,
c removal of vessel in iteration-2, d removal of vessel in iteration-3, and e nodule after complete removal of vessel
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segmentation [−500 HU as threshold], followed by con-
nected component analysis and filling up of holes present
in nodule. To reduce the computational overhead, an
ellipsoid is fitted, enclosing the juxta-vascular or juxta-
vascular nodules using the method of Moltz et al. [17]
as shown in Fig. 7b. The four ground region is shown in
Fig. 7c.

Step 2 Create geodesic distance map The centroid ‘S’ of
the F is determined and it will be considered as seed point
for computing geodesic distance map. A 3D geodesic
distance (GD) maps of F is computed considering zero
geodesic distance at S and increasing geodesic distance
toward the boundary of F as shown in Fig. 7d. It will
help to find out the vessel end point in the VOI because
geodesic distance has higher value at vessel end point
compare to nodule body. The schematic diagram for com-
puting GD in 2D is given in Fig. 8, considering center
pixel as zero geodesic distance. In case of computing 3D
geodesic distance, 26-neighbors of S are considered. All
voxels which are 26-neighbors of S will have geodesic
distance 1 voxel. Thus, geodesic distances of all voxels of
the F with respect to S can be computed by incrementally
growing the region from S.

Step 3 Determine the end point of vessel In order to
trace the end point of vessel (Fig. 7d), a voxel transfor-
mation is proposed. For implementing this voxel trans-
formation, a term voxel density (VD) is introduced. VD
is computed as the ratio of number of foreground voxel
in its (9 × 9 × 9) neighbor and the total number of voxel
contained in the cube of size (9×9×9). In the method of
voxel transformation, each voxel will be assigned with a

new value as given in Eq. 1. The voxel transformed map
F1 is defined by

F1(p) = GD(p)/(VD(p))2, (1)

where p represents the coordinates of a particular voxel
and GD is the geodesic distance. In voxel transformed
map F1, the vessel end point will have higher value com-
pared to nodule body as GD has higher value and VD
has lower value at vessel end point. The magnitude of
all the surface voxels in F1 is noted. It is experimentally
found that the magnitude of surface voxels more than
98th percentile of the magnitudes of all the surface voxels
represents the end point of vessels.

Step 4 Pruning of vessels Start from the end point of
a particular vessel and traverse along the vessel until
nodule-vessel junction is reached. The region of attach-
ment is determined by analyzing the consecutive patch
size (in terms of voxel count), obtained by decreasing
geodesic distance of step size 1 [Fig. 9]. The location of
nodule-vessel junction (Lknee) can be represented as

L knee = arg max

(
(Patch size)i+1 − (Patch size)i

(Patch size)i

)
,

(2)

where i represents the number of iteration. Thus, particu-
lar vessel will be removed from the region of attachment
as shown in Fig. 7e. Repeating the same procedure for
all blood vessels, the segmented nodule (Fig. 7f) will
be obtained. The regions having patch length greater

Fig. 7 Vasculature pruning
technique: a juxta-vascular
nodule, b nodule enclosed by
dilated ellipsoid, c nodule after
thresholding and connected
component analysis, d geodesic
distance transformation of (c), e
removed vessel, and f nodule
after vessel removal

J Digit Imaging (2016) 29:86–103 93



Fig. 8 Geodesic distance of pixels from the center using L∞ norm

than four times of voxel dimension (resolution along x-
dimension or y-dimension or z-dimension) are considered
as vessel and removed using vasculature pruning tech-
nique. This criteria is taken into account to restrict the
unwanted removal of spicules present in nodule.

B. Removal of blood vessels for non-solid nodules The
appearances of non-solid nodules on CT images are very
different from the solid nodules based on its shape, pat-
tern, and boundary. Hence, the algorithm developed for
vasculature removal from solid nodule will not be appli-
cable to non-solid nodules. Selective enhancement filtering
is applied in the ellipsoid VOI for removal of vessels by
enhancing the blob-like structure and suppressing the vessel
like structures. It works on the property of the eigenvalues
of the Hessian matrix, calculated at each voxel. The sign
and ratio of eigenvalues are considered as the signature of
structures [15]. Three idealized basic shapes in 3D image
space are dot, line, and plane. The blob-like structure is rep-
resented by dot, blood vessels are represented by line, and
air way wall is represented by plane. Let us consider, λ1, λ2,
and λ3 are three eigenvalues of Hessian matrix satisfying the

Fig. 9 Plot of the size of the patches belonging to a vessel path with
respect to the distance from the vessel end point

condition |λ1| ≥ |λ2| ≥ |λ3|. If λ1, λ2, and λ3 are almost
equal in magnitude and negative in sign, then, they repre-
sent blob-like structures. If λ1 and λ2 are almost equal in
magnitude and negative in sign and λ3 is very small in mag-
nitude compared to λ1 and λ2, then vessel-like structures are
represented. The high value of λ1 compared to λ2 and λ3

represents airway wall. Combining the magnitude and the
likelihood components and taking into account the signs of
the eigenvalues, the coefficient of blob enhancement filters
in 3D image space can be represented as

Zdot(λ1, λ2, λ3) =
{ |λ3|2|λ1| if λ1 < 0, λ2 < 0, λ3 < 0

0 otherwise
(3)

Algorithm for Removal of Vessels Using Selective
Enhancement Filtering

Step 1 Gaussian smoothing Apply 3D Gaussian filter in
the VOI, obtained after anisotropic diffusion and ellip-
soid approximation of nodule. The Gaussian filter is
applied in the region bounded by ellipsoid over several
scales σs , where σs = {1, 3, 5, . . . , 15} voxels. An orig-
inal CT image slice containing a non-solid nodule and
its ellipsoid approximation are shown in Fig. 10a, b,
respectively.

Step 2 Multiscale filtering Compute the Hessian matrix
for each voxel of different version of Gaussian filtered
image and its eigenvalues λ1, λ2, and λ3 satisfying the
condition |λ1| ≥ |λ2| ≥ |λ3|. Multiply voxel inten-
sity by Zdot (obtained using Eq. 3) for particular voxel
to obtain the voxel likelihood map. Multiply each voxel
intensity by σ 2

s in the output image from the enhance-
ment filter at each scale of σs . The final filter output for
each voxel is the maximum value obtained from the out-
put of all individual Hessian filter of different scales and
shown in Fig. 10c.

Step 3 Separation of nodule: The segmented nodule
(Fig. 10d) is obtained by adaptive thresholding followed
by connected component analysis. The value of threshold
for adaptive thresholding is determined by analyzing the
histogram of selectively enhanced image. It is seen that
the histogram (with 200 bins) of the selectively enhanced
image has an abrupt change in the values for two adjacent
bins (Fig. 11). Adjacent bins with the largest change of
values are identified and their corresponding pixel inten-
sity values are noted. The intensity values corresponding
to the mid point of identified bins are averaged to obtain
an the value of adaptive threshold for each non-solid
nodule.
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Fig. 10 Removal of vessels from non-solid nodule using selective enhancement filtering: a non-solid nodule, b fitting of ellipsoid enclosing
nodule, c result of selective enhancement filtering, and d result of thresholding and connected component analysis

Performance Metric for Evaluation
of Segmentation Results

The performance of the proposed segmentation technique
and the competing techniques are quantitatively evaluated
in terms of four contour-based metrics and six region-based
metrics [23] by means of comparing the binary mask of
segmented nodule with the reference ground truth mask.
The reference ground truth mask consists of those pixels
in each slice that are considered as nodule by at least two
radiologists. The reference ground truth mask is constructed
for each nodule for the shake of quantitative analysis of
segmentation results.

Contour-Based Metrics

These metrics are based on the distance calculation between
the contours of binary mask of the segmented nodule and
that of the reference ground truth mask. Santos et al. [20]
and Silva et al. [22] introduced mean distance and Pratt
function to determine contour similarity. Hausdorff dis-
tance was used for the evaluation of different boundary

detection algorithms [1, 4]. The computation of mean dis-
tance and Pratt function requires the identification of auxil-
iary boundary. A region L is obtained by XOR operation of
two contours (A, B). The auxiliary boundary is obtained by
performing skeletonization operation of L. The Kth normal
on the contour of auxiliary boundary intersects the contours
at (x1, y1) and (x2, y2). The Euclidean distance between (x1,
y1) and (x2, y2) is denoted by di .

Mean Distance

The mean distance metric [20] is the average value of di

Mean distance = 1

N

N∑
i=1

di, (4)

where N refers to the total number of boundary normal on
the auxiliary boundary. The minimum values of mean dis-
tance is zero, and it indicates total overlap of two contours.
There is no limit of the maximum values of mean distance.

Fig. 11 Selection of an
adaptive threshold based on the
abrupt change in the values for
two adjacent bins of histogram
of selectively enhanced image
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Pratt Function

The Pratt function [22] is an index of similarity in the range
of [0,1] and it is defined as

Pratt function = 1

N

N∑
i=1

1

(1 + q × di)
(5)

where q is a normalization parameter with a constant value
of 1/9 [22]. The values of Pratt function is equal to 1 for
total overlap and 0 for complete mismatch.

Hausdorff Distance

The classical Hausdorff distance is defined in terms of max-
imum distance difference between two contours [9]. The
largest minimum distance from all points p on the contour
of SA to the contour of SB is calculated as in Eq. 6. The
Hausdorff distance is defined in Eq. 7.

h(SA, SB) = max
p εSA

(dmin(p, SB)) (6)

Hausdorff distance(SA, SB) = max(h(SA, SB), h(SB, SB))

(7)

Modified Hausdorff Distance

Hausdorff distance is a nonlinear operator, and it measures
the mismatch between two objects. It is very sensitive to
outlines, and small segmentation error will be reflected as
large change in the measurement of Hausdorff distance. To
minimize the error caused by outlines of objects, modified
Hausdorff distance is proposed [9]. The distance between a
point a and a finite point set B = (b1, b2, ......bn) is defined
as

d(a, b) = min
b εB

d(a, B); a ∈ A (8)

The directed modified Hausdorff distance from A to B is
defined as

hMHD(A, B) = 1

NA

�
aεA

d(a, B) (9)

where NA is the cardinality of set A. Considering
hMHD(B, A) as the directed modified Hausdorff distance
from B to A, the modified Hausdorff distance is defined as

Modified Hausdorff distance

= max(hMHD(A, B), hMHD(B, A)) (10)

Region-Based Metrics

The region delimited by the contours are filled in order to
compute the region-based metrics. Accuracy, overlap, sen-
sitivity, and specificity are computed using the definition of
Byrd et al. [3]. Similarity angle and similarity region are
computed using the formula of Santos et al. [20, 22].

Accuracy, Overlap, Sensitivity, and Specificity

Let us consider two regions, whose pixels are classified as
follows:

Ntp - Number of true positive pixels
Ntn - Number of true negative pixels
Nfp - Number of false positive pixels
Nfn - Number of false negative pixels

Thus, accuracy, overlap, sensitivity, and specificity are
defined as [3]

Accuracy = Ntp + Ntn

Ntp + Ntn + Nfp + Nfp

(11)

Overlap = Ntp

Ntp + Nfp + Nf n

(12)

Sensitivity = Ntp

Ntp + Nf n

(13)

Specificity = Ntn

Ntn + Nfp

(14)

It is to be noted that we have computed accuracy, overlap,
sensitivity, and specificity for 3D objects and hence pixel
need to be replaced by voxel. The values of these metrics lie
in the range of [0, 1], where 1 represents the best similarity

Table 2 Nodule composition
in the data set D1 Type of nodule No. of nodule Juxta-pleural Juxta-vascular Well-circumscribed

Solid 414 160 200 54

Part-solid 16 4 12 0

Non-solid 16 6 8 2

Total 446 170 220 56
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between two regions and 0 represents complete mismatch,
respectively.

Similarity Angle

The similarity angle is computed based on the morpholog-
ical similarity between two images [20, 22]. Each of the
following vectors (

−→
P and

−→
Q ) are obtained by transforming

an (m × n × p) binary image into a 1D array same number
of pixels, and similarity angle is defined as

Similarity angle = cos−1

( −→
P · −→

Q

||−→P ||||−→Q ||

)
. (15)

The similarity angle lies in the range of [0,π/2], where 0
corresponds total similarity and π/2 correspond to complete
mismatch, respectively.

Similarity Region

Similarity region is defined as [20, 22]

Similarity region = 2Ntp

2Ntp + Nfp + Nf n

(16)

The range of similarity region is [0,1], where 1 cor-
responds total similarity and 0 correspond to complete
dissimilarity, respectively.

Results

Description of Training and Test Data Set

Two different data set D1, and D2 are created for two-
fold cross validation from the set of 891 pulmonary nodules
in LIDC/IDRI database. The two data set consists of pul-
monary nodules of various internal textures and external
attachments. The splitting of 891 pulmonary nodules into
D1 and D2 could be helpful to avoid the bias during
determination of different parameters. The composition of
pulmonary nodules in D1 and D2 are provided in Tables 2
and 3.
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ROC plot for data set D2

Fig. 12 The classification performance of non-solid part is shown in
ROC plot for data set D1 and D2. It helps to determine the threshold
value of the feature, denoted as non-solid part

Classification of Pulmonary Nodules into
Solid/Part-Solid and Non-Solid

The feature, non-solid part is used for classification of pul-
monary nodules into solid/part-solid and non-solid. The
threshold value of non-solid part is determined using a
point on the ROC curve that is nearest to the point [0,1]
for data set D1 and D2 as shown in Fig. 12. The thresh-
old value obtained for data set D1 and D2 are 0.93 and
0.97, respectively. If a nodule has non-solid part greater than
the threshold, it is taken as non-solid and solid/part-solid
otherwise.

The empirically determined parameters from D1 are used
for evaluation of segmentation results on D2 and vice versa.
In case of data set D1, during the classification of pul-
monary nodules into solid/part-solid and non-solid total
11 nodules (i.e. 2.47 %) were miss-classified out of 446
nodules. Out of 11 miss-classified nodules, 5 solid and 5
part-solid nodules were miss-classified as non-solid nodules
and 1 non-solid nodules were miss-classified as solid/part-
solid nodule. In case of data set D2, total 15 nodules
(i.e. 3.37 %) were miss-classified out of 445. Out of 15
miss-classified nodules, 6 solid and 4 part-solid nodules
were miss-classified as non-solid and 5 non-solid nod-
ules were miss-classified assolid/part-solid nodules. The

Table 3 Nodule composition
in the data set D2 Type of nodule No. of nodule Juxta-pleural Juxta-vascular Well-circumscribed

Solid 414 145 219 50

Part-solid 16 4 10 2

Non-solid 15 2 13 0

Total 445 151 242 52
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miss-classified non-solid nodules are segmented using the
segmentation method of solid/part-solid nodules and the
miss-classified solid/part-solid nodules are segmented using
the proposed segmentation method of non-solid nodules for
both of data sets, to get the realistic performance of the
proposed segmentation framework.

Results of Segmentation for Pulmonary Nodules

The segmentation results of 891 pulmonary nodules of
LIDC/IDRI are reported. The results of segmentation of pro-

posed method and competing methods are provided in terms
of four contour-based metrics and six region-based met-
rics using histogram plot (Fig. 13) and box plot (Fig. 14).
The histogram plot and the box plot of mean distance,
Pratt function, Hausdorff distance, modified Hausdorff dis-
tance, overlap, sensitivity, and similarity angle depict that
the proposed segmentation method outperforms the exist-
ing methods. The number of background voxels are much
larger as compared to the foreground voxel, and the values
of specificity of all the techniques lies within a small band.
The value of accuracy is affected by specificity and the

Fig. 13 The columns a, b, c,
and d represent the histogram
plot of all metrics for the
method of Kuhnigk et al., Moltz
et al., and Kubota et al. and the
proposed method

(a) (b) (c) (d)
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Fig. 14 Represent box plot for
all metrics considering method
of Kuhnigk et al., Moltz et al.,
and Kubota et al. and the
proposed method

accuracy also lies within a small band. Hence, accuracy and
specificity are unable to discriminate the proposed method
and existing techniques based on their performance.

The mean and standard deviation of all the metrics for
the proposed method and competing methods are provided
in Table 4. The segmentation method of Moltz et al. per-
forms better compared to Kuhnigk et al. for solid/part-slid
nodules by limiting the VOI using ellipsoid approximation.
There is little improvement in segmentation accuracy of the
proposed method for solid nodules due to the change of
threshold from −400 HU (as used by Kuhnigk et al., Moltz
et al.) to −500 HU. None of the segmentation method of
Kuhnigk et al. or Moltz et al. is applicable for non-solid
nodules because both methods use a threshold of −400
HU for separation of foreground containing nodule, which

causes partial or complete removal of non-solid nodule and
the effect is apparent in sensitivity and other metrics. The
method of Kubota et al. performs better as compared to the
method of Kuhnigk et al. and Moltz et al. for non-solid
nodules, and the proposed method outperforms it.

Discussion

Inter-personal Variations of Radiologists

There is a large amount of inter-personal variability among
four radiologists in the boundary annotation of pulmonary
nodule in LIDC/IDRI database (Fig. 15), and the reference
ground truth of a nodule is highly effected by inter-personal
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Table 4 Comparison of segmentation results of the proposed segmen-
tation method with the segmentation method of Kubota et al., Kuhnigk
et al., and Moltz et al. considering 891 nodules of LIDC-IDRI data

set. For metrics PF, Accuracy, Overlap, Sensitivity, Specificity, SR the
maximum and for metrics MD, HD, MHD, SA the minimum values
are emphasized with italics

Comparative analysis Kuhnigk et al. Moltz et al. Kubota et al. Proposed method

Nodule Metric Mean SD Mean SD Mean SD Mean SD

Solid/ MD 3.65 2.55 3.04 1.83 4.56 3.60 2.85 1.84

part-solid PF 0.48 0.27 0.58 0.17 0.50 0.23 0.62 0.14

HD 4.93 4.50 4.49 4.02 8.98 7.00 5.01 5.11

MHD 2.90 4.30 1.62 2.53 3.05 3.37 1.46 2.41

Accuracy 0.99 0.01 0.99 0.01 0.97 0.05 0.99 0.01

Overlap 0.35 0.23 0.41 0.18 0.34 0.15 0.46 0.16

Sensitivity 0.39 0.26 0.48 0.19 0.56 0.16 0.58 0.16

Specificity 1.00 0.00 1.00 0.00 0.97 0.05 0.99 0.01

SA 1.02 0.33 0.94 0.23 1.01 0.23 0.88 0.20

SR 0.47 0.28 0.55 0.21 0.48 0.23 0.61 0.18

Non-solid MD 6.36 2.49 6.19 2.50 6.81 0.39 3.24 1.89

PF 0.05 0.14 0.07 0.17 0.36 0.23 0.56 0.15

HD 9.05 4.22 8.15 3.17 13.38 6.44 4.93 3.35

MHD 8.28 4.05 7.49 4.2 5.45 3.88 1.78 2.96

Accuracy 0.98 0.00 0.98 0.02 0.94 0.06 0.98 0.02

Overlap 0.00 0.02 0.02 0.06 0.18 0.15 0.32 0.12

Sensitivity 0.01 0.03 0.03 0.07 0.40 0.18 0.44 0.16

Specificity 1.00 0.00 1.00 0.00 0.95 0.06 1.00 0.00

SA 1.57 0.00 1.51 0.13 1.24 0.21 1.04 0.16

SR 0.02 0.06 0.04 0.10 0.27 0.23 0.47 0.15

MD mean distance, PF Pratt function, HD Hausdorff distance, MHD modified Hausdorff distance, SA similarity angle, SM similarity measure

variations. Inter-personal agreement (IPA) among radiolo-
gists is represented as
IPA

= volume of the binary mask of reference ground truth

volume of the binary mask obtained using union of four ground truth
.

(17)

The range of IPA is [0,1], where 0 indicates disagree-
ment and 1 indicates complete agreement among radiolo-
gists. The value of overlap is relatively low for the proposed
method and the competing technique because overlap is

penalized by a little mismatch between binary mask of the
segmented nodule and its reference ground truth. The rela-
tion between overlap and IPA is shown in Fig. 16, and the
value of correlation coefficient is 0.28.

Independent of Hypotheses on Vessel Anatomy in Lung
Field

In comparison with the morphological segmentation of
Kuhnigk et al. [14], hypotheses on vessel anatomy [(i) each

Fig. 15 Variation of delineation of nodule margin provided by four radiologists in a particular slice for the nodule (LIDC-IDRI 348) by: a first,
b second, c third, and d fourth radiologist
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lung vessel is originating in the hilum region and (ii) each
vessel’s radius is monotonically decreasing with increas-
ing distance from the hilum] is not required for proposed
method. If the vessel anatomy is not satisfied, then seg-
mentation method of Kuhnigk et al. fail (Fig. 17b), whereas
the method of Moltz et al. provides better result (Fig. 17c)
because of limiting the VOI using ellipsoid fitting. The
spicules present on the nodule surface is removed in the
method of Moltz et al. in few cases (Fig. 18c). There is no
assumption on vessel anatomy in the method of Kubota et
al., but it provides over-segmented result (Fig. 17d). The
proposed method provides acceptable result (Fig. 17e), and
it is independent of hypotheses on vessel anatomy.

Preservation of Undulations of the Surface of Nodules

In many reported works, [5–7, 12, 14, 17, 19] , it is observed
that vessels are removed from juxta-vascular nodules using
morphological opening which may alter the boundary of

nodules and finally lead to loss of spicules (Fig. 18b, c).
The segmentation method of Kubota et al. also lead to alter
the boundary of nodule in few cases (Fig. 18d). In the pro-
posed method, the boundary of nodule is not altered and the
spicules remain intact in the segmented nodule as shown in
Fig. 18e.

Reproduction of Results of Segmentation

The results are consistent, reproducible, and independent
of selection of seed point as long as the seed point is
selected near the center of the nodule. The proposed algo-
rithm takes 4 s (average) to segment a pulmonary nod-
ule using 2.66-GHz Intel quad-core processor with 8-GB
RAM.

Parameters

The threshold values used for separation of foreground
for solid/part-solid and non-solid nodules are kept constant
at −500 HU and −800 HU, respectively (“Preprocessing
of VOI”), throughout the entire experiment. The threshold
for determining the end point of blood vessels is obtained
in an adaptive way (“Removal of Blood Vessels” (A)). The
threshold applied to separate the non-solid nodule from its
background is determined by histogram analysis of selec-
tively enhanced image (“Removal of Blood Vessels” (B)).

Limitation

The proposed segmentation method completely fails for 6
pulmonary nodules out of 891. The existing methods also
fail for those six cases. It is not possible to compute HD
and MHD for complete failure cases. For those cases, HD
and MHD is considered as the equivalent diameter of the
reference ground truth of the nodule. Though the well-
circumscribed nodules pass through the vasculature pruning
technique, the pruning algorithm does not remove any part
of the nodule.

Fig. 17 Example representing the failure of existing segmentation
methods: a 2D slice containing solid nodule, b using the method of
Kuhnigk et al., c using the method of Moltz et al., d using the method

of Kubota et al., and e using proposed method. The ground truth is
indicated by red contours ( ) and the segmented nodule is indicated
by green contours ( ) in the 2D slices
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Fig. 18 Example showing the loss of spiculation in existing segmen-
tation methods: a one 2D slice containing solid nodule, b using the
method of Kuhnigk et al., c using the method of Moltz et al., d using

the method of Kubota et al., and e using proposed method. The ground
truth is indicated by red contours ( ) and the segmented nodule is
indicated by green contours ( ) in the 2D slices

Conclusion

A generalized segmentation framework is proposed appli-
cable for all types of pulmonary nodules. In many research
papers, attached vasculature are removed from nodules,
using morphological opening after an initial rough segmen-
tation, which may lead to alter the boundary of the nodule
and loss of small spicules present on the nodule. In con-
trary, we proposed a vasculature pruning technique which
is applied locally in the region of attachment. In this way,
the originality of the nodule surface is mentioned, and this
could be helpful for computing surface roughness of solid
nodule more accurately.
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