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Bonding values of two contemporary ceramic 
inlay materials to dentin following simulated 
aging

Ashraf Abdelfattah Khalil1,2, Khalid Mohamed Abdelaziz1* 
1Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
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PURPOSE. To compare the push-out bond strength of feldspar and zirconia-based ceramic inlays bonded to 
dentin with different resin cements following simulated aging. MATERIALS AND METHODS. Occlusal cavities in 
80 extracted molars were restored in 2 groups (n=40) with CAD/CAM feldspar (Vitablocs Trilux forte) (FP) and 
zirconia-based (Ceramill Zi) (ZR) ceramic inlays. The fabricated inlays were luted in 2 subgroups (n=20) with 
either etch-and-bond (RelyX Ultimate Clicker) (EB) or self-adhesive (RelyX Unicem Aplicap) (SA) resin cement. 
Ten inlays in each subgroup were subjected to 3,500 thermal cycles and 24,000 loading cycles, while the other 
10 served as control. Horizontal 3 mm thick specimens were cut out of the restored teeth for push out bond 
strength testing. Bond strength data were statistically analyzed using 1-way ANOVA and Tukey’s comparisons at α
=.05. The mode of ceramic-cement-dentin bond failure for each specimen was also assessed. RESULTS. No 
statistically significant differences were noticed between FP and ZR bond strength to dentin in all subgroups 
(ANOVA, P=.05113). No differences were noticed between EB and SA (Tukey’s, P>.05) bonded to either type of 
ceramics. Both adhesive and mixed modes of bond failure were dominant for non-aged inlays. Simulated aging 
had no significant effect on bond strength values (Tukey’s, P>.05) of all ceramic-cement combinations although 
the adhesive mode of bond failure became more common (60-80%) in aged inlays. CONCLUSION. The 
suggested cement-ceramic combinations offer comparable bonding performance to dentin substrate either before 
or after simulated aging that seems to have no adverse effect on the achieved bond. [ J Adv Prosthodont 2015;7: 
446-53]
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INTRODUCTION

Current popularity of  tooth-colored restorations is a nor-
mal response to increased esthetic demands of  dental 
patients.1 Ceramic inlays were introduced to dentistry many 
decades back, however problems were encountered with 

the early types that have limited their application.1,2 Several 
laboratory studies3-7 assessed factors responsible for early 
ceramic inlay failures. Brittle fracture, loss of  retention, 
marginal inaccuracy and unsatisfactory esthetics of  the air 
fired porcelain were reported to be common. However, the 
evolution of  many strengthened ceramic systems with sensible 
levels of  success refreshed the attention to using ceramic 
restorations.8

Both glass-infiltrated and pressable glass ceramics were 
generally able to produce inlays with acceptable strength 
and fit.2 Lithium disilicate-based ceramics also showed simi-
lar ability to provide successful restorations.9 In order to 
save operators’ and patients’ time, machinable techniques 
became popular and many types of  ceramic blocks/disks 
are currently available for either chair-side or laboratory 
inlay fabrication.9-11 

Some studies12,13 reported similar clinical survival rates 
of  current ceramic inlays to other materials in posterior 
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region of  the mouth. However, the clinical longevity of  
these restorations is usually governed by the strong and 
durable bonding to both ceramic and tooth.2 Achieving that 
goal can be feasible using contemporary resin-based luting 
cements and the new generation of  bonding systems.14,15 
Current ceramic bonding usually depends on chemo-
mechanical conditioning of  ceramic surfaces. Hydrofluoric 
acid etching and the application of  silane primer are report-
ed to help achieve successful adhesion of  resin cement to 
glass ceramic surfaces.16 On the other hand, sandblasting is 
mandatory to mechanically retain cementing agents to the 
surfaces of  zirconia-based ceramic surfaces.17

Despite the wide diversity in luting cements, none of  
the currently available materials is ideal for all situations. 
Etch-and-bond, dual-cured resin cements were known to 
achieve the desired bonding quality of  different ceramic 
inlay restorations to tooth substrates.18,19 Some research-
ers20-22 reported years of  acceptable clinical performance 
and declared fewer bulk fractures of  ceramic inlays luted 
with those cements. However, their multi-step application 
possibly led to crucial errors and, in some instances, failure 
of  cemented restoration.23 Accordingly, one-step self-adhe-
sive resin cements were developed aiming to offset the 
drawbacks of  etch-and-bond, dual-cured ones. Moreover, 
some researchers nominated the self-adhesive resin cement 
to be the best choice to lute zirconia-based ceramics.17,23

In spite of  the revealed clinical success of  ceramic inlays 
luted with different resin cements over respected periods in 
service,19,20 a debate is there based on the common thought 
that the performance of  ceramic-resin cement bond is 
adversely affected following aging simulation.24,25 Both 
cyclic fatigue and thermocycling were believed to lead to 
weakened bond and a predominance of  adhesive failure at 
the interface between dual-cured resin cement and glass 
ceramic substrates.23 A weakened bond of  self-adhesive res-
in cements to both glass and zirconia ceramics was also 
reported following laboratory-conducted thermocycling.25 
The aforementioned findings may necessitate further stud-
ies to confirm the effect of  simulating aging on the perfor-
mance of  contemporary ceramic-cement systems. The 
compatibility of  inlay-cement system materials and the 
durability of  their bonding could additionally influence 
such restorations’ performance.2 Therefore, the present 
study aimed to compare the push-out bond strength of  
CAD/CAM feldspar and zirconia-based ceramic inlays lut-
ed to dentin using either etch-and bond, dual-cured or one-
step, self-adhesive resin cements before and after artificial 
aging with cyclic fatigue loading and thermocycling. The 
suggested null hypothesis was that there is no difference 
between bond strength values of  different ceramic-cement 
combinations following simulated aging. 

MATERIALS AND METHODS

Eighty caries-free human molars extracted for periodontal 
reasons were collected at King Khalid University, College 
of  Dentistry clinics. All teeth were ultrasonically cleaned to 

get rid of  both soft and hard deposits and then stored in 
water at 4°C (FLOCCHETTI, Frigoriferi Scientifici, Luzzara, 
Italy) for less than one month before coating their roots 
with a single layer of  low viscosity rubber impression mate-
rial (Imprint, 3M ESPE, St. Paul, MN, USA) representing 
tooth periodontal ligament. In order to facilitate further 
handling, the rubber-coated roots were then embedded into 
acrylic blocks 3 cm in diameter and height (Hygenic, 
Coltene/Whaledent AG. Alstatten, Switzerland). The occlu-
sal surfaces of  all teeth were cut flat to expose dentin using 
Isomet precision saw machine (Isomet, Lake Bluff, IL, USA). 
Round diamond points (#001-018 DIA-BURS BR31, Mani 
Inc., Tochigi, Japan) were used in presence of  copious 
water cooling to drill 2 mm deep through the center of  
occlusal dentine. The drilling procedure was subsequently 
continued with the same cooling protocol using double 
truncated cone diamond tips (#039/032 DIA-BURS EX11, 
Mani Inc., Tochigi, Japan) parallel to the long axis of  each 
tooth till having occlusally diverged cavities with standard 
dimensions (3 and 1.5 mm in occlusal and pulpal diameters 
and 3 mm deep) (Fig. 1). 

Tooth cavities were optically scanned using Ceramil 
Map400 (Amann Girrbach, Kolbach, Austeria). Standardized 
inlay restorations were first designed with Ceramil Mind 
software 15 µm smaller than their respective cavities to 
allow uniform standardized space for the cementing materi-
al. The inlays were then milled on Ceramil Motion2 
(Amann Girrbach, Kolbach, Austeria) out of  2 machinable 
ceramic materials; feldspar (FP) (Vitablocs Trilux forte, 
VITA Zahnfabrik, Bad Sackingen, Germany) (Group I, n = 
40) and zirconia-based ceramic blocks (ZR) (Ceramill Zi, 
Amann Girrbach, Kolbach, Austria) (Group II, n = 40). 
Details of  materials used are shown in Table 1. 

Before cementing the fabricated inlays to their respec-
tive cavities, their fitting surfaces were first treated accord-
ing to the manufacturers’ recommendation of  the used 
cements. FP inlays were first etched with 9.5% hydrofluoric 
acid gel (HF) (Porcelain etchant, Bisco Inc., Schaumburg, 

Fig. 1.  Preparation of occlusal cavities (The dotted line 
indicates the standardized leveling of cavity depth).
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IL, USA) for 90 seconds, rinsed and air dried. Using cus-
tom-made nozzle holder adjusted 40 mm away and 45° on 
the surfaces; ZR inlays were bombarded with a mixture of  
50 and 110 µm alumina (Al2O3) particles for 10 seconds 
using a pressure of  250 KPa21 following their dense sinter-
ing in Ceramil Therm high temperature furnace (Amann 
Girrbach, Kolbach, Austeria) at 1400°C for 120 minutes.26 

Sandblasted inlays were then subjected to thorough clean-
ing with alcohol and air dried. Inlays in each group were 
then luted to their respective cavities in 2 subgroups (n=20 
each) using etch-and-bond dual-cured resin cement (EB) 
(RelyX Ultimate Clicker, 3M ESPE, St. Paul, MN, USA) and 
self-adhesive luting cement (SA) (RelyX Unicem Aplicap, 
3M ESPE) following their manufacturer’s instructions. 

In subgroup 1, cavity surfaces were acid etched with 
35% phosphoric acid gel (Scotchbond Universal Etchant, 
3M ESPE) for 15 seconds, washed with air-water spray and 
blot dried. Two successive coats of  single component adhe-
sive (Single Bond Universal Adhesive, 3M ESPE), each was 
agitated against etched dentin surfaces for 15 seconds, air 
thinned for 5 seconds followed by 10 seconds of  light curing 
(Elipar S10, 3M ESPE AG, Seefeld, Germany). Roughened 
surfaces of  FP and ZR inlay surfaces were then received a 

uniform coat of  Single Bond Universal resin adhesive (3M 
ESPE) and light curing for 10 seconds before their cemen-
tation. Equal amounts of  cement pastes were dispensed 
and mixed for 45 seconds to a uniform consistency on a 
paper pad. The mixed cement was first applied into the pre-
pared cavities, after then inlays were seated in using firm 
hand pressure followed with a constant loading of  5 N.27 
The excess cement was immediately removed with sponge 
pellet and the exposed margins were covered with glycerin 
gel to ensure complete polymerization in contact with air. 
In subgroup 2, tooth cavities were only rinsed with water 
and lightly dried. Further silanization with ESPE Sil (3M 
ESPE) was only considered before cementation of  HF 
acid-etched FP inlays. RelyX Unicem Aplicaps were then 
activated for 4 seconds and automatically mixed for 15 sec-
onds on CapMix mixing unit (3M ESPE). An Aplicap appli-
cator was then used to dispense the mixed cement into the 
prepared cavities. The inlay restorations were then seated 
into their respective cavities, following the previously men-
tioned protocol, and the cement excess was allowed to 
reach its gel state before its removal with sharp scaler. Half  
the number of  cemented inlays in each subgroup (Class A, 
n=10) were only stored in water at 37 ± 1°C for 24 hours 

Table 1.  Materials used

Material Description Composition Manufacturer

Vitablocs Trilux forte
Feldspar-based CAD/CAM 
ceramic blocks

Silicon oxide (SiO2), Aluminum oxide (Al2O3), Sodium 
oxide (Na2O), Potassium oxide (K2O), Calcium oxide 
(CaO), Titanium oxide (TiO2).

VITA Zahnfabrik, Bad 
Sackingen, Germany

Ceramill Zi
Zirconia-based CAD/CAM 
ceramic blocks

Zirconium oxide (ZrO2), Hafnium oxide (HfO2), Yttrium 
oxide(Y2O), Aluminum oxide (Al2O3) and other oxides

Amann Girrbach, 
Kolbach, Austria

Porcelain etchant 9.5% Hydrofluoric acid gel Hydrofluoric acid, sulphoric acid and ethanol 
Bisco Inc., 
Schaumburg, IL, 
USA

ESPE Sil Silane coupling agent
Ethyl alcohol, Methacryloxypropyltrimethoxysilane, 
methyl ethyl ketone

3M ESPE, St. Paul, 
MN, USA

Scotchbond Universal Etchant Acid etch 35% phosphoric acid gel
3M ESPE, St. Paul, 
MN, USA

RelyX Ultimate Clicker
Etch-and-Bond, dual-cured 
resin cement

Base paste: methacrylate monomers, Radiopaque, 
silanated fillers, initiator, stabilizers, rheological 
additives
Catalyst paste: Methacrylate monomers, radiopaque 
alkaline fillers, initiators, stabilizers, pigments, 
rheological additives, fluorescence dye, dual-cure 
activator for single bond universal adhesive

3M ESPE, St. Paul, 
MN, USA

RelyX Unicem Aplicap
Self-Adhesive resin luting 
cement

Powder: Alkaline fillers, silanated fillers, initiator 
components, pigments
Liquid: methacrylate monomers containing phosphoric 
acid groups, methacrylate monomers, initiator 
components, stabilizers

3M ESPE, St. Paul, 
MN, USA

Single Bond Universal 
Adhesive

Total etch, 2-step resin 
adhesive

MDP phosphate-monomer dimethacrylate resins, 
HEMA, vitrbond Copolymer, filler, ethanol, water, 
initiators and silane

3M ESPE, St. Paul, 
MN, USA

J Adv Prosthodont 2015;7:446-53



The Journal of Advanced Prosthodontics    449

(FUNCTION Line, Thermo Electronic Inc., Lagenselbold, 
Germany) to serve as control. The remaining teeth in each 
subgroup (Class B, n=10) were subjected to cyclic fatigue 
on a universal testing machine (Model 5965, Instron, Grove 
City, PA, USA) using a vertical constant loading of  50 N 
for 240,000 cycles.28 Same specimens were then subjected 
to 5-55°C thermocycling (MSCT-1, São Carlos, SP, Brazil) 
following ISO-TR 11405 Standard for 3,500 cycles with a 
dwell time of  30 seconds.10,29

All restored teeth were cut horizontally 3 mm away 
from their flat occlusal surfaces, using low speed precision 
saw, to separate one disk specimen out of  each. All speci-
mens were then finished to the exact inlay’s thickness 
(approximately 3 mm) on a serial grit polishing machine 
(Arotec APL 4; Arotec Ind. Com., São Paulo, SP, Brazil) 
exposing pulpal and occlusal inlay surfaces with no remains 
of  cementing material. Following finishing, all sectioned 
specimens were inspected under low angle illumination at 
X10 original magnification to ensure complete removal of  
cement remains and absence of  cracks within ceramic or 
tooth substrate. The exact thickness of  each specimen was 
then measured using electronic caliper (Mitutoyo, Kawasaki, 
Japan) and recorded for further calculation of  the bonded 
surface area using the formula shown in Figure 2.30 Using 
specially designed holder, all specimens were fixed onto the 
lower member of  universal testing machine with their pulp-
al surface facing up. A flat-ended metal rod with a tip diam-
eter of  1mm moving at a crosshead speed of  1.0 mm/min 
was used to stress the cemented inlays on compression (Fig. 
3). The maximum load at failure was recorded for each 
specimen and the push-out bond strength value was then 
calculated in respect to its bonded surface area. Fractured 
specimens were then inspected at ×10 using a stereomicro-
scope (MSM 400, Mitutoyo, Kawasaki, Japan) to determine 
the mode of  bond failure. The detected failure modes were 
then classified as cohesive, for fractures within the body of  
dentin, cement or ceramic substrate; adhesive, for total sep-
aration at dentin-cement or ceramic-cement interface; or 
mixed, for combined adhesive and cohesive failure criteria. 
The collected data for both control and test specimens’ 
classes were statistically analyzed using 1-way ANOVA at 
α=0.05 to determine the existence of  differences between 
their push-out bond strength values. Tukey’s comparisons 

(α=0.05) were then considered to identify the significance 
of  the detected differences.

RESULTS

The mean bond strength values and standard deviations in 
different test subgroups before (Control) and after simulat-
ed aging were presented in Table 2, while the reported inci-
dences of  different bond failure modes were presented in 
Table 3. Initial statistical analysis of  the collected results 

Table 2.  Push-out bond strength values (MPa) of different ceramic inlay materials to dentin

Mean bond strength

Ceramic material Etch-and-Bond cement (EB) Self-adhesive cement (SA)

Non-aged Aged Non-aged Aged

Feldspar-based ceramic (FP) 6.33 ± 1.80a 5.74 ± 1.71a 5.55 ± 1.46a 5.23 ± 1.09a

Zirconia-based ceramic (ZR) 5.77 ± 0.96a 5.10 ± 0.97a 4.62 ± 1.59a 4.41 ± 1.12a

FP = Feldspar-based ceramic, ZR = Zirconia-based ceramic, EB = Etch-and-Bond cement, SA = Self-adhesive cement
Same superscript letters indicate no significant difference between classes of test specimens (Tukey’s comparisons, P > .05). 

Fig. 3.  Testing push-out bond strength (A) Stressing test 
specimens on compression, (B) Flat-ended indenter and 
(C) test specimen.

A B

C

Bonding values of two contemporary ceramic inlay materials to dentin following simulated aging

Fig. 2.  Calculation of the bonded surface area.

Surface area = (πR + πr)L
Where ; L = √ (R - r)2 + h2 
π = constant (3.14)
R = the radius of larger surface
r = the radius of the smaller surface
h = the thickness of the section in mm
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using 1-ANOVA showed no differences between the bond 
strength values of  different classes (P = .05113). Further 
Tukey’s comparisons also indicated no significant differenc-
es (P = .9856, .7985, .9674 and .8835) between the bond 
strength of  both types of  ceramic materials to dentin in 
different classes of  test specimens. At the same time, no 
preference was noticed between the used types of  cements 
(Tukey’s comparisons, P = .909, .5685, .9908 and .9486). 
Simulated aging using cyclic fatigue loading and thermocy-
cling had no significant effect (Tukey’s comparisons, P = 
.9795, .9996, .9566 and 1.0) on the recorded bond strength 
values of  different ceramic-cement combinations in com-
parison to their control counterparts.

For the non-aged inlays (Control), the mixed mode of  
bond failure (Fig. 4A) was dominant (60%) with FP and ZR 
specimens luted with SA and EB respectively. The total 
incidences of  adhesive failures were, in contrary, dominant 

(80%) with FB and ZR inlays luted to dentin with EB and 
SA respectively, However, the recorded incidence of  adhe-
sive failures were evenly distributed between both dentin-
cement and ceramic-cement interfaces (40% of  tested 
inlays for each interface) (Fig. 4B and Fig. 4C). Simulated 
aging using cyclic fatigue loading and thermocycling was 
reflected negatively on the mode of  bond failures, where 
most of  the tested inlays showed adhesive type of  bond 
failure (60-80%), however the recorded incidences were 
unevenly distributed between dentin-cement and ceramic-
cement interfaces (Table 3). At the same time, the highest 
incidence of  the mixed mode of  bond failures (40%) was 
recorded for FP specimens luted with SA, while the lowest 
mixed incidences were noticed with FP and ZR specimens 
luted with EB. None of  the aged and non-aged inlays 
showed cohesive type of  bond failure in the body of  either 
dentin or ceramic substrate.

Table 3.  Incidence of bond failure modes

Mode of bond 
failure

Incidence (%) of bond failures

Feldspar-based ceramic (FP) Zirconia-based ceramic (ZR)

Etch-and Bond cement (EB) Self-adhesive cement (SA) Etch-and-Bond cement (EB) Self-adhesive cement (SA)

Non-aged Aged Non-aged Aged Non-aged Aged Non-aged Aged

Adhesive (D) 40 10 20 40 10 40 40 30

Adhesive (C) 40 70 20 20 30 40 40 40

Mixed 20 20 60 40 60 20 20 30

Cohesive (D) 0 0 0 0 0 0 0 0

Cohesive (C) 0 0 0 0 0 0 0 0

D = Dentin interface, C = Ceramic interface, FP = feldspar-based ceramic, ZR = Zirconia-based ceramic, EB = Etch-and-Bond cement, SA = Self-adhesive cement 

Fig. 4.  Recorded modes of bond failure. (A) Mixed failure (white arrow indicates dentin substrate and the black arrow 
indicates cement material), (B) Adhesive bond failure at dentin-cement interface (white arrow indicates dentin 
substrate), (C) Adhesive failure at ceramic-cement interface (black arrow indicates cement material).

A B C
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DISCUSSION

Both feldspar and zirconia-based ceramics are known mate-
rials for chair-side and laboratory CAD/CAM inlays.2,31 

However, the clinical longevity of  these restorations nor-
mally relies on their durable bonding to tooth substrates.14,32 

Since the achievement of  the desired bond is dependent on 
the participating materials, it is necessary to compare the 
bonding performance of  different ceramic-resin cement 
combinations in respect to the wide range of  materials 
available in dental market.2,17 The present study, accordingly, 
aimed to compare the bonding values of  both feldspar and 
zirconia-based ceramics to tooth structure using either 
etch-and-bond, dual-cured or self-adhesive resin cement. 
The selected cements have proved acceptable laboratory 
and clinical bonding of  different ceramic inlay materials to 
tooth structures.14,15,19-23 However, that bond is believed to 
be adversely affected on aging.24,25 Therefore, the influence 
of  240,000 loading cycles and 3,500 of  thermal cycles were 
also considered in this study to simulate the effect of  one 
year of  aging on the efficiency of  ceramic-cement-dentin 
adhesive bond.10,28,29 

The push-out bond strength test was selected to assess 
the efficiency of  bonding of  different ceramic-cement 
combinations to tooth dentin due to its ability to demon-
strate more homogenous stress distribution at the bonding 
interfaces.33 Moreover, this test was preferably selected to 
evaluate the adhesive junction when brittle materials are 
included.34 The null hypothesis of  this in vitro study was that 
there is no difference between bond strength values of  dif-
ferent ceramics-cement combinations following simulated 
aging. This hypothesis should be accepted in response to 
the recorded results that revealed no difference in bond 
strength values of  both types of  ceramic materials to den-
tin within each of  the tested subgroups. This finding could 
be attributed to the ability of  ceramic surface preparation 
protocols used to achieve reasonable means of  ceramic-
cement bonding. Etching of  FP surfaces using hydrofluoric 
acid provided valuable means of  cement micromechanical 
attachment. In addition, the application of  the less viscous 
silane coupling agent into the created micro-irregularities 
helped achieving chemo-mechanical bonding to the etched 
ceramic surfaces.17 On the other hand, sandblasting of  ZR 
surfaces provided the same opportunity for the cementing 
materials to have micromechanical attachment to the 
roughened ceramic surfaces.17 This postulation was sup-
ported with the results of  both Queiroz et al.35 and Souza et 
al.,36 that necessitated the roughening process before the 
application of  priming agents. Other researchers37 addition-
ally recommended the application of  resin primers with the 
ability to bond chemically to the properly roughened 
ceramic surfaces seeking for higher bond strength. 

At the same time, no differences in bond strength val-
ues were noticed between the two types of  cements (EB 
and SA) used to lute either type of  ceramic inlays. This 
finding came in disagreement with the results of  Viotti et 
al.,38 and Souza et al.,36 who indicated lower bond strength 

of  self-adhesive cements to dentin and ceramics than con-
ventional (etch-and-bond) resin cements. On contrary, 
Abdelaziz et al.,17 reported higher bond strength of  self-
adhesive cement to zirconia substrates following their sand-
blasting. Results of  Feitosa et al.,39 also indicated higher 
bond strength of  self-adhesive cements to roughened feld-
spar-based ceramic substrates. The comparable perfor-
mance of  both cement systems in this study probably relat-
ed to the efficient penetration into surface irregularities of  
the roughened ceramic surfaces. The self-adhesive cement 
probably got this advantage based on its thixotropic prop-
erty that allowed its significant flow and subsequent micro-
mechanical attachment into ceramics’ surface irregulari-
ties.40 

Aging of  test samples was carried out to simulate the in-
service conditions. Using 3,500 cycles of  thermal changes 
together with 240,000 cycles of  fatigue loading were select-
ed to resemble one year of  clinical service.10,28,29 Regardless 
the type of  resin cement used, many studies25,36,41-43 revealed 
an adverse effect of  thermocycling on their bond strength 
to zirconia and feldspar-based ceramics. Another study24 
also showed a significant reduction in bond strength values 
of  resin cement to ceramic following simulated aging apply-
ing cyclic fatigue loading. Those findings disagreed with the 
results of  the current study that showed no statistically sig-
nificant effect of  both thermocycling and cyclic fatigue 
loading on ceramic-cement-dentin bond strength. The 
recorded results were probably related to the ability of  cur-
rent resin cement formulations to offer durable bonding 
under simulated aging conditions.22,44 The proved microme-
chanical attachment of  the cements used to roughened ceram-
ic surfaces may also contribute to the achieved results.17 
Several researchers supported the outcomes of  the current 
study as they reported no significant effect of  different aging 
conditions on resin cements-ceramic bonding.45-47

Regardless the type of  luting cement, the majority of  
the noticed modes of  bond failure, in all test groups before 
and after simulated aging, were belonging to the adhesive 
type either at dentine-cement or ceramic-cement interface. 
These findings were in agreement with that of  Flury et al.,48 
who studied the push-out bond strength of  CAD/CAM 
ceramic inlays luted to dentin with resin cements and report-
ed predominance of  adhesive mode of  failure at the cement-
dentin interface. Another study by Aleisa et al.,49 also sup-
ported the predominance of  adhesive failure at zirconia-res-
in cement interface. They referred this observation to the 
difficulty to establish strong bond to zirconia surfaces, in 
addition to lower stability of  the created bond on aging. 
The incidence of  the mixed type combining both adhesive 
failure at cement-dentin interface and cohesive failure with-
in cement body was decreased in most of  the test groups 
following simulated aging of  the tested samples. This 
observation possibly was the result of  the bonding fatigue 
in response to difference in coefficient of  thermal expan-
sion and water sorption during thermocycling in addition to 
the mechanical stresses expressed at the time of  cyclic 
fatigue loading. These factors may increase the incidence of  
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adhesive failures at the expense of  the mixed type.47,50 
Findings and limitations of  this in vitro study, accordingly, 
necessitate further evaluation of  ceramic-cement-dentin 
bonding performance following prolonged aging.

CONCLUSION

The suggested cement-ceramic combinations offer compa-
rable bonding performance to dentin substrate either 
before or after simulated aging that seems to have no 
adverse effect on the achieved bond. 
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