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Abstract

Recently, Chromosome Conformation Capture (3C) based experiments have highlighted the 

importance of computational models for the study of chromosome organization. In this review, we 

propose that current computational models can be grouped into roughly four classes, with two 

classes of data-driven models: consensus structures and data-driven ensembles, and two classes of 

de novo models: structural ensembles and mechanistic ensembles. Finally, we highlight specific 

questions mechanistic ensembles can address.
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Review of Hi-C

Chromosome Conformation Capture (3C [1]) based methods provide high-resolution and 

genome-wide maps of contact frequencies between genomic positions. 3C methods convert 

spatial contacts between pairs of genomic loci into molecular products that can be assayed 

using high-throughput sequencing. To obtain these molecular products, the 3C protocol 

involves: crosslinking chromatin to freeze contacts in place, digesting chromatin with 

restriction enzymes to break full chromosomes into fragments, and capturing interactions 

between spatially contacting fragments using proximity ligation. Depending on the specific 

approach, contacts between fragments are either read out: 1-by-1 (3C [1]), 1-by-all (4C 

[2,3]), many-by-many (5C [4]), or all-by-all (Hi-C [5], TCC [6], and 3C-seq [7]). 3C-based 

methods are usually performed on large populations of cells, producing population-average 

maps of chromosomal contact frequencies, though single-cell approaches have also been 

developed [8].

3C-based methods have uncovered many layers of chromosomal organization in higher 

eukaryotes, and computational models can aid understanding at each level. Following [9], 
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mammalian chromosome display roughly five levels of organization: (1) chromosome 

territoriality (cis/trans ratio [5,6]); (2) distance-dependent contact frequency P(s) [5,10]; (3) 

genomic compartments (eigenvectors)[5,11]; (4) topological domains (TADs) [12,13]; (5) 

point interactions [14]. Drosophila chromosomes display similar levels of organization 

[7,15].

Interestingly, yeast and bacterial chromosomes appear to be organized on different 

principles, and each requires independent modelling efforts. Importantly, they simply 

scaled-down human chromosomes; for example, neither displays alternating compartments. 

In yeast, chromosome organization is dominated by strong centromere-centromere 

clustering, consistent with a Rabl-type conformation both in Cerevisiae [1,16] and Pombe 

[17,18]. In Caulobacter [19,20] and Subtilis [21,22], a major feature is co-alignment of two 

chromosomal arms.

Challenges for models

One major challenge for developing spatial models of chromosomes is that Hi-C maps 

generally do not represent information from single in-vivo conformations. This is 

underscored by comparing conventional Hi-C maps with maps from single-cell Hi-C 

experiments [8]. In conventional Hi-C experiments, hundreds of millions of cells are pooled 

together, creating population-average maps of contact probability. A striking feature of 

conventional Hi-C maps is that there are almost no regions of zero contact probability; any 

genomic loci may be found in contact with any other loci in some, potentially very small, 

fraction of cells. Consistently, single-cell Hi-C experiments show that contact maps of 

individual cells are highly variable [8]; each individual cell only realizes a subset of possible 

contacts, which are different in every cell. A similar difference was observed between 

single-cell and population-average contact maps in polymer simulations [10]; contacts in 

individual realizations of the polymer model were highly variable, while the contact map 

averaged over many realizations was homogeneous. Since a single structure produces a very 

sparse contact map, an ensemble of conformations is needed to reproduce a population-

average Hi-C map [23].

Another challenge for models is the complicated relationship between Hi-C contact 

probability and spatial distance, as measured by imaging. While average contact probability 

and average spatial distance of two loci are often highly anti-correlated [24,25], Hi-C probes 

a particular part of the pairwise distance distribution and focuses on small distances 

(contacts), which can be very different from the mean or median distance. In particular, Hi-

C contact frequency may increase despite an increase in the average spatial distance between 

two loci. This is because a small percent increase in the frequency of being very close can 

easily be balanced out by a shift in the rest of the spatial distribution, yet still translates into 

a large fold-increase in contact frequency. Interestingly, we found this situation occurs in 

published data [14] (peak-4-loop has roughly 4-fold higher contact probability despite being 

further away on average than peak-3-control; nevertheless, the small distance behavior of 

the CDF is in agreement with Hi-C). This illustrates that Hi-C contact probabilities cannot 

be simply translated into spatial distances. With this in mind, reconciling microscopy 

measurements of the chromosome organization with Hi-C is an important challenge [26,27], 
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yet will require very resolution [28,29] and high-throughput [30] imaging experiments to 

probe the infrequently sampled small-distance regime of the spatial distance distribution.

A final challenge for developing spatial models of chromosomes is determining how to 

compare them with Hi-C data. Simple correlation between Hi-C maps can be misleading due 

to the very strong dependence of contact probability on distance in all maps. For example, a 

Hi-C map for mouse chr1 (CH12 cells, 100kb resolution [14]) correlates with a same-size 

region of a human chr3 (GM12878 cells, 100kb resolution [14]) with Pearson’s r=0.41, and 

Spearman’s r=0.83, while there obviously is no underlying relationship between the two 

maps. For this reason, we favor comparisons that consider a range of features (e.g. P(s), 

TADs, compartments, specific interactions, see [9]) rather than simply relying on the 

correlation between two Hi-C maps.

Four classes of spatial models

An increasingly-common research goal has been to develop spatial models of chromosomes 

that can reproduce essential features of various experimentally-obtained contact maps (often 

either from Hi-C or 5C experiments; for convenience, we use the term Hi-C in what 

follows). However, the approaches to this problem have differed greatly in their assumptions 

and implementation. Moreover, different approaches can be used to address different 

questions. We believe that modelling approaches can be divided into roughly four 

categories, where the first two are data-driven approaches, and the latter two are de novo 

modeling approaches.

Data-driven models

A compelling approach is to use the Hi-C data directly to produce a spatial model of a 

chromosome. This has led to a variety of methods that range from methods reproducing a 

single structure (consensus structure models) to methods that aim to reproduce an ensemble 

of structures (data-driven ensembles) (Figure 1).

Consensus structure models—Consensus structure approaches aim at reconstructing a 

single chromosome structure from Hi-C maps. These methods usually assume some 

relationship between the contact probability and the spatial distance between loci [16,31–

35]. Based on this relationship, these models impose a set of constraints, and generate a 

consensus structure. However, as discussed above, the structures produced by these 

approaches are inconsistent with Hi-C maps, as a Hi-C map has to be described by a highly 

variable ensemble of structures. In a sense, looking for a consensus structure of a 

chromosome is analogous to searching for the consensus structure of an unfolded protein. 

The conceptual misunderstanding underlying consensus model approaches seems to be, after 

interpreting average contact frequencies as average distances, assuming that there are only 

small fluctuations around the average distance. This assumption is clearly violated in 

imaging experiments, which show that the variability in spatial distance between two loci is 

often similar to their average separation [25]. While consensus structure approaches can be 

thought of as methods for visualizing Hi-C data, transformations made by these approaches 

(contact frequencies to distances, distances to 3D structure) can lead to information loss and 

distortion.
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We note that reconstruction of a single chromosome conformation from a single-cell Hi-C 

map [8] is actually a very different problem, and in this case it is well-justified to derive a 

consensus structure attempting to satisfy the observed contacts. Also, the authors carefully 

considered only the structures of the single-copy X-chromosome to avoid ambiguities 

arising from mapping Hi-C interactions onto homologous chromosomes. However, it is not 

yet clear whether the resolution of currently-available single-cell Hi-C data is sufficient to 

faithfully reconstruct the structure of a chromosome, as current experiments report roughly 

one contact per 100kb region. As follows, further computational tests would be useful for 

these single-cell modelling approaches; for example, whether reconstructed structures have a 

similar P(s) as the single-cell Hi-C data.

Data-driven ensembles—A second set of data-driven modelling approaches aim at 

simulating an ensemble of structures to reconstruct experimental Hi-C maps [6,25,36,37]. 

Since the variability needed to reconstruct experimental maps cannot be achieved by setting 

rigid distance constraints between different genomic regions, these methods usually employ 

a very flexible set of constraints. Interestingly, successful models either explicitly or 

implicitly make use of a polymer description of chromatin. Regardless of the nomenclature, 

a simulated region of chromatin fiber is described by series of monomers (referred to 

alternately as ‘points’, ‘beads’, or ‘particles) that interact via a number of forces. The first 

essential interaction is linear connectivity, imposed by harmonic bonds between adjacent 

monomers. The second essential interaction is that of excluded volume interactions between 

each pair of monomers, where monomers either interact as hard or soft spheres upon 

collisions. Additional fiber stiffness is often imposed, as a function of the angle between 

each triplet of linearly connected monomers. Finally, a set of pairwise interactions between 

monomers, inferred by fitting to the Hi-C contact map, is usually added on top of the basic 

polymer interactions. Data-driven ensemble approaches then use Monte Carlo or Molecular 

Dynamics to sample the space of possible spatial structures given these interactions and 

generate a set of conformations that is variable enough to reproduce a Hi-C contact map.

We note that the boundary distinguishing data-driven ensembles and consensus structure 

approaches is not a strict division, and that specific approaches give different degrees of 

variability. Some consensus structure approaches allow for a small degree of variability 

[31], and some data-driven ensemble implementations [36] return ensembles where 

conformations have visually similar structures with a well-defined shape.

We propose that a useful quality-control step for data-driven models is performing in-silico 

Hi-C, i.e. recording sets of contacts from simulated structures and building an average 

contact map. Displaying an in-silico Hi-C map and its quantitative characteristics such as 

P(s), alongside structures from a model, can demonstrate how well a model reproduces the 

data. In particular, this approach can test whether a model has sufficient variability to agree 

with the experimental Hi-C map, or if the ensemble-averaged in-silico contact map has 

sparse regions devoid of contacts. Moreover, it may help avoid misleading conclusions 

arising from intermediate stages of data-processing, e.g. distance maps inferred from Hi-C 

data.
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De novo ensembles

An alternate approach is test whether certain known or hypothesized physical or biological 

principles can lead to ensembles that agree with Hi-C maps, or key features of Hi-C maps. 

Importantly, such de novo models do not directly infer data-driven ensembles from Hi-C 

maps. A subset of de novo models specifically aims at using only biologically-plausible 

interactions; we call these approaches mechanistic ensembles. We refer to other de novo 

models as structural ensembles. Generally, all biologically plausible interactions in 

mechanistic ensembles should be relatively short-ranged; i.e. interactions should occur when 

two loci, or a locus and a sub-nuclear compartment, are in direct proximity.

Structural ensembles—Structural ensembles include well-known polymer ensembles 

from the literature (including random walks (RWs [38]), self-avoiding walks (SAWs), and 

equilibrium globules (EG) [39]) as well as more complex polymer ensembles, such as a melt 

of polymer rings [40–42], or a fractal globule [5,43]. We also classify other models with 

interactions between genomic loci that are unlikely to result from biological mechanisms as 

structural ensembles [5,44]. While providing no information about possible mechanisms of 

folding, structural ensembles can nevertheless help to gain insights into chromosomal 

organization.

The fractal globule model demonstrates how insights can be gained by comparing de novo 

structural ensembles with Hi-C data [5]. The fractal globule was originally proposed as a 

non-equilibrium state of a collapsed polymer [43]. We note that there is no particular 

obvious biologically-plausible mechanism that would realize such collapse; in vivo, 

interphase chromosomes emerge following the decondensation from compact mitotic 

chromosomes. Still, the fractal globule model agrees with the Hi-C data much better than 

several other polymer ensembles, including RWs, SAWs, and EGs. This was accomplished 

not by inferring structures from a particular region of a Hi-C map, but by testing how each 

ensemble reproduced a statistical feature of Hi-C maps, namely contact probability P(s) 

versus distance s at the ~1–10Mb scale [5]. Moreover, this comparison suggests general 

principles of chromosomal organization, including local spatial compactness of any 

continuous genomic region at these scales, as well as the potential importance of topological 

constraints, i.e. the inability of two regions of a chromosomal fiber to pass through each 

other [45]. The role of topological constraints also forms interesting links to other structural 

ensembles, including melts of polymer rings [41,42].

Structural ensembles can also provide insight into chromosome organization at smaller 

scales, including how insulators might function [46,47], and how a generic chromatin loop 

might appear in an idealized in silico Hi-C contact map [47,48]. The latter suggests that 

peaks observed in Hi-C data are not simple loops, and that TADs require additional within-

domain organization beyond a looping interaction between boundary elements at their 

edges.

Mechanistic ensembles—Mechanistic ensemble approaches computationally test the 

hypothesis of whether particular mechanism or a set of mechanistic constraints could give 

rise to a given Hi-C map. Mechanistic ensembles models start with similar polymer 
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ingredients and use similar sampling methods as other ensemble approaches. However, 

additional interactions beyond those characterizing the chromatin fiber are imposed with a 

particular, hypothesis-dependent, form.

An early study which used a mechanistic ensemble approach asked to what extent 

decondensation from mitosis can affect interphase chromosome organization [49]. 

Interestingly, considering the same mechanism, the authors later found that decondensation 

can lead to a very similar P(s) as the structural fractal globule ensemble, and provide a 

similar agreement with P(s) from Hi-C data [50]. Still, decondensation alone cannot 

reproduce the locus-specific features of interphase Hi-C maps [10], and this mechanism 

must be supplemented with additional interactions to fully describe interphase maps. 

Similarly, it remains unclear for how long this P(s) would be maintained following 

decondensation [51], particularly with any topoisomerase-II activity.

A more recent mechanistic ensemble study tested whether human mitotic chromosomes 

could arise from the process of loop extrusion [10]. Loop extrusion is a proposed mechanism 

of chromatin compaction by SMC-complexes [52], which leads to the formation of an array 

of consecutive loops. A parameter sweep over possible loop sizes and multiple fiber 

geometries tested whether the imposed mechanistic constraints could reproduce the P(s) and 

homogeneous ensemble-average interaction map observed in Hi-C, and found this agreed 

with an 80–120kb average loop length. (Figure 2)

As with the two classes of data-driven models, there is not a strict divide between 

mechanistic and structural ensembles. For example, in models of human mitotic 

chromosomes, considering structural models was a useful first step for developing a more 

detailed model of the full process of chromosome condensation [10]. For example, a strictly 

hierarchical metaphase chromosome organization could be ruled out by using structural 

ensembles. Externally-imposed linear ordering and cylindrical confinement of a single 

mitotic chromosome in several models were also not biologically-plausible mechanistic 

constraints; still, they demonstrated how the sharp decline in P(s) at around 10Mb could 

emerge. Note however, that the same constraint may be biologically-plausible in a different 

setting; for example, cylindrical confinement representing bacterial cell walls [20] is indeed 

a biologically-plausible constraint.

Mechanistic ensembles have also been developed to describe the formation of various levels 

of interphase chromosome organization in eukaryotes. Supercoiling has been proposed as a 

model of TAD formation [48,53], providing good agreement with Hi-C data. Block-

copolymer models, representing interaction preferences between two alternating types of 

chromatin, have been proposed as a model of alternating compartments [54] with 

encouraging results. However, we note this study used very short polymer chains and it 

remains to be seen whether the size of the reported multi-stability regime, where domain 

strength agrees with Hi-C, depends on the degree to which the polymer has been coarse-

grained.

More recently, a mechanistic ensemble approach [55] suggested that TADs (or domains) in 

mammalian interphase chromosomes could arise from the activity of cis-acting loop 
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extruding factors, similar to the process proposed as underlying metaphase chromosome 

compaction [10,52] (Figure 2). During this process loop extruding factors (possibly 

cohesins) would bind the chromatin fiber and extrude progressively larger loops, but stall at 

domain boundaries (likely occupied by CTCF). Interestingly, this process can not only 

explain TAD organization and give rise to point interactions at the corners of domains, but 

would naturally explain: the inward directionality bias observed for CTCF motifs at the 

boundary of TADs [14,56]; results of boundary deletion [12,57]; and CTCF-site inversion 

experiments [58,59].

Mechanistic ensembles have also been developed for yeast [60,61] and bacterial 

chromosomes [20]. In yeast, the authors asked to what extent they could describe Hi-C 

contact maps through a limited number of geometric constraints; remarkably, these studies 

found that basic polymer interactions, centromere clustering, spherical confinement, and 

attraction of telomeres to the periphery, could provide good genome-wide agreement with 

Hi-C data at ~20kb resolution.

In Caulobacter, the chromosome was modeled as an array of supercoiled DNA plectonemes 

emanating from a circular chromosome. This study found the best fit to experimental Hi-C 

data is achieved for tightly spaced plectonemes with an average length of 15kb and a broad 

length distribution. This mechanistic ensemble model also suggested a potential mechanism 

of domain formation in Caulobacter; introducing plectoneme-free regions at locations of 

highly expressed genes produced domains in simulated Hi-C maps. Other mechanistic 

models of bacterial chromosome organization have been developed [62,63], although they 

have not yet been explicitly compared to Hi-C data.

Challenges and outlook for mechanistic ensembles

Developing a mechanistic ensemble often helps to clarify existing hypotheses of 

chromosomal organization, formally define relevant quantitative parameters, and identify 

features of chromosome organization not directly visible in Hi-C data. For example, 

considering metaphase chromosome organization in terms of mechanistic ensembles [10] 

highlighted the importance of consecutive loops, as opposed to random looping; defined 

loop length and packing density along the longitudinal axis of the chromosome as the key 

parameters; and illustrated how consecutive loops must be stochastically positioned along 

the chromosome. Finally, unlike most structural or consensus models, mechanistic 

ensembles often naturally incorporate information regarding the time-evolution of 

chromosomal conformations, allowing for comparisons with live-cell imaging experiments.

Mechanistic ensembles can both illustrate how simple constraints lead to a seemingly 

complex Hi-C map, or how a simple average Hi-C map might emerge from stochastic 

organizational principles. Illustrating the first point, modelling Cerevisiae chromosomes 

revealed that centromere clustering is sufficient to explain complex features at the full-

genome scale [60,61]. Illustrating the second, models of Caulobacter chromosomes and 

human mitotic chromosomes respectively incorporated stochastically-positioned 

plectonemes and loops with variable lengths. However, such plectonemes and loops are not 
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directly visible in the population-average Hi-C maps, as their position is random from cell-

to-cell.

Despite their promise, mechanistic ensemble approaches are certainly not without potential 

pitfalls. First, determining which forces are biologically plausible is a challenge; a general 

rule of thumb is that plausible forces should be relatively short-ranged (i.e. act over the scale 

of a few monomers) and not incorporate information beyond their local spatial environment. 

This rules out a large class of forces that allow the energy, or probability, of interaction 

between two chromosomal loci to depend on their genomic separation [64] or on whether 

they belong to the same or different chromosomes. Such interactions are biologically 

implausible, as two chromosomal loci that come into physical contact have no information 

about the chromosome they belong to, or if they are separated by 1Mb or 50Mb. Models 

using such biologically-implausible forces can be better classified as de novo structural 

ensembles, though, nevertheless, the conformations they produce may still provide valuable 

information about chromatin organization.

Second, mechanistic constraints that may be reasonable at one genomic scale may not be 

reasonable at another, and coarse-graining should be carefully considered for both de novo 

and data-driven models. The binders-and-switchers model [65], while based on a 

biologically plausible mechanism, is one example of where excessive coarse-graining may 

have led to an inaccurate conclusion. In particular, the authors find that the transitional 

regime between a compact (globular) and a non-compact (SAW) state provides good 

agreement with experimental P(s)~s−b, b=1–1.2. However, for sufficiently long 

homopolymers, a fundamental result in polymer physics states that in this transitional state 

(or at the theta point [39,66]) a homopolymer behaves like a Random Walk with P(s)~s−1.5. 

We also note the domain structure reported for two classes of binders-and-switchers should 

reproduce an alternating pattern of compartments if this rule was implemented genome-

wide, as observed for closely-related block co-polymer models [54], not TADs. Extending 

this model to describe TADs genome-wide would require as many different classes of 

binders-and-switchers as the number of different TADs (many thousands per genome).

Finally, studying chromosomes from the perspective of polymer physics can also provide 

inspiration for new avenues of research in physics. In particular, an open question that has 

emerged from the study of Hi-C data and comparisons with the fractal globule model is 

whether non-equilibrium conformations following de-condensation from metaphase can be 

understood in terms of a melt of polymer rings [42] or the equilibrium state of a very long 

and unknotted polymer [67]. Other interesting questions relate to physical properties of 

heterogeneous polymer brushes, which appear to be relevant both in mitotic [10,68], 

bacterial [20], and yeast chromosomes.

Acknowledgments

Authors are grateful to Anton Goloborodko, Nezar Abdennur and Boryana Doyle for thoughtful discussions. 
Authors are supported by R01 HG003143 and R01 GM114190.

Imakaev et al. Page 8

FEBS Lett. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. 2002; 
295:1306–1311. [PubMed: 11847345] 

2. Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S, Kanduri C, Lezcano M, 
Sandhu KS, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R. Circular chromosome conformation 
capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal 
interactions. Nat Genet. 2006; 38:1341–1347. [PubMed: 17033624] 

3. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W. 
Nuclear organization of active and inactive chromatin domains uncovered by chromosome 
conformation capture-on-chip (4C). Nat Genet. 2006; 38:1348–1354. [PubMed: 17033623] 

4. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb 
J, Nusbaum C, Green RD, Dekker J. Chromosome Conformation Capture Carbon Copy (5C): a 
massively parallel solution for mapping interactions between genomic elements. Genome Res. 
2006; 16:1299–1309. [PubMed: 16954542] 

5. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, 
Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke 
A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. Comprehensive mapping of long-range 
interactions reveals folding principles of the human genome. Science. 2009; 326:289–93. [PubMed: 
19815776] 

6. Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L. Genome architectures revealed by tethered 
chromosome conformation capture and population-based modeling. Nat Biotechnol. 2011; 30:90–
98. [PubMed: 22198700] 

7. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, 
Cavalli G. Three-dimensional folding and functional organization principles of the Drosophila 
genome. Cell. 2012; 148:458–72. [PubMed: 22265598] 

8. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P. 
Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 2013; 502:59–64. 
[PubMed: 24067610] 

9. Lajoie BR, Dekker J, Kaplan N. The Hitchhiker’s Guide to Hi-C Analysis: Practical guidelines. 
Methods. 2014; 72:65–75. [PubMed: 25448293] 

10. Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J. Organization of 
the mitotic chromosome. Science. 2013; 342:948–53. [PubMed: 24200812] 

11. Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, Dekker J, Mirny 
LA. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat 
Methods. 2012; 9:999–1003. [PubMed: 22941365] 

12. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, 
Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E. Spatial partitioning of the 
regulatory landscape of the X-inactivation centre. Nature. 2012; 485:381–385. [PubMed: 
22495304] 

13. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological domains in 
mammalian genomes identified by analysis of chromatin interactions. Nature. 2012; 485:376–380. 
[PubMed: 22495300] 

14. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, 
Machol I, Omer AD, Lander ES, et al. A 3D Map of the Human Genome at Kilobase Resolution 
Reveals Principles of Chromatin Looping. Cell. 2014; 159:1665–1680. [PubMed: 25497547] 

15. Hou C, Li L, Qin ZS, Corces VG. Gene Density, Transcription, and Insulators Contribute to the 
Partition of the Drosophila Genome into Physical Domains. Mol Cell. 2012; 48:471–484. 
[PubMed: 23041285] 

16. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, 
Noble WS. A three-dimensional model of the yeast genome. Nature. 2010; 465:363–367. 
[PubMed: 20436457] 

17. Tanizawa H, Iwasaki O, Tanaka A, Capizzi JR, Wickramasinghe P, Lee M, Fu Z, Noma K. 
Mapping of long-range associations throughout the fission yeast genome reveals global genome 

Imakaev et al. Page 9

FEBS Lett. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



organization linked to transcriptional regulation. Nucleic Acids Res. 2010; 38:8164–77. [PubMed: 
21030438] 

18. Mizuguchi T, Fudenberg G, Mehta S, Belton J-M, Taneja N, Folco HD, FitzGerald P, Dekker J, 
Mirny L, Barrowman J, et al. Cohesin-dependent globules and heterochromatin shape 3D genome 
architecture in S. pombe. Nature. 2014; 516:432–435. [PubMed: 25307058] 

19. Umbarger MA, Toro E, Wright MA, Porreca GJ, Bau D, Hong SH, Fero MJ, Zhu LJ, Marti-Renom 
MA, McAdams HH, Shapiro L, Dekker J, Church GM. The three-dimensional architecture of a 
bacterial genome and its alteration by genetic perturbation. Mol Cell. 2011; 44:252–264. 
[PubMed: 22017872] 

20. Le TBK, Imakaev MV, Mirny LA, Laub MT. High-Resolution Mapping of the Spatial 
Organization of a Bacterial Chromosome. Science (80- ). 2013; 342:731–734.

21. Marbouty M, Le Gall A, Cattoni DI, Cournac A, Koh A, Fiche J-B, Mozziconacci J, Murray H, 
Koszul R, Nollmann M. Condensin- and Replication-Mediated Bacterial Chromosome Folding 
and Origin Condensation Revealed by Hi-C and Super-resolution Imaging. Mol Cell. 2015; 
59:588–602. [PubMed: 26295962] 

22. Wang X, Le TBK, Lajoie BR, Dekker J, Laub MT, Rudner DZ. Condensin promotes the 
juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev. 2015; 29:1661–75. 
[PubMed: 26253537] 

23. Fudenberg G, Mirny LA. Higher-order chromatin structure: bridging physics and biology. Curr 
Opin Genet Dev. 2012; 22:115–124. [PubMed: 22360992] 

24. Hakim O, Sung MH, Voss TC, Splinter E, John S, Sabo PJ, Thurman RE, Stamatoyannopoulos JA, 
De Laat W, Hager GL. Diverse gene reprogramming events occur in the same spatial clusters of 
distal regulatory elements. Genome Res. 2011; 21:697–706. [PubMed: 21471403] 

25. Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, Dekker J, Tiana G, Heard E. Predictive polymer 
modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell. 2014; 
157:950–963. [PubMed: 24813616] 

26. Williamson I, Berlivet S, Eskeland R, Boyle S, Illingworth RS, Paquette D, Bickmore Wa. Spatial 
genome organization : contrasting views from chromosome conformation capture and fluorescence 
in situ hybridization. 2014:2778–2791.

27. Belmont AS. Large-scale chromatin organization: the good, the surprising, and the still perplexing. 
Curr Opin Cell Biol. 2014; 26:69–78. [PubMed: 24529248] 

28. Beliveau BJ, Boettiger AN, Avendaño MS, Jungmann R, McCole RB, Joyce EF, Kim-Kiselak C, 
Bantignies F, Fonseka CY, Erceg J, Hannan Ma, Hoang HG, Colognori D, Lee JT, Shih WM, Yin 
P, Zhuang X, Wu C. Single-molecule super-resolution imaging of chromosomes and in situ 
haplotype visualization using Oligopaint FISH probes. Nat Commun. 2015; 6:7147. [PubMed: 
25962338] 

29. Bienko M, Crosetto N, Teytelman L, Klemm S, Itzkovitz S, van Oudenaarden A. A versatile 
genome-scale PCR-based pipeline for high-definition DNA FISH. Nat Methods. 2013; 10:122–4. 
[PubMed: 23263692] 

30. Shachar S, Voss TC, Pegoraro G, Sciascia N, Misteli T. Identification of Gene Positioning Factors 
Using High-Throughput Imaging Mapping. Cell. 2015; 162:911–923. [PubMed: 26276637] 

31. Hu M, Deng K, Qin Z, Dixon J, Selvaraj S, Fang J, Ren B, Liu JS. Bayesian Inference of Spatial 
Organizations of Chromosomes. PLoS Comput Biol. 2013; 9:e1002893. [PubMed: 23382666] 

32. Zhang Z, Li G, Toh K-C, Sung W-K. 3D chromosome modeling with semi-definite programming 
and Hi-C data. J Comput Biol. 2013; 20:831–46. [PubMed: 24195706] 

33. Varoquaux N, Ay F, Noble WS, Vert J-P. A statistical approach for inferring the 3D structure of 
the genome. Bioinformatics. 2014; 30:i26–33. [PubMed: 24931992] 

34. Segal MR, Xiong H, Capurso D, Vazquez M, Arsuaga J. Reproducibility of 3D chromatin 
configuration reconstructions. Biostatistics. 2014; 15:442–456. [PubMed: 24519450] 

35. Lesne A, Riposo J, Roger P, Cournac A, Mozziconacci J. 3D genome reconstruction from 
chromosomal contacts. Nat Methods. 2014; 11:1141–1143. [PubMed: 25240436] 

36. Bau D, Sanyal A, Lajoie BR, Capriotti E, Byron M, Lawrence JB, Dekker J, Marti-Renom MA. 
The three-dimensional folding of the alpha-globin gene domain reveals formation of chromatin 
globules. Nat Struct Mol Biol. 2011; 18:107–114. [PubMed: 21131981] 

Imakaev et al. Page 10

FEBS Lett. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Zhang B, Wolynes PG. Topology, structures, and energy landscapes of human chromosomes. Proc 
Natl Acad Sci. 2015; 112:6062–6067. [PubMed: 25918364] 

38. Van den Engh G, Sachs R, Trask BJ. Estimating genomic distance from DNA sequence location in 
cell nuclei by a random walk model. Science. 1992; 257:1410–1412. [PubMed: 1388286] 

39. Grosberg AY, Khokhlov AR, Stanley HE, Mallinckrodt AJ, McKay S. Statistical Physics of 
Macromolecules. Comput Phys. 1995; 9:171.

40. Vettorel T, Grosberg AY, Kremer K. Statistics of polymer rings in the melt: a numerical simulation 
study. Phys Biol. 2009; 6:25013.

41. Halverson JD, Lee WB, Grest GS, Grosberg AY, Kremer K. Molecular dynamics simulation study 
of nonconcatenated ring polymers in a melt. II. Dynamics. J Chem Phys. 2011; 134:204905. 
[PubMed: 21639475] 

42. Halverson JD, Smrek J, Kremer K, Grosberg AY. From a melt of rings to chromosome territories: 
the role of topological constraints in genome folding. Rep Prog Phys. 2014; 77:22601.

43. Grosberg AY, Nechaev SK, Shakhnovich EI. The role of topological constraints in the kinetics of 
collapse of macromolecules. J Phys. 1988; 49:2095–2100.

44. Sachs RK, van den Engh G, Trask B, Yokota H, Hearst JE. A random-walk/giant-loop model for 
interphase chromosomes. Proc Natl Acad Sci U S A. 1995; 92:2710–2714. [PubMed: 7708711] 

45. Grosberg AY. How two meters of DNA fit into a cell nucleus: Polymer models with topological 
constraints and experimental data. Polym Sci Ser C. 2012; 54:1–10.

46. Mukhopadhyay S, Schedl P, Studitsky VM, Sengupta AM. Theoretical analysis of the role of 
chromatin interactions in long-range action of enhancers and insulators. Proc Natl Acad Sci U S A. 
2011; 108:19919–24. [PubMed: 22123989] 

47. Doyle B, Fudenberg G, Imakaev M, Mirny LA. Chromatin loops as allosteric modulators of 
enhancer-promoter interactions. PLoS Comput Biol. 2014; 10:e1003867. [PubMed: 25340767] 

48. Benedetti F, Dorier J, Burnier Y, Stasiak A. Models that include supercoiling of topological 
domains reproduce several known features of interphase chromosomes. Nucleic Acids Res. 2013; 
42:2848–2855. [PubMed: 24366878] 

49. Rosa A, Everaers R. Structure and dynamics of interphase chromosomes. PLoS Comput Biol. 
2008; 4:e1000153. [PubMed: 18725929] 

50. Rosa A, Becker NB, Everaers R. Looping probabilities in model interphase chromosomes. Biophys 
J. 2010; 98:2410–2419. [PubMed: 20513384] 

51. Schram RD, Barkema GT, Schiessel H. On the stability of fractal globules. J Chem Phys. 
2013:138.

52. Alipour E, Marko JF. Self-organization of domain structures by DNA-loop-extruding enzymes. 
Nucleic Acids Res. 2012; 40:11202–12. [PubMed: 23074191] 

53. Benedetti F, Dorier J, Stasiak A. Effects of supercoiling on enhancer-promoter contacts. Nucleic 
Acids Res. 2014; 42:1–8. [PubMed: 24376271] 

54. Jost D, Carrivain P, Cavalli G, Vaillant C. Modeling epigenome folding: formation and dynamics 
of topologically associated chromatin domains. Nucleic Acids Res. 2014:1–9.

55. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of 
Chromosomal Domains by Loop Extrusion. bioRxiv. 2015:024620.

56. Rudan MV, Barrington C, Henderson S, Ernst C, Odom DT, Tanay A, Hadjur S. Comparative Hi-
C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 2015; 
10:1297–1309. [PubMed: 25732821] 

57. Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz 
JM, Laxova R, et al. Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring 
of Gene-Enhancer Interactions. Cell. 2015; 161:1012–1025. [PubMed: 25959774] 

58. Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU, Jung I, Wu H, Zhai Y, Tang Y, Lu Y, Wu Y, Jia 
Z, Li W, Zhang MQ, Ren B, Krainer AR, Maniatis T, Wu Q. CRISPR Inversion of CTCF Sites 
Alters Genome Topology and Enhancer/Promoter Function. Cell. 2015; 162:900–910. [PubMed: 
26276636] 

59. Nichols MH, Corces VG. A CTCF Code for 3D Genome Architecture. Cell. 2015; 162:703–705. 
[PubMed: 26276625] 

Imakaev et al. Page 11

FEBS Lett. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



60. Wong H, Marie-Nelly H, Herbert S, Carrivain P, Blanc H, Koszul R, Fabre E, Zimmer C. A 
predictive computational model of the dynamic 3D interphase yeast nucleus. Curr Biol. 2012; 
22:1881–1890. [PubMed: 22940469] 

61. Tjong H, Gong K, Chen L, Alber F. Physical tethering and volume exclusion determine higher-
order genome organization in budding yeast. Genome Res. 2012; 22:1295–1305. [PubMed: 
22619363] 

62. Scolari VF, Lagomarsino MC. Combined collapse by bridging and self-adhesion in a prototypical 
polymer model inspired by the bacterial nucleoid. Soft Matter. 2015; 11:1677–1687. [PubMed: 
25532064] 

63. Hong S-H, Toro E, Mortensen KI, de la Rosa MaD, Doniach S, Shapiro L, Spakowitz AJ, 
McAdams HH. Caulobacter chromosome in vivo configuration matches model predictions for a 
supercoiled polymer in a cell-like confinement. Proc Natl Acad Sci U S A. 2013; 110:1674–9. 
[PubMed: 23319648] 

64. Bohn M, Heermann DW. Diffusion-driven looping provides a consistent framework for chromatin 
organization. PLoS One. 2010; 5:e12218. [PubMed: 20811620] 

65. Barbieri M, Chotalia M, Fraser J, Lavitas L-M, Dostie J, Pombo A, Nicodemi M. Complexity of 
chromatin folding is captured by the strings and binders switch model. Proc Natl Acad Sci. 2012; 
109:16173–16178. [PubMed: 22988072] 

66. Rubinstein, M.; Colby, RH. Polymer physics. Oxford University Press; 2003. 

67. Imakaev MV, Tchourine KM, Nechaev SK, Mirny LA. Effects of topological constraints on 
globular polymers. Soft Matter. 2015; 11:665–671. [PubMed: 25472862] 

68. Marko JF, Siggia ED. Polymer models of meiotic and mitotic chromosomes. Mol Biol Cell. 1997; 
8:2217–2231. [PubMed: 9362064] 

Key references

69. Lajoie BR, Dekker J, Kaplan N. The Hitchhiker’s Guide to Hi-C Analysis: Practical guidelines. 
Methods. 2014; 72:65–75. [PubMed: 25448293] 

70. Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, Dekker J, Tiana G, Heard E. Predictive polymer 
modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell. 2014; 
157:950–963. [PubMed: 24813616] 

71. Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J. Organization of 
the mitotic chromosome. Science. 2013; 342:948–53. [PubMed: 24200812] 

72. Rosa A, Everaers R. Structure and dynamics of interphase chromosomes. PLoS Comput Biol. 
2008; 4:e1000153. [PubMed: 18725929] 

73. Alipour E, Marko JF. Self-organization of domain structures by DNA-loop-extruding enzymes. 
Nucleic Acids Res. 2012; 40:11202–12. [PubMed: 23074191] 

74. Tjong H, Gong K, Chen L, Alber F. Physical tethering and volume exclusion determine 
higherorder genome organization in budding yeast. Genome Res. 2012; 22:1295–1305. [PubMed: 
22619363] 

75. Le TBK, Imakaev MV, Mirny LA, Laub MT. High-Resolution Mapping of the Spatial 
Organization of a Bacterial Chromosome. Science (80- ). 2013; 342:731–734.

Imakaev et al. Page 12

FEBS Lett. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Left: Data-driven spatial models being with Hi-C maps. Then they usually convert the Hi-C 

map to a map of average pairwise distances or constraints. From the distance map, a single 

spatial conformation (consensus structure), or a set of spatial conformations is generated 

(data-driven ensemble). Some ensemble data-driven models then calculate the simulated Hi-

C contact map and compare it to the original. Right: De novo approaches begin with a 

hypothesis, which is then used to develop a spatial model. This spatial model has 

hypothesis-dependent interactions in addition to basic polymer constraints. This model is 

then used to generate a set of conformations. These in turn can be used to calculate a 

simulated contact map by performing in silico Hi-C, which can be compared with the 

relevant experimental Hi-C map. This leads to either rejection of the initial hypothesis, or 

modification of the hypothesis or model parameters (e.g. loop length).
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Figure 2. 
Mechanistic ensembles based on loop extrusion can explain interphase and metaphase 

chromosomal organization. Left: In a model of loop extrusion, Loop Extruding Factors 

(LEFs) bind to chromatin and extrude a progressively larger loop [52]. Top: In interphase, a 

TAD organization can be achieved with a low density of LEFs that stall at boundary 

elements, potentially inwards-oriented CTCF sites [55]. Bottom: In metaphase, a 

homogeneous contact map with a slowly-decaying contact probability in agreement with 

experimental Hi-C maps can be achieved via loop extrusion as well. However, in this case 

the density of LEFs is higher and boundary elements are no longer present. In this case, 

LEFs extrude all available chromatin fiber, and form an array of consecutive loops [20].
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