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Abstract: Despite significant advances in understanding how brain networks support working mem-
ory (WM) and cognitive control, relatively little is known about how these networks respond when
cognitive capabilities are overtaxed. We used a fine-grained manipulation of memory load within a
single trial to exceed WM capacity during functional magnetic resonance imaging to investigate how
these networks respond to support task performance when WM capacity is exceeded. Analyzing cor-
rect trials only, we observed a nonmonotonic (inverted-U) response to WM load throughout the clas-
sic WM network (including bilateral dorsolateral prefrontal cortex, posterior parietal cortex, and
presupplementary motor areas) that peaked later in individuals with greater WM capacity. We also
observed a relative increase in activity in medial anterior prefrontal cortex, posterior cingulate/pre-
cuneus, and lateral temporal and parietal regions at the highest WM loads, and a set of predomi-
nantly subcortical and prefrontal regions whose activation was greatest at the lowest WM loads. At
the individual subject level, the inverted-U pattern was associated with poorer performance while
expression of the early and late activating patterns was predictive of better performance. In addition,
greater activation in bilateral fusiform gyrus and right occipital lobe at the highest WM loads pre-
dicted better performance. These results demonstrate dynamic and behaviorally relevant changes in
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the level of activation of multiple brain networks in response to increasing WM load that are not
well accounted for by present models of how the brain subserves the cognitive ability to hold and
manipulate information on-line. Hum Brain Mapp 36:1245–1264, 2015. VC 2014 Wiley Periodicals, Inc.

Key words: cognition; memory, short-term; prefrontal cortex; magnetic resonance imaging; task per-
formance and analysis

r r

INTRODUCTION

One of the best characterized neural systems in the human
brain is the network of brain regions supporting working
memory (WM). Dorsolateral prefrontal cortex (DLPFC), pos-
terior parietal cortex (PPC), and presupplementary motor
areas (pre-SMA) are thought to make up the core of a
capacity-limited system for maintaining and manipulating
information that is relevant to the immediate behavioral and
environmental context [D’Esposito, 2007; Smith and Jonides,
1999; Van Snellenberg and Wager, 2009; Wager and Smith,
2003]. Several classic neuroimaging studies of human WM
have demonstrated that as the amount of information that
needs to be maintained and manipulated in WM is paramet-
rically increased, activation throughout this network of brain
regions increases monotonically [Braver et al., 1997; Cohen
et al., 1997; Jonides et al., 1997]. More recent studies of visual
WM using change detection tasks have demonstrated that
the level of activation in PPC specifically tracks WM load up
to the visual WM capacity of individual subjects, at which
point it plateaus [Todd and Marois, 2004, 2005; Vogel and
Machizawa, 2004; Xu and Chun, 2006].

Very little is known, however, about how this system
behaves when its capabilities are exceeded by task demands.
These studies suggest that if WM capacity is exceeded, the
WM network will continue to exhibit maximal levels of acti-
vation. An alternative, however, is that the WM system may
instead show decreases in activation when WM capacity is
exceeded [see Callicott et al., 2003; Manoach, 2002, 2003],
which may reflect capitulation to task demands (i.e., “giving
up”) or a switch from WM-based processing to some alterna-
tive cognitive capability, such as long-term memory (LTM)
retrieval. Although there is little direct evidence to support
this hypothesis [but see Callicott et al., 1999], we reasoned
that tasks typically used in investigations of WM lack a suffi-
ciently fine-grained manipulation of WM load to observe
declines in WM network activation, should they occur. Given
that the capacity of human WM has been shown to be limited
to approximately four items [Cowan, 2001; Vogel and Machi-
zawa, 2004], we aimed to observe brain responses with func-
tional magnetic resonance imaging (fMRI) while gradually
increasing WM load from subcapacity to supracapacity
levels.

The task we selected was the self-ordered WM task [SOT;
see Curtis et al., 2000; Petrides and Milner, 1982], a classic
neuropsychological test of prefrontal cortex function with
heavy demands on WM, which we have independently

confirmed relies on visual short-term memory, in so far as
it correlates with and loads on the same factor as a version
of the visual change detection task that has been used to
establish the capacity limit of approximately 4 (61) items in
human visual short-term memory [Van Snellenberg et al.,
2014]. Our main goal was to characterize activation
throughout the brain over each of eight WM loads to iden-
tify regions whose activation changed in response to
increasing load. To do so we used a data-driven clustering
algorithm, k-means clustering, which is a model-free
approach to finding clusters of points in a multivariate
space. By treating each load as an axis in an eight-
dimensional (8-D) space, distinct clusters as identified by k-
means clustering will identify voxels across the brain that
show a similar pattern of response to the task. Next, we
also sought to tie the observed patterns of response to
behavior, specifically to an estimate of individual WM
capacity obtained from performance on the SOT [Van Snel-
lenberg et al., 2014] in a manner analogous to how WM
capacity is estimated from change detection tasks.

MATERIALS AND METHODS

Study 1

Participants

All procedures were approved by the Columbia Univer-
sity Medical Center IRB office. Written informed consent
to participate in the study was obtained from 22 right-
handed individuals (according to the Edinburgh Handed-
ness Inventory) who were paid for their participation.
Data from two participants were discarded due to techni-
cal problems, data from two more participants were dis-
carded due to excessive motion during scanning, and data
from one was excluded because of poor placement of the
slice stack, which failed to image a substantial portion of
the superior parietal lobe. The remaining 17 participants
had a mean (SD) age of 27.6 (6.0) years, with a range of
22–46, and included five females (29.4%).

Task procedures

Participants carried out 20 trials of the SOT, with each
trial containing eight steps on which a response was
required. At the start of each trial, eight simple line draw-
ings of 3-D objects were presented in a three-by-three grid,
with the central position of the grid empty (Fig. 1). Stimuli
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were the same as those used by Curtis et al. [2000], and
unique stimuli were used on each of the first 10 trials,
with all stimuli being repeated exactly once during the latter
10 trials. On each step, subjects had 7 s in which to move a
mouse cursor to select any object that had not been selected
on a previous trial (thus, all responses are correct on the first
step). Once a selection was made, a white outline was dis-
played around the selected object until nine seconds had
elapsed from the start of the step. At this point the objects in
the display were pseudorandomly rearranged, with the
blank space appearing in the same location as the most
recently selected item (to prevent participants from using a
spatial strategy or simply responding in the same location
on each trial). If no response was made in 7 s, a white out-
line was displayed for 2 s around a randomly selected object
that would have been a correct response; participants were
instructed to remember this object as if they had selected it
themselves. If an incorrect selection was made, a red box
was displayed over the object until 7 s had elapsed from the
start of the step, after which the same procedure was fol-
lowed as in the case when a participant made no response.

Participants also completed four trials of a control task, in
which the display and randomization of stimuli was identi-
cal to SOT trials, except that on each step one of the stimuli
in the display was marked with an asterisk and participants
were instructed to select the item so marked on each step.
Thus, the control task was identical to the SOT, except in so
far as it was externally ordered rather than self-ordered, and
consequently imposed no demands on WM. Each trial was
preceded by textual instructions appearing on the screen for
2 s indicating whether the upcoming trial was a task trial or
a control trial. This resulted in 20 observations at each step
of the SOT and 32 observations of the control task (because
there are eight observations on each trial of the control task,
one at each step).

Functional magnetic resonance imaging methods

Data acquisition. Imaging was carried out on a Philips 3
T Achieva scanner at the Columbia Radiology MRI Center
at the Neurological Institute of New York. Participants lay
supine on the scanner bed while viewing stimuli projected
onto a screen located at the rear of the scanner bore
through a mirror mounted on the head coil. The cursor
was controlled with a hand-held trackball with buttons on
either side, making it functionally similar to a computer
mouse. High resolution T1 images were obtained with an
MPRAGE sequence with a 256 mm field of view (FOV),
165 slices, and 1mm isotropic voxels. Whole-brain func-
tional echo-planar images (EPI) were obtained using an
eight-channel SENSE coil with a SENSE factor of 1.5, 2 s
TR, 20 ms TE, 77� flip angle, 192 mm field of view, 45 sli-
ces, and 3 mm isotropic voxels. Participants completed
two runs of 630 volumes, each of which included 10 task
trials and two control trials in pseudorandom order. Thirty
seconds of rest occurred after each trial, and 32 s before
the first trial in each run.

Data preprocessing. All preprocessing procedures used
SPM8 whenever relevant functions exist in SPM8 and cus-
tom Matlab scripts when they did not, except where
noted. Reconstructed PAR/REC format files were obtained
from the scanner and converted to 32-bit floating point
precision Analyze format files to minimize rounding errors
at later stages of preprocessing. A rough in-brain mask
was computed and in-brain signal values were used to
identify artifactual volumes: any volume departing from a
sliding window by more than eight mean absolute devia-
tions in terms of either mean global signal or Mahalanobis
distance was flagged as bad and modeled out during first-
level statistical analyses as a nuisance regressor. Partici-
pants had an average of 57.2 (SD 5 20.1) out of 1,260 vol-
umes flagged in this manner. These artifacts were a
combination of motion-induced shifts in signal intensity
and transient scanner artifacts of unknown origin.

Data then underwent slice-timing correction using SPM8
and motion realignment using INRIAlign [Freire et al.,
2002]. Motion realignment parameters were inspected to
detect excessive motion, and data from two participants
were excluded from analyses because they exhibited
greater than 2.5 mm translation or 2.5� rotation from their
median position during both runs. T1 and EPI images
were then manually realigned to approximately match the
International Consortium for Brain Mapping (ICBM) tem-
plates (to provide better starting estimates for coregistra-
tion). Six-parameter affine coregistration was used to
coregister the functional runs to each other and to the
individual subjects’ T1 image, and subjects’ T1 images and
all functional images were then coregistered to the ICBM
template. Coregistered images were visually inspected for
accuracy, and manual reorientation and coregistration
were repeated in cases of poor initial registration.

Next, T1 structural images were segmented into three
tissue compartments (gray matter, white matter, and cere-
brospinal fluid), and the spatial normalization parameters
from the segmentation algorithm were applied to the core-
gistered T1 and all EPI images [this approach has been
shown to give better normalization results as compared to
the standard normalization function in SPM8; Klein et al.,
2009]. Normalized T1 and mean EPI images (the mean of
all acquired volumes) were visually compared to the
ICBM T1 template for normalization quality, and if quality
was poor all preprocessing steps beginning with manual
reorientation were repeated. EPI images were then
smoothed using an 8 mm full width at half-maximum
(FWHM) Gaussian kernel. The value in each voxel in each
volume was then divided by the mean value in that voxel
over the entire time-series and multiplied by 100, to scale
the magnitude of the first-level hemodynamic response
function (HRF) estimates to be in percent signal change
units and equivalently scaled across runs.

First-level statistical modeling. Data for each participant
was modeled in the GLM framework implemented in
SPM8. A three-parameter HRF model (with temporal and
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Figure 1.
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dispersion derivatives) was used to estimate the blood oxy-
gen level-dependent response to each modeled event. We
opted to use a three-parameter HRF model rather than a
standard one-parameter model because the one-parameter
model is inadequate for detecting changes in the duration
and latency of the response, both of which we expected a
priori may differ at different steps of the SOT. Under these
conditions, a one-parameter model would lead to inaccurate
modeling of the response as a smaller response [Lindquist
et al., 2009]. We also opted not to use an impulse response
function HRF model because initial modeling suggested
that these models were over-fitting the later time points at
each step, which for steps 1 through 7 were followed imme-
diately by another step (producing collinearity between
HRF models between adjacent steps); consequently, we
opted for the three-parameter model which has substan-
tially reduced degrees of freedom relative to impulse
response models, but are still able to model alterations in
the timing or duration of the HRF.

The masking procedure automatically used by SPM8
was disabled and an explicit mask was calculated using
the conjunction of the smoothed (6 mm FWHM) gray mat-
ter segmentation and the skull-stripped mean EPI for each
subject, to restrict the analysis to regions of gray matter
and regions not suffering from excessive signal dropout
due to susceptibility artifacts, respectively. A separate set
of regressors was used to model each of the eight steps of
the SOT and the control task as a 9-s boxcar (resulting in
27 regressors in total, due to the three-parameter HRF
model). Although participants had only 7 s in which to
make a response, we opted to use the full nine seconds of
each step to capture the period of time in which partici-
pants were presumably attempting to maintain previously
selected items in WM. In addition, error trials on any of
the task steps and on the control task made up two sepa-
rate sets of regressors (six total), again modeled as a 9-s
boxcar. A 2-s boxcar was used to model the presentation
of textual instructions prior to each trial, and motor
responses (button presses) and error feedback (red square
appearing over the incorrectly selected item) were mod-
eled as instantaneous events to prevent motor and visual
activity (respectively) from being confounded with other
modeled events.

Finally, nuisance regressors included all six motion
parameter estimates (three translation parameters and

three rotation parameters), the squared motion parameters,
the first derivative of the motion parameters, the squared
derivative of the motion parameters, and dummy regres-
sors for artifactual scans identified as outlined above. Acti-
vation at each step of the SOT and during the control task
was quantified as the area under the curve (AUC) in a
temporal window ranging from 2 to 9 s with respect to
the three basis functions defining the canonical HRF; this
window corresponds to the rise and fall of the HRF fol-
lowing the initial dip and prior to the undershoot. AUC
was used as the dependent measure rather than a first-
level beta parameter because in the three-parameter HRF
model used here none of the beta weights are directly
interpretable as a scaling parameter on the magnitude of
the HRF response, unlike the case in a one-parameter HRF
model. We thus used AUC as an appropriate quantifier of
response magnitude because, unlike alternative metrics
such as peak response, it is normally distributed and it is
not subject to non-negativity constraints.

Second-level statistical modeling. Contrast images of
overall task-related activation were calculated for each par-
ticipant by taking the mean activation at each voxel across
steps one through eight in the SOT and subtracting the
activation in the corresponding voxel in the control task.
These contrast images were then tested for significance
using robust regression [Wager et al., 2005] and thresh-
olded at P< 0.05 after false discovery rate (FDR) correction
[Benjamini and Hochberg, 1995].

Group-level k-means clustering. To identify voxels exhib-
iting changes in the pattern of activation over steps,
whole-brain AUC data for each of the eight steps of the
SOT was subjected to a one-way repeated measures analy-
sis of variance (ANOVA) using the Greenhouse–Geisser
correction for nonsphericity, with step number as the only
(fixed) factor. This ANOVA was carried out at each voxel
in R, imported back to Matlab and thresholded at P< 0.05
FDR corrected. This was done to reduce the total number
of voxels subjected to k-means clustering to a more com-
putationally feasible number. AUC data at each voxel in
each subject that survived thresholding in the ANOVA
was then transformed to a standard normal variate (i.e.,
the mean activation over each step in that voxel was sub-
tracted off and it was divided by its own standard

Figure 1.

Schematic of the self-ordered working memory (WM) task

showing sample responses throughout a full trial, including

errors on Steps 6 and 8. In the case of an error, after receiving

feedback that an error was made (appearance of a red square

over the selected object), participants are shown an object that

would have been correct and are asked to remember it as if

they had selected the object themselves. The response on Step

8 is an error because the object selected was the one shown

after the error made on Step 6. Participants must select each

object in the display once, and new stimuli are used on each

trial. Thus, after each step participants must remember one

additional item, thereby gradually increasing the number of items

to be remembered from zero on Step 1 to 7 items on Step 8.
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deviation); this step is necessary to prevent the k-means
clustering algorithm from identifying multiple clusters
with the same shape of response but with differing overall
magnitude of activation or response amplitude. The result-
ing data for each subject was concatenated into a single
matrix (voxels times subjects by eight steps) and subjected
to k-means clustering [Hartigan and Wong, 1979], as
implemented in Matlab, 10 times, once for each value of k
from one to ten.

Briefly, k-means clustering is a data-driven multivariate
clustering technique that takes a set of points in a high-
dimensional space and, initially, randomly selects k points
from the data and treats these as cluster centers. Each data
point is then assigned to one of these k clusters based on
which of the cluster centers it is closest too. Next, the algo-
rithm computes the geometric center of each of these clus-
ters (the point that minimizes the sum of the squared
Euclidean distances from every point in the cluster) and
iteratively reassigns each data point to each cluster based
on these new cluster centers and then recomputes the clus-
ter centers until convergence is reached. Thus, when used
in combination with a model-selection statistic to deter-
mine an appropriate value of k (see next paragraph), k-
means clustering provides an entirely data-driven
approach to determining both the number of distinct pat-
terns of brain response to increasing WM load in the SOT
as well as the shape of each pattern of response.

The null model of k 5 1 was rejected based on the “1-
standard-error” rule using the weighted gap statistic and
all subsequent values of k were tested using the difference
of difference (DD)-weighted gap statistic as per the recom-
mendations of Yan and Ye [2007], resulting in a three clus-
ter solution. To identify each voxel significantly associated
across participants with any of the three patterns of activa-
tion captured by the three clusters, we first used the three
response shapes over the eight steps of the SOT (as deter-
mined by the three cluster centers) as regressors in a
whole-brain (voxelwise) repeated-measures multiple
regression model [Lorch and Myers, 1990]. Voxels for
which the overall model fit survived correction for multi-
ple comparisons (P< 0.05, FDR corrected) were retained
for further analysis. These voxels were then tested in each
of three repeated measures regressions with only a single
predictor of interest (the response shape for one of the
three clusters). Voxels with a positive beta and a P value
below the FDR threshold established in the prior step for
only one of the three single-predictor models were
retained and treated as being significantly associated with
the appropriate cluster. Only positive beta values were
allowed because a negative beta necessarily indicates that
the actual shape of the cluster response is a poor fit to the
activity of the voxel (though the additive inverse of the
cluster shape is a good fit). For voxels in which two of the
three cluster shapes were a good fit to the data (no voxels
were a good fit to all three cluster shapes), we formally
tested whether one of these shapes was a better fit than
the other in a further repeated measures regression by

concatenating the two shapes into a single regressor (creat-
ing 16 observations per subject at each voxel, one for each
of the two cluster shapes at each of the eight steps of the
SOT), including an additional dummy regressor to distin-
guish the two shapes, and testing the significance of the
interaction between these two regressors. This is the
appropriate test for a difference in magnitude of the clus-
ter shape fits because a significant beta weight for the
interaction term rejects the null model of both cluster
shapes having the same beta weight. Voxels for which the
P value associated with the interaction was below the FDR
threshold established above were then treated as being sig-
nificantly associated with one or the other cluster.

Study 2

Following the completion of Study 1, we performed a
follow-up study to replicate and extend the original find-
ings. We included a larger sample of participants to obtain
the power needed to carry out individual-differences anal-
yses, to determine whether the observed patterns of activa-
tion could be related to task performance. We also made
several improvements to the structure of the fMRI session
itself, with much shorter task runs to reduce the impact of
participant motion during the run, and a 20% increase in
the number of task trials completed by each participant.
Finally, we also moved our scanning to a different scanner
at the same facility. We had observed substantial signal
dropout due to magnetic susceptibility artifacts in the
medial temporal lobe with the 3 T scanner used in Study
1, and so opted to change to a 1.5 T scanner to minimize
these artifacts and raise the possibility of observing
changes in activation in the medial temporal lobe. This
change in scanner and field strength also raises the confi-
dence that can be placed in findings that replicate across
the two studies, given the substantial differences in scan-
ner hardware.

Participants

All procedures were approved by the New York State
Psychiatric Institute IRB. Written informed consent to par-
ticipate in the study was obtained from 37 right-handed
individuals (according to the Edinburgh Handedness
Inventory) who were paid for their participation. Data
from one participant was discarded due to scanner artifact.
The remaining 36 participants had a mean (SD) age of 34.1
(9.0) years, with a range of 20–54, and included 19 females
(52.8%). All participants were prescreened for absence of
current or past Axis 1 psychiatric diagnosis (excluding
substance abuse or dependence for nicotine or caffeine,
but not other substances) with the Diagnostic Interview
for Genetic Studies, as well as any current use of psycho-
tropic medications, history of neurological illness, or
MRI contraindication by clinical interview. Participants
were also screened for recreational drug use and
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pregnancy from a urine sample, and excluded if either test
was positive.

Task procedures

Task procedures were identical to those described above
for Study 1, except that participants carried out 24 trials of
the SOT and three trials of the control task, and stimuli in
the SOT were unique on each trial for the first 12 trials
and were repeated once for each of the latter 12 trials.
This resulted in 24 observations at each step of the SOT
and 24 observations of the control task. Participants were
also paid $0.25 per correct response (which they were not
in Study 1), but were not given feedback as to how much
they had earned throughout the experiment.

We also calculated a WM capacity estimate for each par-
ticipant, using a maximum-likelihood estimation proce-
dure based on a simple model of task performance that
was developed in prior work, and has been shown to cor-
relate with an equivalent model for short-term visual
memory (i.e., change detection) tasks [Van Snellenberg
et al., 2014]. This capacity model assumes that participants
add selected items to WM until WM capacity is reached,
at which point participants complete the remaining trials
by guessing randomly among items not held in WM.

Functional magnetic resonance imaging methods

Data acquisition. Imaging was carried out on a Philips
1.5 T Intera scanner at the Columbia Radiology MRI Center
at the Neurological Institute of New York. Participants lay
supine on the scanner bed while viewing stimuli projected
onto a screen located at the foot of the scanner bed through
a mirror mounted on the head coil. The cursor was controlled
with a hand-held fiber optic trackball with buttons on either
side, making it functionally similar to a computer mouse. T1-
weighted images were obtained with an SPoiled Gradient
Recalled (SPGR) sequence with a 256 mm FOV, 200 slices,
and 1 mm isotropic voxels. Whole-brain functional EPIs were
obtained using an 8-channel SENSE coil with a SENSE factor
of 1.5, 2 s TR, 28 ms TE, 77� flip angle, 192 mm field of view,
40 slices, and 3 mm isotropic voxels. Given the reduction in
slices necessitated by the move to a 1.5 T scanner, it was not
possible to acquire data on the ventral most portion of the
cerebellum in a large majority of participants; however, this
region was not of particular interest in this study. Partici-
pants completed nine runs of 160 volumes each, each of
which included either three task trials or two task trials and
one control trial that occurred between the two task trials.
Thirty seconds of rest occurred after each trial, and 32 sec-
onds before the first trial in each run.

Data preprocessing and statistical modeling. Data pre-
processing, first-level statistical modeling, and second-
level statistical modeling proceeded exactly as described
for Study 1 reported above, except that some of the data
from the present study were corrupted by a spatially

smooth intensity artifact parallel to the slice direction,
which remained visible in the first-level beta parameter
estimates. Extensive investigation of this artifact suggested
that it typically co-occurred with subject motion; thus we
suspect it was due to motion-induced fluctuations in EPI
signal intensity. Removal of this artifact and related
quality-control procedures are described in the Supporting
Information. Artifacts identified by this method as well as
the method described in Study 1 together accounted for an
average of 115.3 (SD 5 75.7) volumes out of the total 1,440
volumes per participant. One run from one participant
was excluded from analyses because the participant exhib-
ited greater than 2.5 mm translation or 2.5� rotation from
their median position during the run.

Group-level k-means clustering. k-Means clustering at
the group level was carried out in the same manner as for
the prior study, described above.

Second-level results by task phase. Based on the group-
level k-means clustering results, we divided the task into
early, middle, and late phases comprising steps 1 and 2, 4
and 5, and 7 and 8, respectively. These steps were selected
because they were the steps at which each of the three
clusters identified by k-means clustering were maximally
responsive as compared to the other two clusters (see
Results section). For each of the three phases, a contrast of
activation during that phase relative to the control task
was carried out and thresholded at P< 0.05, FDR cor-
rected. Furthermore, each of the three pairwise contrasts
of the three phases relative to each other (i.e., middle–
early, late–middle, and late–early) were also carried out
and thresholded in the same manner. Finally, we also car-
ried out voxelwise correlations between activation at each
of the three phases on performance (% correct) during the
middle and late task phase, using robust regression
[Wager et al., 2005] and the same FDR threshold. Perform-
ance on the early phase was not used because there was
almost no variation in performance across participants at
this stage (nearly all participants showed perfect
performance).

Individual k-means clustering. We also carried out k-
means clustering in each subject separately to identify the
shape of response in each participant individually. Whole-
brain AUC data for each subject was transformed to a
standard normal deviate (at each voxel) as described for
the group-level k-means clustering in Study 1, and k-
means clustering was carried out within each subject five
times, once for each value of k between one and five for
every participant. Cluster centers identified for each partic-
ipant were then compared to the group-level cluster cen-
ters and were treated as being an exemplar of the group-
level cluster center to which they were closest (minimum
squared Euclidean distance). In three cases two of the
individual-level cluster centers were assigned to the same
group-level cluster center; in these cases the closest of the
two cluster centers was used.
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To confirm that the individual k-means pattern identi-
fied with the method described above was expressed in a
similar set of brain regions to the group-level pattern we
selected the quartile of voxels in each cluster that were
closest to the cluster center (because each participant had
only two or three clusters, if we had included every voxel
in the cluster on average a third or a half of the voxels in
the brain would be included, and it would be impossible
to achieve standard levels of significance with our current
sample size) and subjected them to a permutation test to
determine which voxels were consistently associated with
a given shape across subjects. Specifically, all of the voxels
in each subject were randomly permuted 10,000 times and
the proportion of subjects for which a given voxel
belonged to the group-level cluster being tested was com-
puted for each permutation to construct a null distribution
of this proportion throughout the brain. The actual
observed number of subjects for which each voxel
belonged to the group-level cluster was compared to this
distribution to determine a P value and was then thresh-
olded at P< 0.05 FDR corrected.

For each individual expressing one of the group-level
clusters, we also examined the association of their individ-
ual k-means response with their WM capacity as deter-
mined from the maximum-likelihood model described
above [also see Van Snellenberg et al., 2014] to determine
whether individual variability in the shape or positioning
of these responses was predictive of WM capacity. Because
the individual k-means responses were fairly noisy, we
first smoothed the response using a five-point moving
average and fit the result with either a linear or quadratic
function as appropriate. For the inverted-U pattern (see
Results section), we tested the Pearson correlation between
the step at which the quadratic function peaked and WM
capacity, while for the early and late patterns we tested
the relationship between capacity and the step at which
the linear fit crossed the zero-point on the Y axis. In addi-
tion, for each group-level cluster, the squared Euclidean
distance of each participant’s individual cluster was corre-
lated with that participant’s accuracy on the last two steps
of the SOT (% correct).

RESULTS

Behavioral Results

Accuracy and median reaction times (RT) for each step
of the SOT in both studies are shown in Figure 2. RT was
significantly slower for incorrect trials than correct trials
(averaged over steps) for both studies (Study 1: t16 5 3.25,
P 5 0.0050; Study 2: t34 5 5.99, P 5 9 3 1027). Furthermore,
RT showed a significant linear increase with step number
in both studies, with an average of a 95.5 ms increase per
step for Study 1 (t16 5 3.29, P 5 0.0046) and a 65.6 ms
increase per step for Study 2 (t35 5 3.60, P 5 0.0010).
Finally, post hoc analyses revealed a significant negative

Figure 2.

Behavioral performance on the self-ordered WM task in

both studies. All error bars are 61 standard error. (A)

Accuracy on each of the eight steps in both studies. The

dotted line shows the level of performance expected for

random responding. (B) Reaction times (RT) on correct and

incorrect trials in both studies (median RT for each partici-

pant). Missing data points for incorrect responses reflect the

fact that no errors were made by any participant at that

step. (C) RTs for correct trials in Study 2, based on a

median split of overall task performance (average perform-

ance across all 8 steps of the task). This panel is included

for illustrative purposes only; no analyses were based on a

median split.
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correlation between accuracy and RT in Study 2 (but not
Study 1) on step 7 (r 5 20.58; P 5 0.0002) and step 8
(r 5 20.70, P 5 2 3 1026), both of which survived FDR cor-
rection. This is illustrated with a median split on overall
task accuracy in Figure 2C. A follow-up analysis of the
correlation between RT slope over steps and overall task
accuracy revealed a trend toward higher performers hav-
ing a smaller slope between RT and step number (i.e., a
smaller increase in RT per step; r 5 20.32; P 5 0.0557).
Finally, the mean WM capacity across individuals in Study
2 was 5.5 (SD 5 1.3). While this value is somewhat ele-
vated relative to the capacity of four typically observed in
change detection tasks [Cowan, 2001], it is in line with our
prior work on the SOT [Van Snellenberg et al., 2014].

Functional Magnetic Resonance Imaging Results

Results of the whole brain contrast of TASK–CONTROL
(all eight steps of the SOT averaged together as compared
to the control task) are shown in Figure 3 and described in

Supporting Information, Tables S1 and S2 for both studies.
Robust task-related activation was observed in a network
of regions consistently activated during WM tasks [see
Van Snellenberg and Wager, 2009; Wager and Smith,
2003], including bilateral DLPFC [used here to refer to lat-
eral BA 9 and all of BA 46, which in humans typically falls
between the superior frontal sulcus and inferior frontal
sulcus but excluding the inferior frontal gyrus, posterior to
the frontal pole; Rajkowska and Goldman-Rakic, 1995],
PPC, pre-SMA, and dorsal anterior insula. Activation was
also observed in several subcortical regions and regions
involved in processing visual stimuli, including striatum,
thalamus, posterior hippocampus, midbrain, occipital cor-
tex, and fusiform gyrus. Significant task-related deactiva-
tions were also observed in both studies in a set of regions
commonly referred to as the default mode network,
including medial prefrontal cortex, posterior cingulate cor-
tex and precuneus, the temporal–parietal junction, and the
bilateral middle and superior temporal gyri. Activations
and deactivations were observed in substantially more

Figure 3.

Self-ordered WM task results, averaged over all eight steps of

the task. Activations are shown in “hot” colors while deactiva-

tions are shown in “cool” colors. All images are thresholded at

P< 0.05, FDR corrected. (A) Regions showing activation or

deactivation in the task as compared to the control task in

Study 1. (B) Regions showing activation or deactivation in the

task as compared to the control task in Study 2. (C) Regions

showing greater activation in the task as compared to the con-

trol task in Study 2 displayed in a volumetric space, to highlight

subcortical activations. Regions shown are orthogonal slices

taken at MNI coordinate 9,227,4.
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brain regions in Study 2 than in Study 1, most likely due
to the larger sample size (36 participants as compared to
17). Given that the activations observed in Study 1 were
nearly entirely a subset of the activations in Study 2, Study
2 clearly replicated and extended the activation results of
Study 1 with considerably improved power.

Group-level k-means clustering

k-Means clustering resulted in a three-cluster solution in
both studies, with broad correspondence between the two
studies in the pattern of activation observed in each of the
three clusters and the brain regions associated with each
pattern of activation (see Fig. 4 and Supporting Information,
Tables S3 and S4). First, we observed an inverted-U-shaped
pattern and an early activation pattern occurring primarily
in areas of the brain consistently activated during the per-
formance of WM tasks—bilateral DLPFC, premotor areas,
pre-SMA, and PPC. The inverted-U pattern was also
observed in the lateral occipital lobe bilaterally, as well as
in the medial temporal lobe, consistent with recent evidence
demonstrating the involvement of medial temporal lobe
structures in WM [see, e.g., Hannula and Ranganath, 2008;
Jonides et al., 2008; Ranganath and Blumenfeld, 2005]. The
early pattern was also observed in bilateral putamen, orbi-
tofrontal cortex, and ventrolateral prefrontal cortex. Thus,
activation in the putative WM network showed clear
decreases in activation at the highest WM loads, as pre-
dicted. We further observed a late pattern of activation in
the default mode network, including anterior medial pre-
frontal cortex, dorsal cingulate cortex, and the posterior cin-
gulate and precuneus. This pattern also occurred in the
temporo-parietal junction and several cortical regions in the
right hemisphere, including anterior lateral prefrontal cor-
tex, inferior frontal cortex, and middle temporal gyrus.

While k-means clustering does not provide a natural
ranking of clusters in terms of “strength” or variance
explained, it is possible to determine which of the clusters
accounts for the most data by comparing the sum of the
squared Euclidean distances from each observation to the
nearest cluster center. These distances are analogous to
model sum of squared errors (SSE). Thus, the “variance
explained” by a given cluster center can be determined by
comparing the full model to one in which one of the clus-
ter centers is removed, and assigning all of the observa-

tions in the removed cluster to the next closest cluster.
This approach indicated that for Study 1, the inverted-U
cluster accounted for the most variance (SSE 5 2.7 3 105),
followed by the late cluster (1.9 3 105) and then the early
cluster (1.8 3 105). For Study 2 (for which SSE values are
higher because of the greatly increased number of observa-
tions), the most variance was accounted for by the late
cluster (1.3 3 106), followed by the inverted-U cluster (1.0
3 106) and then early cluster (9.2 3 105).

Finally, to further examine the pattern of response within
different areas of the brain in a single cluster, we plotted
time courses of activation by computing the modeled hemo-
dynamic response to each step at each voxel, and averaging
this response across participants and voxels within a single
contiguous cluster (after subclustering clusters of >200 vox-
els). Because there were 235 clusters of at least 8 voxels
across both studies, it was not possible to present all of
these time courses. We first restricted our consideration to
regions of at least 50 voxels, as well as a handful of smaller
regions of a priori interest, which resulted in time courses
for 79 clusters for Study 2 alone (see Supporting Informa-
tion). A subset of these time courses are presented for the
inverted-U cluster in Figure 5, for the early cluster in Figure
6, and for the late cluster in Figure 7. In general, regions in
the inverted-U and late clusters showed the same pattern of
response (exemplified in Figs. 5A and 7A, respectively),
with a clear rise and fall of the overall level of activation
for the inverted-U regions and a reduction in the magni-
tude of deactivation in the late cluster. However, there
were some clear exceptions (see Fig. 7B). Regions in the
early cluster were much less easily characterized by a com-
mon response shape, although many regions, in particular
striatal regions, showed an apparent shift in the timing of
response (Fig. 6A), with later responses at later steps. This
apparently led to a decline at later steps in the magnitude
of AUC values, because of the presence of an initial nega-
tive deflection (initial dip) in the HRF and because some
portion of the HRF occurred after the time window used to
calculate AUC.

Second-level results by task phase

All results presented from this point forward pertain
only to Study 2, because there was insufficient power to
carry out these analyses in Study 1. Examination of Figure

Figure 4.

Results of k-means clustering on the self-ordered WM task fMRI

data for both studies. (A) Activation patterns (i.e., cluster cen-

ters) from the three-cluster solution provided by the DD-

weighted gap statistic in Study 1. The y-axis is scaled to standard

normal deviations. (B–D) Regions significantly (P< 0.05, FDR

corrected) associated with one of the three clusters across indi-

viduals. Coloring of regions is determined by average similarity

over subjects to the activation pattern shown (inverse of the

sum of squared deviations from the cluster center), with yellow

indicating a high degree of similarity and red indicating lower

similarity. (E) Exactly as Panel A except for Study 2. (F–H)

Exactly as panels B–D except for Study 2. (I) Regions from panel

(G) shown in a sagittal volumetric slice at the MNI coordinate

x 5 27, to highlight the presence of hippocampal and medial-

temporal lobe activation in the inverted-U-shaped pattern.
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4 (panels A and E) suggests that activation in response to
the SOT can be divided into three distinct phases, during
each of which one of the three cluster patterns identified by
k-means clustering is dominant. That is, during Steps 1 and
2 (the early phase), the early pattern of activation is sub-
stantially stronger than either of the other two patterns,
during Steps 4 and 5, the inverted-U pattern is stronger
than the other two patterns, and during Steps 7 and 8, the
late pattern is stronger than the other patterns. In contrast,
during Step 3 both the inverted-U and early pattern show
high levels of activation, while during Step 6, the inverted-
U and late pattern show high levels of activation, and so
these steps were not used in any of the three phases. We
used this breakdown into three distinct task phases to facili-
tate straightforward examination of overall task activation
at each phase, as well as differences in activation between

the three phases and the relationship between activation at
each of these phases and overall task performance.

The overall activation (and deactivation) relative to the
control task during the early, middle, and late phases of
the SOT are shown in Figure 8. These results indicate
that, despite the considerable decline in activation of the
WM network at the later stages of the task, these regions
are still consistently active throughout performance of the
SOT. However, pairwise comparisons between each of
the three task steps confirm and support the results of
the k-means clustering, with the middle stage of the task
showing the expected increase in activation relative to
the other two steps throughout the WM network and the
late stage of the task showing greater activation of the
default mode network and lateral temporal lobe (data not
shown).

Figure 6.

Modelled time courses of activation in (A) striatal and (B) corti-

cal regions showing the early pattern of response over the eight

steps of the SOT. The light gray-shaded region in each time

course plot represents the temporal window used to calculate

AUC measures. The dark gray-shaded regions in the bottom left

corner of each time course plot represents the duration of a

single step. Coordinates (x,y,z) of the cluster center and number

of voxels in the cluster are shown on top of each time course

plot. Crosshairs on each brain image show the location of the

cluster center.

Figure 5.

Modelled time courses of activation in regions showing the

inverted-U pattern of response over the eight steps of the SOT.

Time courses shown here are typical of the time courses observed

for all regions showing the inverted-U pattern, with examples

drawn from (A) the bilateral DLPFC and (B) bilateral medial tem-

poral lobe. The light gray-shaded region in each time course plot

represents the temporal window used to calculate AUC measures.

The dark gray-shaded regions in the bottom left corner of each

time course plot represents the duration of a single step. Coordi-

nates (x,y,z) of the cluster center and number of voxels in the clus-

ter are shown on top of each time course plot. Crosshairs on

each brain image show the location of the cluster center.
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Finally, we also examined correlations across participants
between overall activation at each of the three task phases
and performance at the middle (average of percent correct
at Steps 4 and 5) and late phase of the task (average of per-
cent correct at Steps 7 and 8). Activation during the early
and middle phase of the task did not correlate with per-
formance during either the middle or late phase of the task
in any area of the brain (P< 0.05, FDR corrected). However,
activation in the bilateral fusiform gyrus and right medial
occipital lobe during the late task phase was correlated
with performance in the late phase (see Fig. 9 and Support-
ing Information, Table S5).

Individual k-means clustering

We also sought to determine whether the overall pattern
of activation expressed by each individual participant was
relevant to their WM capacity, and to their behavioral per-
formance in the late task phase, where variability in per-
formance across participants was maximal. To do so, we
carried out k-means clustering separately in each partici-
pant. Of the 36 participants, seven showed a k-means
result consistent with expression of all three group-level
patterns, 28 showed a result consistent with two of the
three group-level patterns, and only one showed a result

consistent with only one of the group-level patterns.
Thirty-three participants exhibited a response consistent
with the late pattern, 23 exhibited a response consistent
with the early pattern, and 22 exhibited a response consist-
ent with the inverted-U pattern.

Among those individuals expressing the inverted-U pat-
tern, individuals showing a later peak in the inverted-U
had higher WM capacity (r 5 0.42, P 5 0.0499), a relation-
ship which is shown in Figure 10. In contrast, any shift in
the timing of the early or late activation patterns, as indi-
cated by the step at which an individual’s response crossed
the zero-point on the Y axis, was unrelated to WM capacity
(early: r 5 20.01, P 5 0.9721; late: r 5 0.05, P 5 0.7900). How-
ever, the distance of each individual’s pattern of response
from the group-level pattern of response over the eight
steps of the SOT (i.e., the inverse of similarity) was nega-
tively correlated with performance for both the early
(r 5 20.57; P 5 0.0042) and late (r 5 20.37; P 5 0.0345) pat-
terns. Conversely, distance from the group-level inverted-U
pattern was positively correlated with performance on the
late task phase (r 5 0.48; P 5 0.0235). We also confirmed
that the brain regions most strongly associated with each of
these three patterns in each participant were broadly
located in the same regions as the group-level patterns.
These regions, as well as scatter plots for each of these

Figure 7.

Modelled time courses of activation in regions showing the late

pattern of response over the eight steps of the SOT. Time

courses in (A) are typical of those observed for all regions

showing the late pattern, the only exception being those regions

shown in (B). The light gray-shaded region in each time course

plot represents the temporal window used to calculate AUC

measures. The dark gray-shaded regions in the bottom left cor-

ner of each time course plot represents the duration of a single

step. Coordinates (x,y,z) of the cluster center and number of

voxels in the cluster are shown on top of each time course

plot. Crosshairs on each brain image show the location of the

cluster center.
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correlations, are shown in Figure 11, and the overall pattern
of activation in each of the three group-level patterns are
shown for high and low performers based on a median
split of performance on the late task phase in Figure 12.
This figure is provided for illustrative purposes only; quan-
titative analysis of this median split was not carried out, as

the appropriate analysis for these data is the correlation
approach illustrated in Figure 11.

DISCUSSION

The results of the two studies presented here clearly
demonstrate a shift in the relative levels of activation
between three distinct networks of brain regions during the
performance of a WM task. They also demonstrate that the
level of activation in the network of brain regions thought
to subserve WM changes nonmonotonically as a function of
WM load, and that the decline in activation at later steps
occurs later in individuals with greater WM capacity. Crit-
ically, this inverted-U pattern of activation occurred during
correctly performed trials, suggesting that it is not an arti-
fact of declining task performance. Moreover, while the
actual extent of activation in each of these three networks
did not appear to predict individual differences in perform-
ance at the highest WM loads (with the notable exception
of the bilateral fusiform gyrus and right occipital lobe acti-
vation on later steps of the task), the expression of the pat-
terns of activation observed at the group level was
associated with task performance, with individuals who
exhibited clear early and late patterns of activation achiev-
ing greater levels of performance than those who did not,
while the inverted-U pattern observed in the classic WM
network was associated with poorer performance. This
association indicates that declining activation in this

Figure 8.

Activation and deactivation relative to the control task in each

of the three (early, middle, and late) task phases in Study 2. All

activation and deactivations thresholded at P< 0.05, FDR cor-

rected. (A) Early phase activation and deactivation. (B) Middle

phase activation and deactivation. (C) Late phase activation and

deactivation.

Figure 9.

Regions showing a significant (P< 0.05, whole brain FDR cor-

rected) correlation with performance during the late task

phase (average of Steps 7 and 8) in an axial slice at

MNI coordinate z 5 210. Line plots show activation in the

left and right hemisphere regions broken down by a median

split on performance during the late task phase, for illustra-

tive purposes (statistical analysis was not based on a median

split). Error bars are 61 standard error.
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network is not behaviorally adaptive, and may either reflect
a physiological limit on the extent or duration of sustained
activation in this network, or that at higher loads partici-
pants engaged alternative (and suboptimal) cognitive proc-
esses to subserve task performance, and that there are
individual differences in these processes.

The Inverted-U Pattern

It has been hypothesized for more than a decade that the
DLPFC may exhibit an inverted-U pattern of activation in
response to increasing WM load [Callicott et al., 2003; Man-
oach, 2002, 2003]; however, convincing demonstrations of
this effect have been lacking until now. Although one study
did demonstrate decreases in activation from the 2-back to
the 3-back load of an n-back task [Callicott et al., 1999], this
study used only seven participants and has not been widely
replicated. Furthermore, Callicott et al. [1999] did not
observe this effect in regions other than DLPFC, whereas
this study has identified an entire network of regions whose
activity gradually increases with increasing WM load, but
then declines at the greatest WM loads.

While there is a clear correspondence between the
regions exhibiting this inverted-U pattern and those regions
that are classically observed to be active during more tradi-
tional WM tasks [see, e.g., Van Snellenberg and Wager,
2009; Wager and Smith, 2003], this reverse inference
remains insufficient to definitively associate this pattern of
activation with WM maintenance. However, several obser-
vations support the notion that this network of regions is
carrying out WM processing in the SOT. Most critically, a
behavioral estimate of individual WM capacity was associ-
ated with the timing of the peak response across individu-
als, indicating that participants who can maintain more
items in WM sustain activation in this network at greater
WM loads. This observation is also consistent with the neg-
ative association between performance on later steps of the

task and similarity to the group-level pattern of activation,
in that individuals who were able to sustain activation in
this network for longer (thus, deviating from the group pat-
tern) would be expected to perform better. Finally, it is
worth noting that activation in this network tended to peak
at around Step 4 or 5 and declined after Step 6, which cor-
responds to a WM load of between 3 and 5 items, precisely
the approximate range of WM capacities observed in most
individuals [Cowan, 2001].

An additional consideration in interpreting the neuro-
physiological significance of this inverted-U response is
whether the effect can be attributed to participants sim-
ply giving up on the task. That is, as the task becomes
more difficult and performance begins to decline, partici-
pants may disengage and, in effect, stop using the WM
network to subserve task performance on at least a subset
of trials, which could potentially manifest as less activity
in the WM network at higher WM loads. Our data argues
strongly against this explanation, however. RT increased
both on incorrect and correct trials at later steps of the
task, which is inconsistent with participants merely mak-
ing random guesses (which could be made very quickly)
when their WM capacity was overtaxed. Rather, if any-
thing, these increased RT raise the possibility that when
WM processing was unable to subserve task performance
effectively, participants may have used additional cogni-
tive processes (thus, increasing RT) to continue to make
correct responses. Furthermore, the level of activation in
brain regions thought to support WM at later steps of the
task did not appear to predict performance across indi-
viduals; if the decrease in activation observed at later
steps was due to simple capitulation or “giving up” by
participants, then participants with less activation at the
highest task loads should also have performed more
poorly. Although it is never possible to fully prove the
null hypothesis, the fact that we did observe such an
effect in the bilateral fusiform gyrus and right occipital
lobe suggests that we had sufficient power to detect such
an effect if it was sufficiently strong. Moreover, given
that the fusiform gyrus is part of the ventral visual proc-
essing stream that is thought to subserve object recogni-
tion and the representation of visual forms, it seems
likely that the greater activation observed in this region
by participants who achieved higher levels of perform-
ance on the later stages of the task may reflect either
more successful or stronger representations of the visual
stimuli used in the task, which would be consistent with
ongoing maintenance of task-relevant information at even
the highest WM loads. Finally, it is critical to note that
despite the relative decline in activation in this network
at high WM load, the canonical WM network was still
strongly engaged relative to the control task throughout
performance of the SOT.

Two major potential explanations for the inverted-U
response to increasing WM load in the WM network
remain. First, it may be that the explanation advanced by

Figure 10.

Scatter plot of the relationship between estimated WM capacity

and the task step (i.e., WM load) at which activation in the

inverted-U cluster peaked in each participant. The solid line is

the least-squares regression line.
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Callicott et al. [1999] is broadly correct, in that the decline
in activation at high WM load is related to some kind of
physiological limit on the ability of this network to main-
tain high levels of activation for an extended period of
time, or when it is overtaxed. Second, it may be that indi-
viduals under supracapacity WM loads resort to addi-
tional non-WM-mediated cognitive strategies to achieve
their task goals, such as reliance on familiarity or LTM
retrieval. Unfortunately, we are not presently able to
convincingly adjudicate between these two possibilities.
However, it remains a critical observation that declines in
activation of the WM network occur at the highest WM
loads, a finding which cannot simply be attributed to
participants not attempting to perform the task, and which
occurs both in participants who do poorly on the task and
in those who perform very well.

The Early and Late Patterns

The precise pattern of correlations with task perform-
ance observed for both the early and late patterns of acti-
vation identified with k-means clustering is somewhat
perplexing. First, these patterns appeared to be unassoci-
ated with WM capacity, and the overall level of activation
did not correlate with task performance in any brain
regions that expressed either of these patterns. However,
when the shape of distinct patterns of activation that could
be identified in individual subjects’ brains was compared
to the group-level early and late patterns, those individu-
als expressing a pattern of activation that was highly simi-
lar to either the group-level early or late pattern tended to
perform better on the late stages of the task. That is, while
the absolute magnitude of activation in the early or middle
phases of the task did not reliably predict task perform-
ance across subjects, the extent to which individuals
showed a set of regions exhibiting the early activation pat-
tern, which may be best characterized as an increase in the
latency of brain responses with increasing step number
(Fig. 6), and/or a set of regions exhibiting strong

Figure 11.

Results from the individual k-means analyses. (A) Scatter plot of

the proportion of correct responses by participants on Steps 7

and 8 of the SOT and the distance (dissimilarity) between each

participant’s early activating pattern and the early group-level

pattern. The solid line is the least-squares regression line. (B)

Regions in the individual k-means analysis that were consistently

associated across subjects with the early activation pattern

obtained from the group-level k-means analysis (P< 0.05, FDR

corrected). Color scale reflects the proportion of participants

expressing the displayed pattern at each voxel (yellow is

greater). (C) Equivalent to panel A, but for the inverted-U pat-

tern. (D) Equivalent to panel B, but for the inverted-U pattern.

(E) Equivalent to panel A, but for the late activating pattern. (F)

Equivalent to panel B, but for the late activating pattern.
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deactivation on early steps that gradually decreased with
increasing step number (Fig. 7), was associated with better
performance on the task. This indicates that some aspect

of these two patterns of response are relevant to successful
task performance, though not the absolute magnitude of
response.

The early pattern of response is consistent with partici-
pants taking preparatory measures prior to an impending
increase in WM load, such as familiarization with the
(mostly) trial-unique stimuli on the first few steps. The
earlier steps would also be associated with greater
demands on selection processes, as the number of possible
correct responses is greatest on the first step and declines
linearly with step number. However, several regions, espe-
cially in the striatum, exhibited a shift in latency rather
than a clear decline in activation at later steps. While it is
difficult to confidently state what this change in latency
means in terms of cognitive processing, it is strongly sug-
gestive of a shift in the cognitive processes underlying
task performance at later steps.

The late pattern of response was dominated by regions
typically associated with the default-mode or task-
negative network, in addition to the temporoparietal
junction and much of the lateral superior and middle
temporal gyri. With few exceptions, these regions were
deactivated by the task but the level of deactivation
diminished monotonically with step number (Fig. 7A).
There are two major competing explanations for this find-
ing. First, it has been widely shown that activation in this
network of regions is typically anticorrelated to that of
the task-positive network, which exhibited an inverted-U
pattern of response in our studies [see Anticevic et al.,
2010; Fox et al., 2005; Hampson et al., 2010]. Thus, it may
be that this pattern of response is merely an epiphenome-
non of the declining activation in the WM network at the
highest WM loads. However, the fact that the inverted-U
pattern of response was associated with poorer task per-
formance while the late activation pattern was associated
with better task performance is somewhat inconsistent
with the late activation of this network being a behavior-
ally irrelevant consequence of the level of activation in
the task-positive network. An intriguing though specula-
tive possibility is that the late activation of this network
is a consequence of a shift in cognitive strategy by partic-
ipants from a primarily WM-mediated strategy to an at
least partially LTM-mediated strategy. Abundant recent
work has demonstrated the involvement of medial
temporal lobe structures long associated with LTM
encoding in WM maintenance [Hannula and Ranganath,
2008; Jonides et al., 2008; Ranganath and Blumenfeld,
2005], and indeed we observed that the hippocampus
and medial temporal lobe was included in the network of
regions exhibiting an inverted-U response. Furthermore,
the default mode network has also been shown to be
active during episodic long-term memory retrieval [Addis
et al., 2007; Maddock et al., 2001; Steinvorth et al., 2006;
Wagner et al., 2005], raising the possibility that relative
increases in activation, in this network, in the SOT may
in fact reflect active retrieval of information from episodic

Figure 12.

Overall activation in the three clusters identified by group-level

k-means clustering, based on a median split of accuracy in the

last task phase (average accuracy across Steps 7 and 8). The y-

axes in all plots reflect fMRI % signal change values. Error bars

reflect 61 standard error. (A) Activation throughout regions

significantly associated with the early activating pattern. (B) Acti-

vation throughout regions significantly associated with the

inverted-U pattern. (C) Activation throughout regions signifi-

cantly associated with the late activating pattern.
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memory, for example, a recollection of whether or not a
particular stimulus had already been selected earlier in
the trial.
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