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Abstract

The causes of complex diseases are multifactorial and the phenotypes of complex diseases are 

typically heterogeneous, posting significant challenges for both the experiment design and 

statistical inference in the study of such diseases. Transcriptome profiling can potentially provide 

key insights on the pathogenesis of diseases, but the signals from the disease causes and 

consequences are intertwined, leaving it to speculations what are likely causal. Genome-wide 

association study on the other hand provides direct evidences on the potential genetic causes of 

diseases, but it does not provide a comprehensive view of disease pathogenesis, and it has 

difficulties in detecting the weak signals from individual genes. Here we propose an approach 

diseaseExPatho that combines transcriptome data, regulome knowledge, and GWAS results if 

available, for separating the causes and consequences in the disease transcriptome. 

DiseaseExPatho computationally de-convolutes the expression data into gene expression modules, 

hierarchically ranks the modules based on regulome using a novel algorithm, and given GWAS 

data, it directly labels the potential causal gene modules based on their correlations with genome-

wide gene-disease associations. Strikingly, we observed that the putative causal modules are not 

necessarily differentially expressed in disease, while the other modules can show strong 

differential expression without enrichment of top GWAS variations. On the other hand, we 

showed that the regulatory network based module ranking prioritized the putative causal modules 

consistently in 6 diseases, We suggest that the approach is applicable to other common and rare 

complex diseases to prioritize causal pathways with or without genome-wide association studies.

1. Introduction

Complex diseases result from the interplay of multiple genetic variations and environment 

factors (1, 2). The putative causal genetic variants can be identified through their 

associations with disease phenotypes using approaches such as genome wide association 

study (GWAS) (3). However, the genetic variants do not directly cause disease, but do so by 

altering cells’ molecular status, as described by epigenomes, transcriptomes, etc., which then 
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escalate to the individual level and manifest as diseases. Hundreds of GWAS studies have 

been carried out for diverse traits and diseases (3, 4), yet our understanding of most common 

diseases remains fragmented and uncertain (5). In most cases, knowing the causal genes of 

diseases is far from knowing the mechanism, limiting our ability to translate the knowledge 

of disease genetics into prevention and treatment strategies (6, 7).

High-throughput technologies based on sequencing or microarray have enabled genome-

wide studies at multiple levels, from GWAS, transcriptome profiling, to meta-genomics (8–

11). Integration and joint modeling of the complementary sources of data will enable the 

most complete view of disease pathogenesis (12–14). Transcriptomic, proteomic, and 

metagenomic profiling can potentially provide key insights on the pathogenesis of diseases, 

but the signal from the disease causes and consequences are intertwined (4, 15, 16), making 

it challenging to extract the causal signals. GWAS and genome sequencing provides direct 

evidences of genetic cause of diseases, yet variants with small effect size pose great 

challenges (3, 4).

The gene-regulation network is a graphical summary of the regulation mechanisms of 

human gene transcriptions. It is composed of the binary relationships among transcription 

factor – target genes. Despite its simplicity, studies based on the network have revealed 

important properties of gene regulations (17–20). However there has been limited 

application of human gene regulatory network in the computational inference of disease 

causes or mechanisms due to the lack of data (21). With the development of ChIP-seq 

technology (22, 23) and the coordinated effort such as ENCODE (20, 24) to measure 

genome wide transcription factor binding profiles, increasingly higher coverage of the 

human gene regulation network is being achieved.

Here we propose a computational pipeline, diseaseExPatho, to infer the molecular 

mechanism underlying complex human diseases (Figure 1). It takes three types of inputs, 

transcriptome of a disease of interest, GWAS implicated putative disease causal genes if 

known, and gene regulation network, which is independent of the specific disease. 

DiseaseExPatho first computationally decomposes the gene expression data using 

independent component analysis (ICA) to obtain functional coherent gene modules. It then 

labels the modules as differentially expressed (DE) and/or putative causal, using a novel 

statistical inference method for detecting gene enrichment. Finally, it hierarchically ranks 

the gene modules based on the gene transcriptional regulation network in order to prioritize 

the putative causal modules even when the disease causal genes are unknown. We applied 

the method to psychiatric disorders, type II diabetes, and inflammatory bowel diseases, and 

demonstrated its ability to decompose and prioritize the causal signal in disease 

transcriptome data with or without the knowledge of putative causal genes.

2. Methods

2.1. Transcriptome data

Transcriptome data for psychiatric disorders and diabetes are obtained from GEO(25). 

Microarray data are preprocessed using the fRMA algorithm(26–29) on batches defined by 

experiment date. The expression values are summarized to the gene level. For RNA-seqs, 
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the FPKM values are quantile normalized and summarized to the gene level and log2 

transformed. Only protein-coding genes are retained. Multiple datasets are merged based on 

shared gene identifiers and further quantile normalized. Metadata for patients are manually 

cleaned and standardized.

For the psychiatric disorders, five studies (GEO accessions GSE21935, GSE21138, 

GSE35974, GSE35977, and GSE25673) are combined. The first four are transcriptomes of 

brain regions and the last one is a study of iPS cell derived neurons from patients and normal 

controls. There are 429 samples in total, covering bipolar disorder (BD), schizophrenia (SZ), 

and major depression (MD). For type II diabetes (T2D), 4 studies (GSE38642, GSE50397, 

GSE20966, and GSE41762) of pancreatic islets tissues or beta cells are selected. For 

inflammatory bowel diseases (IBDs), a single RNA-seq dataset (GSE57945) of pediatric 

IBD patients is used, total 322 samples.

2.2. Human gene regulation network and disease genetic associations

The gene transcriptional regulation network is computationally extracted from ChIP-seq 

experiments as well as low throughput studies reported in the literature (see (30) for more 

details). The dataset is comprised of 146096 direct transcriptional regulation relationships 

between 384 transcription factors (TFs) and 16967 target genes, and is viewed as a directed 

graph with edges pointing from TFs to the target genes.

Gene-disease associations from genome wide association studies (GWAS) for psychiatric 

disorders (bipolar disorder, schizophrenia, and major depression), type II diabetes, and 

inflammatory bowel diseases were retrieved from dbGAP(31), NHGRI(32) and NHLBI(33) 

catalogs and filtered with loose p-value cutoff 1×10−5 to retain the weak but true disease 

causing genes. Phenotype terms related to the same diseases are manually examined and 

putative causal genes are combined. For each SNP, the closest gene or two genes for inter-

genic SNP, are retained.

2.3. Independent component analysis for learning gene modules

Independent component analysis (ICA) is an unsupervised machine-learning algorithm for 

decomposing matrix into underlying simpler and potentially more meaningful component. It 

is commonly used in signaling processing to decompose mixed and noisy audio signals and 

estimate the original independent sound sources (34). When applied to transcriptome data, 

ICA decomposes gene expression into functionally coherent gene modules that correspond 

to cellular processes or pathways that co-express and co-vary in a biological sample (35). In 

this study, we decompose transcriptome data from patients in order to achieve mechanistic 

view of diseases.

Specifically, let matrix Y denotes the expression of G genes in N samples with dimension 

G×N. ICA approximates a matrix Y as the product of two matrixes Y~S · A, where S is a 

G×M matrix containing weights of G variables (genes) in the M independent components, 

while A is a M×N matrix containing the mixing coefficients of the M components in the N 

samples. It can be viewed as biclustering methods with the two matrixes providing the row 

and column clustering for original matrix Y. ICA achieves the matrix decomposition through 
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the assumption that the M components in matrix S are statistically independent. We perform 

ICA using the fastICA algorithm(34, 36, 37) as in previous study(38). The M independent 

components learned from gene expression data are called gene modules. Each module 

represents a soft clustering of genes, with the dominant genes having the highest positive or 

negative weights. Previous study suggest that ICA provide functionally more coherent gene 

clusters compared to PCA(35). We hence interpret the modules as computationally 

estimated gene pathways composed of functionally related genes. In addition, we interpret 

each row of matrix A as the expression of a module in the N samples following previous 

study(38). For each gene expression matrix, we learn M = 50 gene modules.

2.4. Differential expression of gene modules in disease

For each gene module, we apply linear model of the form 

 to infer the differential expression of the 

module in diseases versus normal. Note that ai from matrix A is the expression of a module 

in sample i,  is the disease status variables, while  is the confounding 

variables. The significance is accessed by the Wald-T test of βdisease and βconfound being 

zero. P-values are then corrected by the BH procedure(39) for multiple hypothesis testing, 

and FDR < 0.05 is viewed significant.

Given the capability of ICA to separate signals resulting from different latent variables, we 

assume each gene module is associated with one latent variable. This will be true if the 

number of samples is much larger than the number of latent variables. We therefore label 

each module by the type of variable that is most strongly associated with it. Specifically, 

each gene module is marked disease related, if the module expression is significantly 

associated with the disease status, while less or not significantly associated with 

confounding variables; or confounding, if the opposite is true. The remaining modules not 

significant for any of the variables are of uncertain status. Both disease-related or the 

uncertain modules are retained, while the confounding modules are ignored. For psychiatric 

disorders and IBD, gender and ages are treated as confounding variables, while for T2D, 

gender, age and BMI are treated as confounding variables.

2.5. Directed graph based ranking of gene modules

We propose a hierarchical ranking method for gene modules based on gene regulation 

network. At the high level, we will assign a hierarchical ranking of each gene based on its 

position in the network, and then for each module, we compute its rank as the weighted 

average rank of genes in the modules. This approach can be extended to general gene 

clusters and known gene pathways without loss of generality since an ICA gene module is a 

weighted gene list, while gene clusters or known gene pathways are special cases of 

weighted gene lists taking only binary weights.

Given a directed graph and its adjacency matrix M = (mij|mij ∈ {0,1} for i,j = 1 … n), we 

define a non-negative rank measure r = (ri|i = 1 … n) that is associated with nodes in the 

graph. We require that the rank of node j to equal (or be the best least square approximation 

of) the average of the ranks of all parent nodes plus 1, with 1 representing one layer 

downstream, i.e.,
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When the network is rooted, the rank measure can be interpreted the average distance from 

the root of the network to node j. Written in matrix format, the above problems are formally 

solved by rT = (1 · M′) · (I − M′)†, where M′ is the in-degree normalized adjacency matrix, 1 
is a row vector of n 1s, and † is the pseudo-inverse. However, computing (I − M′)† directly 

can be intractable for large network. Alternatively, when I − M′ is invertible, we can 

numerically compute rT iteratively through rT ← (1 + rT) · M′ until convergence. For human 

gene regulation network, we found that I − M′ is invertible when we removed the self-loops. 

In this study, we removed the self-loops and used the iterative algorithm for computational 

efficiency.

Based on the gene ranks, we then calculate the ranks of gene modules. For an ICA module 

sm = (sgm|g = 1 … G), normalized s.t. Σg sgm
2 = 1, the module’s rank is calculated as 

. Only genes in the regulatory network are included in this calculation.

2.6. Inference of gene modules’ association with genetic causes

We propose a novel algorithm to associate a set of GWAS implicated putative causal genes 

with a gene module. Specifically, for each module m we built a linear model,

where sgm is the weight of gene g in module m, xg ∈ {0,1} indicates if gene g is a putative 

causal gene of a disease according to GWAS association p-value < 10−5. When βm is 

significantly greater than 0, the causal genes are significantly contributing to the gene 

module, thus module m is considered a putative causal module. Notice that since extreme 

positive or negative values are equally important for a gene module, we use absolute values |

sgm|. Hence, we name the approach bidirectional linear model (biLM).

We also note that due to the nature of this problem, xg is binary, and the method is 

equivalent to performing a special T-test on the data, thus it can be called bidirectional T-

test (biT-test). We use the same approach to detect the association of putative causal genes 

with the differential expression of genes in disease versus control, by replacing |sgm| with 

centered differential gene expression , where yg is the differential expression of gene 

g.

3. Results

We apply diseaseExPatho to three major types of adult psychiatric disorders, schizophrenia 

(SZ), bipolar disorder (BD) and major depression (MD), as well as type II diabetes (T2D) 

and inflammatory bowel diseases (IBDs), Crohn’s disease (CD) and ulcerative colitis (UC). 

The three psychiatric disorders together affect over 10% of the US population. They are 
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widely studied with both transcriptome and GWAS approaches, allowing us to evaluate our 

method. We compiled transcriptome data from 5 studies of brain tissues and neuron cells. In 

total, there are 429 samples, including 82 BD, 27 MD, and 160 SZ patients, and 160 normal 

controls. For T2D we combine transcriptomic data of pancreatic islet from four studies, 

totally 199 samples, including 50 T2D patients and 149 normal controls. IBD data come 

from 1 study, total 322 samples, including 218 CD disease, 62 UC, and 42 normal controls. 

The putative causal genes for the disorders are manually compiled from databases of GWAS 

associations(31–33), with totally 151, 306, 87, 485, 71, and 229 putative causal genes for 

BD, MD, SZ, T2D, CD, and UC respectively.

3.1. Genetic causes of diseases leave detectable signals in the transcriptome

Despite the popularity of both GWAS and transcriptomic approach for disease study, there 

has been limited research on the consistency between GWAS and transcriptome approaches. 

A recent study reported the gene expression outliers are enriched with rare genetic variations 

in SZ patients(40). Here we examine the enrichment of GWAS-implicated putative causal 

genes of 6 diseases in the two tails of gene differential expression profiles. Statistically 

significant enrichment is detected for both the BD (p-value 0.00024, biLM) and MD (p-

value 9.0 × 10−8), but not SZ (p-value 0.23, see Figure 2). Enrichment is also observed for 

putative causal genes of T2D (p-value 4.3 × 10−8), and CD (p-value 0.032), but not 

significant for UC (p-value 0.13).

3.2. Matrix decomposition separates the causal and differentially expressed gene modules

Diseases are generally complex processes. For complex diseases, multiple genetic and 

environmental factors together contribute to the disease risks. We believe for complex 

diseases, the causal factors, regardless of the type, cause disease through common molecular 

pathways of multiple genes. When we apply ICA to patient transcriptome, we expect some 

of the learnt gene modules to capture the underlying causal molecular pathways, driven by 

the same underlying causal factor (or a set of closely related causal factors) of the disease. 

The remaining modules can be downstream in disease pathogenesis or related to (possibly 

unknown) confounding factors.

We applied ICA and bidirectional linear model to psychiatric disorders and identified 17, 16, 

and 8 putative causal gene modules for BD, MD, and SZ. We refer to these significant 

modules the putative causal modules. We observed that many of the gene modules show a 

stronger enrichment of putative disease causal genes (Figure 3A) compared to the overall 

differential expression profiles (Figure 2) in terms of the association p-values. For example, 

11, 6, and 8 of the putative causal modules have stronger enrichment p-values than the 

original differential expression profiles.

Since the modules are derived based on gene expression data, it is important to examine if 

the putative causal modules are always differentially expressed (DE) in disease versus 

normal individuals. We calculate each module’s DE as described in method section using a 

linear regression by removing the effects of confounding factors and correcting the p-values 

for multi-hypothesis testing. We then use the log of corrected p-value, FDR value here, to 

indicate the extent of DE. The extent of module’s disease causing effect is calculated using 
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bidirectional linear model. Surprisingly, we observed that majority of the putative causal 

gene modules are not differentially expressed for the psychiatric disorders (Figure 3B), and 

similar results are observed on separate analysis of type II diabetes and inflammatory bowel 

diseases (CD and UC). For example, module 3 is associated with putative causal genes for 

all 3 psychiatric disorders, but it is not differentially expressed for any of them. This 

however is consistent with the improved causal gene enrichment at the module level 

compare to the differential gene expressions, since many disease causal genes are apparently 

not associated with strong differential expression. In addition, we observed modules (e.g., 

module 38) that are only differentially expressed but not enriched with putative disease 

causing genes. Despite this, some putative causal modules are indeed differentially 

expressed (e.g. module 23, see table 1 for details on selected modules). Overall, we 

identified 3 and 9 DE gene modules for bipolar disorder and schizophrenia, while 1 and 2 of 

them are overlapping with the putative causal modules. No DE modules are identified for 

major depression.

3.3. Putative causal modules are ranked lower in the gene regulatory network

GWAS studies are not available for all complex diseases. Given the large sample size 

requirement, some complex diseases may not have enough population to enable GWAS. We 

hence examine the possibility to infer putative causal gene modules from expression data 

directly.

We rank the gene modules based on the directed gene regulation network to prioritize the 

modules. Multiple studies suggest that essential genes are less likely to be disease 

causing(23). Our basic assumption is that gene modules ranked top of the network are more 

essential in the cell, and are less likely to be associated with phenotypically weak variants 

for complex diseases.

We propose a novel and intuitive rank score for genes based on the regulatory network 

structure (Figure 4). The key property of the ranking is that a node’s rank is the average of 

all its parent nodes’ ranks plus 1 (see methods section 2.5 for details). For simple rooted 

graphs, we show that the resulting rank is the average distance of a node to the root of the 

graph (Figure 4). It is different from previously proposed gene ranking approaches(17–19) 

in two major ways. First, it provides an intuitive ranking of nodes that is consistent with 

topological sort when the graph is acyclic. Second, previous approaches focus on the 

transcription factors (TFs) and rank from the bottom to the top. Our approach ranks from top 

to bottom and both TF and non-TFs receive meaningful ranks depending on their locations 

in the network.

We first examine the ranking of single genes. The putative causal genes are enriched 

significantly in the bottom half of the network (p-value 0.0007, odd ratio 1.13 for putative 

causal gene obtained at p-value cutoff 1×10−5)*. Relatedly, GWAS implicated transcription 

factors also show a weak trend of favoring the bottom half of the network (p-value 0.20), 

despite that fact that TFs overall have higher ranks (p-value 0.0002, t-test).

*The true causal genes will likely show stronger enrichment, given that a significant portion of the SNP-disease associations are 
spurious, and two candidate genes are included for intergenic SNPs.
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We then examine the module rankings by aggregating the gene rankings based on genes’ 

weights in the modules (see methods section 2.5). For the psychiatric disorders, we 

discovered that the putative causal gene modules are ranked significantly lower than the 

other modules (Figure 5A left, p-value 0.018, two-tailed t-test of ranks compared putative 

causal and non-causal modules, or p-value 0.028, Spearman rank correlation −0.33 between 

enrichment p-value and module ranking). Similarly for type II diabetes (p-value 0.16, two-

tailed t-test; or p-value 0.0023, Spearman rank correlation −0.43), and inflammatory bowel 

diseases (p-value 0.019, two-tailed t-test; or p-value 0.00028, Spearman rank correlation 

−0.50). We further compared the putative causal modules with the differential expressed 

non-causal modules, and observed significantly lower ranking of the causal modules, this is 

true for 3 psychiatric disorders together (p-value 0.0019, two-tailed t-test, Figure 5A right), 

as well as for each psychiatric disorder separately (Figure 5B). This is however not 

significant for T2D and IBDs.

As a control, we evaluate the ranking on the inverse network (by reversing the TF to target 

gene regulation directions), to obtain a bottom-up ranking mimicking the approach in 

previous studies (17–19). None of the results are significant based on the new ranking.

3.4. Biological functions of the gene modules for psychiatric disorders

We annotated the functions of gene modules for psychiatric disorders based on the 

enrichment of known gene functions curated in the Gene Ontology and canonical pathway 

databases (41–44). We carefully examined 8 gene modules, covering the top 5 putative 

causal and the top 5 differentially expressed modules (Table 1). The five putative causal 

gene modules are annotated with neural related gene functions, such as synaptic 

transmission and glutamate receptor activity. The three DE and non-causal gene modules are 

annotated mostly with functions that are not unique to neuronal systems, and are ranked top 

in gene regulatory network.

It is worth noting that stronger overlap among the three psychiatric disorders is observed at 

the module level than the gene level (Figure 6). We believe this is because the gene modules 

provide additional statistical power than single genes, and the impact of false causal genes 

from GWAS is minimized at the module level, as the modules are comprised of mainly 

functional related genes.

We also examine the functions of the disease-specific putative causal modules. Module 2 is 

unique to schizophrenia (and weakly for BP). Its top function annotations include GPCR 

ligand binding, G protein coupled receptor protein signaling pathway, and hormone activity. 

Module 29 is unique to bipolar disorder. Its top function annotations include 3-UTR 

mediated translational regulation, translation, and structural constituent of ribosome. Module 

33 is unique to bipolar disorder (and weakly to schizophrenia). Its top function annotations 

include taste transduction, synaptogenesis, and taste receptor activity. Module 47 is unique 

to bipolar disorder. Its top function annotations include integrin-1 pathway, multicellular 

organismal development, and actin binding. Module 11 is unique to depression. Its top 

function annotations include cell adhesion molecules (CAMs), membrane organization and 

biogenesis, and phosphoric diester hydrolase activity. Module 50 is unique to depression, 

but it has no significant function annotation.
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4. Discussion

Human complex diseases are the consequences of long-term interplay among a suite of 

abnormal genetic variants and environmental conditions. Previous studies have identified 

strong organizational patterns of human disease genes from the study of biological 

networks(23), and it is suggested that human disease genes tend to cluster into modules(45). 

Various approaches have been developed for predicting gene functions or disease genes 

using the guilty-by-association rule.

In this study we propose diseaseExPatho that integrates disease transcriptome and human 

gene regulation network to unravel the pathogenesis pathways in specific diseases. The 

diseaseExPatho is composed of 4 major components (Figure 1). A) ICA decomposition of 

gene expression matrix from patients; B) Module differential expression analysis; C) A 

novel algorithm (biLM) for associating a gene module with GWAS implicated putative 

causal genes of a disease; D) A novel algorithm for ranking genes and modules based on the 

gene regulation network.

Especially, we focus on prioritizing the disease causing pathways common to multiple 

patients by leveraging the gene co-expression pattern as well the hierarchical structure in the 

gene regulation network. We applied diseaseExPatho to 3 datasets for psychiatric disorders, 

type II diabetes (T2D) and inflammatory bowel diseases (IBDs), and obtained consistent and 

promising results.

4.1. Gene co-expression, differential expression and disease causing

The disease transcriptome data provide two key ingredients of information. First, it provides 

the genes that are likely active in the disease. This acts as a filter of the gene regulation 

network to obtain the disease-relevant sub-network. Second, it provides the gene co-

expression patterns, which divides the disease-related genes into compact modules with 

close-related functions.

We use the independent component analysis to simultaneously extract these two types of 

information, through estimating a set of independent gene expression modules. After 

labeling the putative causal gene modules based on the enrichment of putative disease 

causing genes, we observed that majority of the gene modules activated/deactivated in the 

disease are not associated with causal genetic variations (Figure 3B). In fact, many putative 

causal modules do not show DE in the patients, while many non-causal gene modules are 

significantly differentially expressed (Figure 3B and table 1). Such non-causal DE modules 

may correspond to downstream molecular pathways, or they may be driven by disease-

unrelated confounding factors.

With the help of computationally derived gene modules (pathways), we can elevate from the 

individual causal genes to causal pathways. This provides us with four advantages. First, we 

have stronger statistical power in detecting the causal mechanisms of diseases, when we 

aggregate the GWAS signals from the individual gene level to the pathway level. Second, 

we have a more systematic view of the disease mechanism as revealed by the common 

functions of multiple genes in a module. Third, we have higher statistical power in detecting 

Li et al. Page 9

Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gene module’s expression changes compared to gene’s expression changes, as we suffer 

much less from the multi-hypothesis testing issues, since there are much fewer number of 

modules than genes. Fourth, the identified gene expression suffers much less from 

confounding factors, such as patient heterogeneity due to gender and age.

It is a significant and underappreciated fact that the disease causing genes leave significant 

expression signals in patients’ transcriptome(40). We observed increased expression 

changes of putative causal genes for psychiatric disorders (Figure 2), as well as T2D and 

IBDs. This serves as the foundation of transcriptome-based disease etiology inference.

We observed a stronger enrichment of disease causing genes in individual gene modules 

than using the overall DE profiles (Figure 3A). In the extreme cases of schizophrenia, we 

observed 8 modules that are significantly enriched with putative schizophrenia causal genes, 

while no significant enrichment is observed for the differential expression profile in patient 

versus normal (Figure 2 right). This implies that, first, human disease variations gather in 

functionally related genes, and second, these functional related genes cluster as co-

expression modules in the disease transcriptome, even when the genes do not show strong 

differential expression in disease.

A weak consistency has been observed between GWAS and gene expression data for 

prostate cancer (46) and schizophrenia (40). Our findings not only support the consistency, 

but also provide an explanation of the failure to observe a much stronger consistency. We 

suggest that many DE signals in expression data are non-causal but rather consequences or 

driven by confounding factors, as supported by the DE & not causal modules. On the other 

hand, DE is not a legitimate requirement for all causal genes, as supported by the causal & 

non-DE modules.

We believe the differential expression approach, although commonly used in transcriptome 

study, is not the best approach to extract the causal signals in expression data. A recent study 

observed improved GO term enrichment when selecting SNPs that are associated with gene 

expression changes(47). We support the integration of expression data and GWAS as a way 

to remove the noises in GWAS findings. However, given our observations, we believe 

requiring DE on the causal genes will remove true causal genes. We instead advocate using 

gene co-expression modules rather than disease differential expression for improved 

interpretation of GWAS results.

4.2. Causal module prioritization without using known genetic causes

Prior studies suggest that human essential genes (with knock-out lethality in mouse) are less 

likely to be disease causing (23). We propose a network-based module ranking, and 

hypothesize that the top-ranked modules are more essential, while the near bottom-ranked 

modules are more likely to be disease causing. This hypothesis is supported by module 

ranking results in psychiatric disorders (Figure 5 and table 1), as well as T2D and IBDs. 

Consistently, GWAS implicated putative disease/phenotype causal genes also prefers the 

bottom-half of the regulatory network.
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To our knowledge, the network we compiled for this study is the largest published network, 

yet it only covers 384 transcription factors, 25% of the putative 1500 transcription factors in 

human (48, 49). Despite this, the network already provides meaningful signal for prioritizing 

the putative causal modules, as is observed in 3 disease datasets. We hence expect improved 

performance of diseaseExPatho with the accumulation of more and higher quality gene-

regulation data.

Although we demonstrate the applications of diseaseExPatho to complex diseases with 

extensive GWAS results, we suggest the module ranking approach can be applied to 

prioritize putative causal modules for complex disease that are not well studied by GWAS, 

such as the idiopathic inflammatory myositis (50, 51).
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Figure 1. 
Overview of the diseaseExPatho pipeline for causal gene module prioritization
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Figure 2. 
Overlay of the distributions (normalized counts) for differential expression (DE) of the 

putative causal genes (red) against DE of the other genes (cyan) in three types of psychiatric 

disorders. The p-values are obtained by bidirectional linear model comparing the spreads of 

the DE values.
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Figure 3. 
Disease causing and differential expression (DE) are orthogonal at the pathway level. A. 

Gene modules learnt by ICA and GWAS implicated putative disease causing genes are 

associated by enrichment analysis. The plots overlay the distributions of the weights of the 

putative causal genes of bipolar disorder (red) against the distribution of the weights of the 

other genes (cyan) in 3 modules. The p-values are obtained by biLM comparing the spreads 

of the genes’ weights in two distributions. B. Scatter plot of the causal gene modules versus 

the DE gene modules for 3 psychiatric disorders. Many causal gene modules are not 

significantly differentially expressed, while many DE gene modules are not enriched with 

putative causal genes. The numbers in the plots are the IDs of gene modules. The x and y 

axes are FDR (the multi-testing corrected p-values) at log scale. Dashed lines correspond to 

FDR level 0.05.
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Figure 4. 
Directed gene regulation network based ranking of genes (letters a–l) and weighted gene 

lists (gene modules 1–3). The gene ranking is interpreted as the average distance of a gene to 

the root of the network when the network is rooted, as the example shown in this figure.
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Figure 5. 
Gene regulation network based ranking differentiates the causal versus non-causal gene 

modules. The causal modules tend to be ranked lower (i.e. with higher rank values). A. 

Boxplots comparing the ranking of putative causal modules versus other modules (left) or 

putative causal modules versus the DE & Not Causal modules (right). A putative causal 

module is defined as a module that shows significant enrichment (FDR < 0.05) of GWAS 

implicated putative causal genes. A DE & Not Causal module is defined as a differentially 

expressed module (FDR < 0.05) that is not causal. For each module, p-values for 3 

psychiatric disorders are combined into one p-value by Fisher’s methods, for either 

differential expression or the enrichment of putative causal genes. The p-values shown in the 

figures are obtained by two-tailed two-sample t-tests. B. The comparison of putative causal 

modules versus the DE & Not Causal modules for individual psychiatric disorders. Note 

there are no significant DE modules for major depression.

Li et al. Page 17

Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Overlap of putative causal genes, putative causal modules, and DE modules among 

psychiatric disorders. BP: bipolar disorder; MD: major depression; SCZ: schizophrenia. 

Significant modules for each disease are identified as those with FDR<0.05 for that disease.

Li et al. Page 18

Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 19

T
ab

le
 1

Fu
nc

tio
n 

an
no

ta
tio

ns
 o

f 
pu

ta
tiv

e 
ca

us
al

 a
nd

 d
if

fe
re

nt
ia

lly
 e

xp
re

ss
ed

 m
od

ul
es

 f
or

 th
e 

ps
yc

hi
at

ri
c 

di
so

rd
er

s.
 T

he
 to

p 
5 

pu
ta

tiv
e 

ca
us

al
 m

od
ul

es
 (

fi
rs

t 5
 

ro
w

s)
 a

nd
 to

p 
5 

di
ff

er
en

tia
lly

 e
xp

re
ss

ed
 m

od
ul

es
 (

m
ar

ke
d 

D
E

) 
ar

e 
in

cl
ud

ed
. F

iv
e 

hi
gh

es
t-

w
ei

gh
te

d 
ge

ne
s 

ar
e 

lis
te

d 
fo

r 
ea

ch
 m

od
ul

e,
 a

nd
 th

os
e 

ge
ne

tic
al

ly
 

as
so

ci
at

ed
 w

ith
 p

sy
ch

ia
tr

ic
 d

is
or

de
r 

ar
e 

un
de

rl
in

ed
.

ID
M

od
ul

e 
F

un
ct

io
n 

%
T

op
 5

 G
en

es
T

yp
e

D
if

fe
re

nt
ia

l E
xp

re
ss

io
n 

P
-v

al
ue

E
nr

ic
hm

en
t 

of
 P

ut
at

iv
e 

C
au

sa
l G

en
es

, 
P

-v
al

ue
M

od
ul

e 
R

an
ki

ng

B
P

$
M

D
$

SZ
$

B
P

$
M

D
$

SZ
$

3
ne

ur
on

al
 s

ys
te

m
; s

yn
ap

tic
 tr

an
sm

is
si

on
; 

ga
te

d 
ch

an
ne

l a
ct

iv
ity

SP
H

K
A

P,
 G

A
B

R
A

6,
 

N
E

U
R

O
D

1,
 C

A
D

P
S2

, 
C

N
T

N
6

C
au

sa
l

0.
23

0.
42

0.
49

4.
E

-1
2

2.
E

-0
7

1.
E

-1
2

34

13
ax

on
 g

ui
da

nc
e;

 n
er

vo
us

 s
ys

te
m

 
de

ve
lo

pm
en

t; 
gl

ut
am

at
e 

re
ce

pt
or

 a
ct

iv
ity

D
L

K
1,

 Z
IC

1,
 P

T
N

, 
G

N
A

L
, D

N
E

R
C

au
sa

l &
 D

E
0.

14
0.

13
3.

E
-0

5
7.

E
-1

1
8.

E
-1

1
8.

E
-0

4
33

10
ne

ur
on

al
 s

ys
te

m
; n

er
vo

us
 s

ys
te

m
 

de
ve

lo
pm

en
t; 

gl
ut

am
at

e 
re

ce
pt

or
 a

ct
iv

ity
PM

P2
, S

L
C

22
A

3,
 

SL
C

17
A

8,
 K

A
L

1,
 C

H
L

1
C

au
sa

l
0.

90
0.

72
0.

09
2.

E
-0

7
7.

E
-1

1
5.

E
-0

6
42

4
ne

ur
on

al
 s

ys
te

m
; n

er
vo

us
 s

ys
te

m
 

de
ve

lo
pm

en
t; 

vo
lta

ge
 g

at
ed

 c
at

io
n 

ch
an

ne
l a

ct
iv

ity

R
G

S4
, T

E
SP

A
1,

 G
D

A
, 

H
T

R
2A

, C
D

H
9

C
au

sa
l

0.
61

0.
10

0.
18

7.
E

-0
4

2.
E

-1
0

4.
E

-0
6

41

23
G

PC
R

 d
ow

ns
tr

ea
m

 s
ig

na
lin

g;
 

tr
an

sm
is

si
on

 o
f 

ne
rv

e 
im

pu
ls

e;
 r

ec
ep

to
r 

ac
tiv

ity

R
E

L
N

, M
E

T
, P

E
N

K
, 

C
A

L
B

1,
 G

C
N

T
4

C
au

sa
l &

 D
E

2.
E

-0
4

0.
83

8.
E

-0
4

4.
E

-0
5

1.
E

-0
7

1.
E

-0
7

37

38
H

IF
1 

T
F 

pa
th

w
ay

; s
ig

na
l t

ra
ns

du
ct

io
n;

 
dr

ug
 b

in
di

ng
F

K
B

P
5,

 S
L

C
14

A
1,

 
PD

K
4,

 I
L

1R
L

1,
 Z

B
T

B
16

D
E

9.
E

-0
3

0.
14

3.
E

-0
8

0.
05

0.
35

0.
26

13

6
ox

id
at

iv
e 

ph
os

ph
or

yl
at

io
n;

 c
ar

bo
hy

dr
at

e 
m

et
ab

ol
ic

 p
ro

ce
ss

; o
xi

do
re

du
ct

as
e 

ac
tiv

ity
G

ST
T

1,
 L

A
PT

M
4B

, 
A

T
P6

A
P1

, A
T

P6
V

0B
, 

PI
T

H
D

1
D

E
2.

E
-0

3
0.

25
1.

E
-0

3
0.

21
0.

62
0.

43
7

28
ce

ll 
cy

cl
e;

 c
el

l c
yc

le
 p

ro
ce

ss
; t

as
te

 
re

ce
pt

or
 a

ct
iv

ity
PI

15
, D

L
E

U
1,

 M
ST

N
, 

FK
B

P1
4,

 S
Y

C
P2

L
D

E
2.

E
-0

5
0.

79
0.

24
0.

20
0.

87
0.

66
4

%
Fo

r 
ea

ch
 m

od
ul

e,
 th

re
e 

fu
nc

tio
na

l t
er

m
s 

ar
e 

pr
ov

id
ed

. T
he

y 
ar

e 
th

e 
m

os
t s

ig
ni

fi
ca

nt
 te

rm
s 

in
 c

an
on

ic
al

 p
at

hw
ay

s,
 g

en
e 

on
to

lo
gy

 (
G

O
) 

bi
ol

og
ic

al
 p

ro
ce

ss
, a

nd
 G

O
 m

ol
ec

ul
ar

 f
un

ct
io

ns
.

$ B
P:

 b
ip

ol
ar

 d
is

or
de

r;
 M

D
: m

aj
or

 d
ep

re
ss

io
n;

 S
Z

: s
ch

iz
op

hr
en

ia
.

Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 22.


