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Abstract

Association studies have shown and continue to show a substantial amount of success in 

identifying links between multiple single nucleotide polymorphisms (SNPs) and phenotypes. 

These studies are also believed to provide insights toward identification of new drug targets and 

therapies. Albeit of all the success, challenges still remain for applying and prioritizing these 

associations based on available biological knowledge. Along with single variant association 

analysis, genetic interactions also play an important role in uncovering the etiology and 

progression of complex traits. For gene-gene interaction analysis, selection of the variants to test 

for associations still poses a challenge in identifying epistatic interactions among the large list of 

variants available in high-throughput, genome-wide datasets. Therefore in this study, we propose a 

pipeline to identify interactions among genetic variants that are associated with multiple 

phenotypes by prioritizing previously published results from main effect association analysis 

(genome-wide and phenome-wide association analysis) based on a-priori biological knowledge in 

AIDS Clinical Trials Group (ACTG) data. We approached the prioritization and filtration of 

variants by using the results of a previously published single variant PheWAS and then utilizing 

biological information from the Roadmap Epigenome project. We removed variants in low 

functional activity regions based on chromatin states annotation and then conducted an exhaustive 

pairwise interaction search using linear regression analysis. We performed this analysis in two 

independent pre-treatment clinical trial datasets from ACTG to allow for both discovery and 

replication. Using a regression framework, we observed 50,798 associations that replicate at p-

value 0.01 for 26 phenotypes, among which 2,176 associations for 212 unique SNPs for fasting 

blood glucose phenotype reach Bonferroni significance and an additional 9,970 interactions for 

high-density lipoprotein (HDL) phenotype and fasting blood glucose (total of 12,146 associations) 

reach FDR significance. We conclude that this method of prioritizing variants to look for epistatic 

interactions can be used extensively for generating hypotheses for genome-wide and phenome-

wide interaction analyses. This original Phenome-wide Interaction study (PheWIS) can be applied 

further to patients enrolled in randomized clinical trials to establish the relationship between 

patient’s response to a particular drug therapy and non-linear combination of variants that might 

be affecting the outcome.
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1. Introduction

Investigating the precise response of antiretroviral therapies given to patients is an important 

area of research. Previous studies have discovered interesting single gene effects as well as 

genetic interaction effects associated with response to anti-retroviral medications1, 2 in the 

AIDS Clinical Trials Group (ACTG) data (https://actgnetwork.org/). A recently published 

Phenome-wide association study (PheWAS)2 showed a number of variants associated with a 

list of 27 highly curated and transformed (for normal distribution) phenotypes collected in 

baseline model of AIDS clinical trials3, 4. Thus, this unique clinical trials dataset and the 

analyses performed earlier provide a backbone for performing epistatic interactions analyses 

among variants and genes that might be associated with multiple drug response phenotypes.

A wealth of data are being generated from speedy advancements in genotyping and 

sequencing technologies, thus providing opportunities to investigate not only single gene 

effects but also non-linear combined genetic effects of these variants. Genome wide 

association studies (GWAS) have been proven to detect many SNPs associated with 

multiple diseases or traits. These variants discovered by GWAS can only explain small 

proportion of genetic risk corresponding to the problem of “missing heritability”5. One 

conceivable explanation of missing heritability is the existence of genetic interactions or 

epistasis5 and the evidence for genetic interactions has been observed in both humans and 

model organisms6. Efficient identification of epistatic interactions is also an important 

biological problem because unlike GWA studies, gene-gene interaction studies are not yet 

fully equipped to produce reproducible results most importantly due to the combinations of 

pairwise models that are generated from each individual study. Additionally, testing for two 

or multi-way interactions still remains a challenge due to overhead of computing resources 

and also due to correction for false positives for each test performed. Thus, filtration of 

variants based on prior biological knowledge is used frequently in the search for epistasis7. 

Many studies have shown that filtration of variants based on strong and marginal main 

effects as determined by the data can be useful in detecting interactions8. Combining the 

main effect filtration method along with filtration based on prior-biological knowledge has 

also been proven to increase the power to detect epistatic interactions9–11.

The Roadmap Epigenome has provided high-resolution genome wide interaction maps 

based on the chromatin accessibility, histone modifications, DNA methylation and mRNA 

expression across 127 epigenomes12, 13. These data can be used as a great resource of prior 

biological information for filtering variants based on the activity of the genomes as defined 

by chromatin states14. Annotations of variants associated with disease traits from the 

NHGRI GWAS Catalog15 have shown that 81% of variants associated with a disease can be 

annotated into one of the functional regulatory elements using ENCODE data where 

functional here refers to any biochemical activity as identified from at least one of the cell 
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lines from ENCODE 12, 14. Roadmap epigenome data is collected from an even larger list of 

epigenomes and thus provide an extensive and more detailed map of regulatory activity of 

the genome.

In this study, we intended to use this extensive knowledge about regulatory elements as 

criteria to filter variants based on their functional activity before performing interaction 

testing rather than the more traditional approach of prioritizing variants based on their 

activity after conducting analysis. This will reduce the multiple testing burden and increase 

interpretability. In the remaining sections, we explain our proposed analytic pipeline for 

Phenome-wide interaction study (PheWIS), its application to the pre-treatment ACTG 

datasets, and a series of highly significant gene-gene interactions associated with baseline 

clinical variables. We show that combination of biological knowledge and main effect 

filtering provides a high-throughput, comprehensive pipeline to address the architecture of 

complex traits. This method can clearly be applied to patients from on-treatment imminent 

clinical trial data to generate hypothesis for epistatic gene-gene interactions that could 

influence drug response and treatment design.

2. Materials and Methods

2.1 Genotype and Phenotype data

ACTG data from treatment-naïve patients has been previously reported16–20. We used the 

same dataset as described in the pilot PheWAS conducted on ACTG data that consisted of 

27 pre-treatment laboratory measurements (shown in supplementary table 1 at 

ritchielab.psu.edu/publications/supplementary-data/psb-2016/phewis) that have been 

normalized by appropriate transformations. From all 27 phenotypes, 26 were used as 

independent variables and one phenotype (CD4 T-cell counts) was used as a covariate due to 

its known confounding effect in HIV patients21. This dataset consisted of 2547 genotyped 

participants which were imputed in three phases based on a separate immunogenomics 

project22. Phase I and II were combined together (Discovery dataset), which consisted of 

1366 samples and Phase III consisted of 1181 samples (Replication dataset) as described in 

detail in pilot PheWAS2. Supplementary Table 2 Lists the information on samples used in 

both the discovery and replication dataset along with the demographic information on these 

samples.

2.2 Annotation and Filtration of variants

The pilot PheWAS analysis reported 10,584 variants that replicated at p-value <0.01 with 

the same direction of effect across two datasets. We took all of these variants that passed the 

replication criteria in the pilot PheWAS and annotated them using Biofilter23. Biofilter is a 

unified framework that consists of data from multiple resources such as KEGG, GENCODE, 

RegulomeDB, etc. We added Roadmap Epigenome posterior probability data for 25 

chromatin states averaged across all 127 epigenomes as a new source to Biofilter. We 

annotated variants with the help of Biofilter by specifying the Roadmap Epigenome as the 

single source to be used to annotate variants in order to remove any redundancy from similar 

sources such as RegulomeDB24 or HaploReg25 which also contain data from ENCODE 

project12.
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We used the 25-state chromatin models data published on the Roadmap epigenome website 

(http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp). The roadmap 

epigenome posterior probability raw data is a map of the human genome where the genome 

is divided into 200 base pair regions (chunks) and thus there are 15,478,375 total numbers of 

chunks of the genome (for human genome build 37) for which probabilities for each 25 

states are provided. We combined posterior probabilities from 127 epigenomes (tissues/cell 

types) in Roadmap Epigenome data by doing an average across all values to calculate 

posterior probability of each state for each 200bp region. State with highest probability was 

then assigned to each region. Careful investigation of these data suggested that many 

consecutive chunks are annotated as the same chromatin states. Thus we dynamically 

combined chunks together to yield a larger contiguous region of the genome, thereby 

reducing the total number of chunks. In order to combine the consecutive chunks, we used a 

rule of 80% where the two chunks were combined and annotated as the same state if the 

probability of the same state in consecutive chunk is 80% or greater.

To get an estimate of the total number of regions for each chromatin state in a genome-wide 

study, we choose to look at approximately 5M variants from Illumina Omni5 platform as 

that is one of the largest genotyping chips. Table 2 provides an overall estimate of each 

chromatin state and the total number of regions combined dynamically for all variants 

genotyped on Illumina Omni5 chip (http://www.illumina.com/products/humanomni5-

quad_beadchip_kit.html). We picked the Omni5 chip to show a large number of variants that 

can be covered with their respective chromatin states from the genotyping chips available. 

To get a better overview of variants on genotyping chips that are known to be associated 

with a disease using NHGRI GWAS catalog15, we also mapped these variants on Omni 5 

chip to GWAS catalog (accessed May 2014) using Library of Knowledge Integration 

(LOKI) database in Biofilter and looked at how all variants in each state are associated with 

one or more disease from GWAS catalog. Table 2 also represents the number of times each 

chromatin state is represented in the NHGRI GWAS catalog as being associated with a 

disease.

10,584 variants from the pilot PheWAS were annotated using the same approach described 

above. Figure 1 shows the proportion of variants in each of the 25 states. To filter these 

variants based on the activity of each region (corresponding to chromatin states), we 

removed any variants that fell in Chromatin State 25 (Quiescent/Low State) because as 

described in Roadmap epigenome, predominantly most of the inactive regions fall under 

quiescent state (approximately 40% of inactive region) and this state is represented on an 

average in 68% of the genome13. This annotation followed by filtration step resulted in 1773 

variants that were further considered for association testing.

2.3 Statistical Analysis

To test for pairwise interactions among 1773 annotated variants in both discovery and 

replication datasets, all variants were encoded as additive where risk incurred by 

heterozygous alternate allele is half the risk incurred by homozygous alternate alleles. We 

ran linear regression where a reduced model consisted of main effects of all variants 

adjusted by covariates and a full model consisted of main effects and an interaction term for 
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each pairwise SNP-SNP model adjusted by covariates. A likelihood ratio test was conducted 

to obtain the significance of the interaction effect above and beyond the main effect of each 

variant. Below is the mathematical description for the reduced and full model:

(1)

(2)

(3)

We used PLATO (http://ritchielab.psu.edu/software/plato-download) to conduct PheWIS in 

both discovery and replication datasets where all 26 phenotypes were calculated 

simultaneously for each pairwise interaction model. We adjusted the analysis by age, 

gender, CD4 T-cell count (square root) and first 5 principal components (to account for 

genetic ancestry). We also calculated Bonferroni and FDR based corrected p-values26, 27 for 

each model tested. Here the models are adjusted for all pairwise combination of variants and 

all phenotypes (40,842,828 tests). We ran the regression analyses separately for discovery 

and replication datasets and then looked for each pairwise combination of SNPs associated 

with the same phenotype to determine if results were replicating across the two independent 

datasets.

3. Results

Annotation of all 10,584 variants from the pilot PheWAS analysis showed that the majority 

of variants represent state 25 (S25; Quiescent/Low) as shown in Figure 1.Variants detected 

from GWAS are highly enhanced in regulatory regions as illustrated in Table 2 where a 

large number of variants are represented in all 25 states but the majority of variants 

associated with a disease represent the most inactive state “S25”. Since a large proportion of 

variants known to be associated from GWA studies only represent small proportion of 

genetic risk28 and one of the biggest challenges is in understanding the role of the majority 

of these variants29. Therefore, prioritizing variants based on the affect that they can impose 

on gene regulation is a crucial step in understanding the associations between variants and 

phenotypes. We aimed this study to focus on only variants that are represented in more 

active states (with state 1 being the most active and state 25 being the least active) with the 

potential for a larger proportion of variance to be explained by these variants. A total of 

50,798 SNP-SNP pair and phenotype results replicate at p-value<0.01. In order to adjust for 

multiple testing burden and to reduce false positives, we required replication between the 

two datasets based on Bonferroni adjusted p-value and False Discovery Rate (FDR) adjusted 

p-value26, 27, 30. A total of 2,176 results replicate for just one phenotype (fasting glucose) 

based on Bonferroni based correction and 12,146 results replicated for two phenotypes: 

fasting glucose and high density lipoprotein (HDL), for FDR based correction of p-values. 

We used Biofilter to again annotate the position of these variants with chromatin states and 

then further annotate each SNP from SNP-SNP pairs with genes. SNPs are annotated as 

genes where the position of a SNP falls within gene boundaries. Therefore, more than one 

SNP can be annotated to same genes. Table 3 presented the distribution of variants from 
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Bonferroni and FDR based results for each of the 24-chromatin states. We also looked at the 

expression of top genes in various tissues using GTEx portal31. For HDL results, we looked 

for expression in adipose and liver tissue and for fasting glucose; we looked for expression 

in the pancreas.

We also mapped all SNP-SNP pairs to genes using Biofilter. Bonferroni significant results 

consisted of 212 unique genes that were mapped to 66 genes and FDR-based significant 

results consisted of 690 unique SNPs that represent 245 unique genes. Details of all 

replicated results can be found in supplementary material online (supplementary table 3 and 

4 at ritchielab.psu.edu/publications/supplementary-data/psb-2016/phewis).

Figure 2 represents the top 30 results for fasting glucose that are less than Bonferroni 

corrected p-value 0.01. Each SNP-SNP pair and their corresponding genes are shown along 

with −log10 (p-value) track for both Discovery and Replication datasets. Interactions among 

the specific chromatin states that the SNP falls under are shown on the right side. Six unique 

gene-gene pairs are also expressed in the pancreas. Figure 3 shows a circular plot for HDL 

providing the interaction between the SNPs in the genes and the states that the SNPs 

represent. The genes are colored based on the tissue that they are expressed in. Figure 3 also 

represents the FDR corrected p-values for each SNP-SNP interaction pairs. For details on all 

results that were replicated, please refer to supplementary material online (supplementary 

table 3 and 4 at ritchielab.psu.edu/publications/supplementary-data/psb-2016/phewis)

4. Discussion

This study presents a pilot Phenome-wide Interaction study (PheWIS), which is the first of 

its kind, in the AIDS Clinical Trials Group data. With the help of statistical methods to 

detect genetic interactions associated with one or multiple phenotypes, we showed 

significant interactions for SNPs mapped to different chromatin states. The purpose of this 

study is aimed at mimicking the regulatory genetic networks by showing how interactions 

between two different chromatin states impacted by genetic variants are associated with a 

trait. In this paper, we used a-priori biological information from Roadmap Epigenome data 

to test for variants that represent active chromatin states. Among the top associations with 

Bonferroni p-value<0.01 are the interactions between SEH1L gene and RCL1 gene to be 

associated with fasting glucose. Interactions between these two genes are represented by two 

top-most SNP-SNP interaction pair as shown in Figure 2. In these interactions, the three-

chromatin states represented are S3 (Promoter Downstream TSS 1), S5 (Transcribed 5’ 

preferential) and S8 (Weak Transcription), which suggests interactions among transcribed 

regions that could be of potential interest. SEH1L gene participates in the regulation of 

glucose transport process (GO:0010827) and functional studies in yeast have shown that 

growth of yeast on glucose media requires function RCL132. PheWIS aims at identifying 

interactions among variants above and beyond the main effects of individual variant. Thus, 

with this approach we are able to identify several known and novel interactions that could 

not be identified with PheWAS alone.

The majority of interactions in the FDR corrected results for HDL show interactions among 

chromatin state 21 (S21; Heterochromatin) and other states. In Roadmap epigenome data, 
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heterochromatin state is mostly represented by constitutive heterochromatin and 

heterochromatin state is highly tissue specific13. Since in this analysis, we combined data 

from all cell lines to represent all 25 chromatin states, nothing can be said about the 

heterochromatin in adipose or liver cell lines. Thus, suggesting that in the future, more work 

would be required to look at these polymorphic regions based on the tissue that phenotype is 

affecting or the tissue using which the study samples are collected. For the HDL PheWIS 

results, one potential interesting interaction is between ARID1B and PEPD genes. Peptidase 

D (PEPD) and ARID1B genes have been known to be associated with HDL33–35. Both of 

these genes are highly expressed in adipose tissue with PEPD being also highly expressed in 

liver.

There are few limitations in this study. Although after correcting for multiple testing based 

on Bonferroni and FDR methods, we identified many statistical interactions associated with 

two phenotypes; future research is required to understand these novel interaction 

associations. Next, all these results are based on treatment naïve patients enrolled in clinical 

trials, similar analysis in post-treatment quantitative phenotypes can help explore more 

associations that are linked to the side-effects presented by drugs as well as the benefits of 

the drug given to patients. Our approach is based on averaging across 127 epigenomes from 

Roadmap data to annotate regions of the genome. With this approach, we might have missed 

useful information on chromatin states that are specific to just one tissue type. Future studies 

can be focused on tissue specific annotation approach or a more comprehensive approach 

where annotations for an active region can be from any one tissue as well rather than 

average across all tissues. Lastly, we only excluded the variants that were mapped to state 25 

from Roadmap epigenome data whereas future studies could also focus on excluding 

variants that are under represented in more than one states and only including the variants 

that map to states which are over-represented in our data.

5. Conclusions

We present the first phenome-wide SNP-SNP interaction study in a pharmacogenomics 

dataset. Though this study is on treatment naïve patients, it presents a great framework to 

look for statistical epistasis in a large number of phenotypes, which are collected post 

treatment. Most of the interactions associated with traits in this study are novel and would 

require more extensive future work to understand if any of these associations explain 

biological processes that are also linked to one or more phenotypes. Methods such as the one 

proposed for PheWIS will enable researchers to investigate more territory in the etiology of 

complex traits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of all 25 chromatin states in 10,584 SNPs from the pilot PheWAS study (on 

left) and the proportions of variants used in PheWIS (on right)
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Figure 2. 
Synthesis-view plot (http://visualization.ritchielab.psu.edu/synthesis_views/plot) illustrating 

interactions among top 30 SNP-SNP pair for fasting glucose phenotype. Different color for 

text corresponds to the combination of chromatin states that SNP-SNP pairs are mapped to 

as represented on the right axis.
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Figure 3. 
Circular plot representing interactions of SNP-SNP pair combined based on the genes and 

the chromatin states represented for HDL phenotype. Yellow color corresponds to the 

expression of gene in adipose tissue, red color corresponds to expression of gene in liver 

tissue and grey color corresponds to expression on gene in neither adipose nor liver tissues. 

Lines show the interactions between the variants in the genes and corresponding states. On 

right, showing a synthesis view plot where FDR p-values of both discovery and replication 

dataset for each pair SNP-SNP interactions representing unique gene and chromatin state is 

represented. Color for SNP-SNP pair corresponds to different combinations of interactions 

among chromatin states
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Table 2

Estimate of chromatin states from Illumina Omni5 genotyping chip and number of chromatin states in variants 

mapping to GWAS catalog that are associated with a disease. Here each 200 base pair region of the genome is 

combined together dynamically when the next region is represented as same state with at least 80% posterior 

probability.

State Description #Occurrences in Omni5
Chip

#Occurrences in
NHGRI GWAS

Catalog

S1 Active TSS 6803 18

S2 Promoter Upstream TSS 21901 51

S3 Promoter Downstream TSS 1 22854 65

S4 Promoter Downstream TSS 2 9007 24

S5 Transcribed 5' preferential 90330 175

S6 Strong transcription 42687 102

S7 Transcribed 3' preferential 225664 449

S8 Weak transcription 207773 404

S9 Transcribed Regulatory (Prom/Enh) 15920 47

S10 Transcribed 5' preferential and Enh 15170 40

S11 Transcribed 3' preferential and Enh 9022 25

S12 Transcribed weak Enhancer 19313 46

S13 Active Enhancer 1 7318 23

S14 Active Enhancer 2 6947 24

S15 Active Enhancer Flank 10350 23

S16 Weak Enhancer 1 8878 25

S17 Weak Enhancer 2 18104 44

S18 Primary H3K27ac possible Enhancer 895 5

S19 Primary DNAase 19959 48

S20 ZNF genes and repeats 9211 11

S21 Heterochromatin 32644 40

S22 Poised Promoter 3808 12

S23 Bivalent Promoter 12285 35

S24 Repressed Polycomb 69906 189

S25 Quiescent/Low 3289868 5565
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Table 3

Occurrences of Bonferroni and FDR corrected results in all 24 chromatin states

State Description #Occurrences
in Bonferoni

corrected
results

#Occurrences in FDR
corrected results

S1 Active TSS 1 4

S2 Promoter Upstream TSS 6 15

S3 Promoter Downstream TSS 1 3 14

S4 Promoter Downstream TSS 2 3 7

S5 Transcribed 5' preferential 33 118

S6 Strong transcription 5 24

S7 Transcribed 3' preferential 38 183

S8 Weak transcription 80 292

S9 Transcribed Regulatory (Prom/Enh) 2 4

S10 Transcribed 5' preferential and Enh 2 10

S11 Transcribed 3' preferential and Enh 6 7

S12 Transcribed weak Enhancer 1 11

S13 Active Enhancer 1 6 12

S14 Active Enhancer 2 0 2

S15 Active Enhancer Flank 2 9

S16 Weak Enhancer 1 1 1

S17 Weak Enhancer 2 0 6

S18 Primary H3K27ac possible Enhancer 1 2

S19 Primary DNAase 2 8

S20 ZNF genes and repeats 2 5

S21 Heterochromatin 7 34

S22 Poised Promoter 0 1

S23 Bivalent Promoter 4 20

S24 Repressed Polycomb 10 27
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