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Insights into the channel gating of P2X receptors 
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P2X receptors, as ATP-gated non-selective trimeric ion channels, are permeable to Na+, K+ and Ca2+. Comparing with other ligand-gated 
ion channel families, P2X receptors are distinct in their unique gating properties and pathophysiological roles, and have attracted 
attention as promising drug targets for a variety of diseases, such as neuropathic pain, multiple sclerosis, rheumatoid arthritis and 
thrombus. Several small molecule inhibitors for distinct P2X subtypes have entered into clinical trials. However, many questions 
regarding the gating mechanism of P2X remain unsolved. The structural determinations of P2X receptors at the resting and ATP-
bound open states revealed that P2X receptor gating is a cooperative allosteric process involving multiple domains, which marks the 
beginning of the post-structure era of P2X research at atomic level. Here, we review the current knowledge on the structure-function 
relationship of P2X receptors, depict the whole picture of allosteric changes during the channel gating, and summarize the active sites 
that may contribute to new strategies for developing novel allosteric drugs targeting P2X receptors.
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Introduction
P2X receptors, a distinct family of non-selective trimeric 
ligand-gated channels, are mainly permeable to Na+, K+ and 
Ca2+[1–3].  Binding extracellular adenosine 5'-triphosphate (ATP) 
from either emiocytosis or cytoclasis at the P2X receptors 
induces channel opening and a following ion flux[4].  Since the 
identification of ATP as a signal molecule of P2X[5], seven sub-
types of P2X receptors have been cloned and denoted as P2X1 
to P2X7, with functional channels assembled by homo- or het-
erotrimers (Figure 1)[6–11].  P2X receptors are widely expressed 
in excitatory and non-excitatory cells, such as neuron, glia, 
platelet, epithelia and macrophage, and participate in many 
important physiological and pathological processes, including 
synaptic transmission, pain perception, inflammation, cardio-
vascular modulation, immunomodulation and tumorigene-
sis[3, 4, 12–16].  Heritable mutations in P2X receptors are the major 
causes of some disorders.  For example, mutations in human 
P2X2 lead to hearing loss[17–19]; loss of function of the P2X4 
receptor is related to increased pulse pressure[20]; and many 
non-synonymous single nucleotide polymorphisms (NS-SNPs) 
in the P2X7 receptor were identified as associated with chronic 

lymphocytic leukemia and osteoporosis[21].  Due to their roles 
in a variety of physiological and pathological processes, P2X 
receptors have drawn attention as promising drug targets[22–27] 
and progress has been made toward this outcome[28, 29].  For 
example, AF-219, a selective P2X3 receptor antagonist, allevi-
ated chronic coughing in a phase II clinical trial[29, 30].

However, the lead compound targeting P2X receptors could 
only be obtained via high-throughput screening, a rather time-
consuming and costly process.  Rational drug design requires 
knowledge of channel gating and structures of P2X recep-
tors.  In 2009, the first crystal structure of the zebrafish P2X4 
(zfP2X4) receptor at the closed/apo state with a resolution of 
3.1 Å was reported by Kawate et al[7].  This structural determi-
nation marked the beginning of a new era at the atomic level 
for P2X researches[31, 32].  In 2012, Hattori et al reported the open 
crystal structure of the zfP2X4 receptor with ATP in its bind-
ing site[33], which confirmed previous studies on ATP recogni-
tion and provided structural insight into the channel gating of 
P2X receptors[34].  Despite lacking obvious similarities in pri-
mary structures between P2X receptors and acid-sensing ion 
channels (ASICs, another member in the trimeric ligand-gated 
ion channel family), those two families exhibit unanticipated 
similarities in their three-dimensional (3D) architecture.  The 
transmembrane (TM) domains of those two families assemble 
in a similar pattern, with the three extracellular domains inter-
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twined with each other[7, 33, 35–37].  The individual subunit of the 
two families forms different shapes, with ASIC1a resembling 
a human hand[37] and the P2X4 receptor a dolphin rising from 
water (Figure 2A and 2B).  Different domains of P2X are thus 
named as head, dorsal fin (DF), left flipper (LF), right flipper 
(RF), body and fluke (Figure 2A).  Benefiting from those crystal 
structures, progress has been made in the structure-function 
research on P2X receptors, aiding rational drug design target-
ing this important ion channel family.  Because these channels 
are ligand-gated ion channels, the gating process of P2X recep-
tors starts with the ligand binding to the channel opening until 
the ultimate close of the channel, and this involves a series of 

step-by-step conformational changes.  In this review, we focus 
on the roles of each domain of the P2X receptors and the step-
wise domain-domain interactions during channel gating.  We 
also summarize the binding sites of small molecules targeting 
P2X receptors, which provides insights into the gating mecha-
nism of P2X receptors and the structural basis for future drug 
design.

Head domain
Located at the extracellular domain, the head domain of P2X 
subunits is composed of the residues 111–167 (zfP2X4 number-
ing).  Although the sequence of the head domain is not highly 

Figure 1.  The three-dimensional architectures of the zfP2X4 receptor viewed from the extracellular side (upper), parallel to the membrane (middle) and the 
intracellular side (lower) at resting (left, PDB ID code: 3H9V) and ATP-bound open (right, PDB ID code: 4DW1) states.  The red dashed line indicates the 
distance between the N9 atom of the purine ring of ATP and the Cα atom of A347.  The black dashed arrow indicates the ion influx pathway.  Subunits A, 
B and C are colored by green, magenta and cyan cartoon, respectively.  ATP molecules are shown as spheres.  Red dashed circles indicate the boundary 
of the upper vestibule or the gate.  All figures were made with PyMol (http://www.pymol.org).
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conserved throughout the P2X family, the architecture of this 
domain in different subtypes shares certain similarity due to 
three conserved disulfide bonds that contribute to the folding 
of P2X receptors[38–42] (Figure 2A and 2C).  The architecture of 
head domain of the zfP2X4 receptor was determined by X-ray 
diffraction and showed a high similarity in folding pattern 
with rat P2X4 (rP2X4) resolved by nuclear magnetic reso-
nance, suggesting the conservation of the P2X4 head domain 
in different species[40].  Deletion of 42 residues in the head 
domain of P2X1 resulted in the loss of channel function with-
out interfering with membrane trafficking[43], suggesting that 
the head domain is an integrant domain of channel gating.  
Using molecular dynamic (MD) simulations and normal mode 
analysis, previous studies revealed a spontaneous downward 
motion of the head domain, probably resulting from its inher-
ent dynamics[16, 44, 45] (Figure 2B and 2C).  This type of motion 
coincides with the downward motion of the head domain 
demonstrated by the ATP-bound open structure and is piv-
otal for the channel gating of P2X receptors.  Labeling L186C 

(rat P2X2, rP2X2, numbering) using NCS-ATP (a synthesized 
ATP-derived thiol-reactive compound) impedes subsequent 
opening of the channel by locking the channel into an ATP 
binding mode that is incapable of driving the downward 
motion of head domain[46].  On the contrary, ADP-ribosylation 
of R125 (mouse P2X7, mP2X7, numbering) (Figure 3) located 
in the head domain, is sufficient to activate the P2X7 recep-
tor[47], confirming the essential role of the downward motion 
of head domain in channel gating.  It is reasonable to assume 
that chemicals binding to the head domain interfere with the 
downward motion, and therefore, alter channel gating[48, 49].  
For example, K138 in the head domain is involved in the bind-
ing of both suramin and NF449 to the P2X1 receptor (Figure 
3)[50, 51].  The data from chimeras and single-point mutations 
suggest that suramin and NF449 may bind to the site below 
the head domain of P2X1 and therefore impede the downward 
motion of this domain.  Studies using voltage clamp flurom-
etry and electrophysiology approaches further confirmed the 
pivotal role of the cysteine-rich head domain in channel acti-

Figure 2.  ATP-induced conformational changes of zfP2X4 receptors.  (A) The P2X4 subunit has a dolphin-like shape.  Distinctive body parts are shown in 
different colors.  (B) Superposition of a single P2X4 subunit at resting (green) and open (red) states.  (C–I) Superposition of head (C), dorsal fin (D), left 
flipper (E), right flipper (F), upper body (G), lower body (H) and fluke (I) domains at resting (green) and open (red) states.  The grey arrows indicate the 
conformational changes after ATP binding.
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vation and desensitization of the P2X1 receptor.  For example, 
the residues N120 and G123 (rat P2X1, rP2X1, numbering) 
were associated with channel activation of P2X1 receptor, 
and P121, E122, I125 (rP2X1 numbering) were correlated with 
channel desensitization of P2X1 receptor[52].

Dorsal fin domain
The dorsal fin (DF) domain (residues 206–234, zfP2X4 num-
bering) is a domain structurally coupled with the lower body 
domain.  The upward motion of the DF domain is another 
allosteric change essential for P2X receptor activation[44, 45] (Fig-
ure 2A, 2B and 2D).  Similar to the downward motion of the 
head domain, the upward motion of the DF domain is driven 
by its inherent dynamics.  The bound-ATP directly contacts 
the DF domain via an interaction between its purine ring and 
the L217 of the DF domain (zfP2X4 numbering).  This interac-
tion induces an upward motion of the DF domain, leading to 
an expansion of the lower body domain and channel activa-
tion (Figures 2H and 4B).  Thus, the gating mechanism of P2X 
receptors mimics a ‘lever’ system[33], where the head domain 
and the DF domain function as the two arms of the ‘lever’.  
TNP-ATP, a nonspecific antagonist, impedes the upward 
motion of the DF with a large steric bulk of trinitrophenyl 
moieties, and therefore inhibits channel opening[33].  RO-51, 
a bioavailable P2X3 antagonist, displays a two hundred-fold 
lower potency on human P2X3 (hP2X3) compared to rat P2X3 
(rP2X3), due to two amino acids located in the DF domain, 
A197 and T202 (Figure 3)[53].  Thus, the upward motion of 
the DF domain is also essential for the channel gating of P2X 
receptors, and small molecules interrupting this motion effec-

tively block P2X receptors.

Left flipper domain
The left flipper (LF) domain in P2X4 is a loop structure link-
ing β12 and β13 (Figure 2A and 2E).  It is composed of the 
residues 281–296 (zfP2X4 numbering), with the sequences 
of the two ends partially conserved.  Prior to the structural 
determination of the zfP2X4 receptor, the contribution of the 
LF domain to the function of P2X4 was extensively studied.  
One study revealed that H286 (rP2X4 numbering) is pivotal 
for the pH sensitivity of the P2X4 receptor in the pathophysi-
ological range [54].  Mutating R278 or D280 (rP2X4 numbering) 
to alanine could abolish receptor function, potentially from 
the formation of salt bridge by R278 and D280, which are 
essential for channel gating the P2X4 receptor [55].  Those stud-
ies support an essential role of the LF in channel gating.  A 
comparison between the resting and open structures of zfP2X4 
revealed that the LF domain is driven away from the ATP 
binding site during the ATP bind-to-open process (Figure 2B 
and 2E)[33], rather than approaching the binding site by the 
inherent dynamics of the receptors[45].  Alteration in interac-
tions among I208, L217, V291 and K193 (zfP2X4 numbering), 
induced by ATP binding, correlates well with this movement, 
indicating that the proper interactions between the DF and LF 
domains are crucial for channel gating[45], which was further 
confirmed by other studies[56–58].  The middle region is less 
conserved among P2X subtypes, which may endow subtype-
specific contributions in the channel gating.  For instance, an 
alanine substitution of S275 in the LF domain (rP2X3 num-
bering) revealed that this position is involved in forming the 

Figure 3.  Amino residues involved in small molecule recognition of P2X receptors.
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binding pocket and correlates with the recovery process of 
P2X3 from inactivation.  In contrast, a corresponding muta-
tion of S289 (S289A) in rP2X4 displays no significant effects 
on channel activation[57, 59].  Therefore, the downward motion 
of the LF domain and its movement relative to the DF domain 
are essential for channel gating in P2X receptors, although the 
different roles of the LF domain in various subtypes have not 
been clearly delineated.

Right flipper domain
The right flipper (RF) domain (residues 178–189 and 235–254, 
zfP2X4 numbering) is formed by three stacked α-helices 
separated into two segments (Figure 2A and 2F).  The super-
imposition of closed and open structures revealed that the RF 
domain does not undergo conformational changes during the 
channel gating of P2X receptors (Figure 2F); however, it does 
not imply that the RF domain is irrelevant to channel gating.  
One piece of evidence is that H245, a residue in the RF domain 
of rP2X2, is involved in zinc/copper potentiation[60].  E249K 
(rP2X4 numbering) shows sensitivity to PPADS, a chemical 
that has no effect on the wild-type rP2X4 receptor[61], indicat-
ing that RF may act as an anchor when PPADS binds to the 
channel.  Additionally, N187 (zfP2X4 numbering), a conserved 
glycosylation site located in the RF domain, is important for 
channel stability and membrane trafficking[38, 62–65].  Due to 
the limited studies in this region, the contribution of the RF 
domain to channel gating, membrane trafficking and drug 
design requires further investigation.

Upper body domain
The upper body domain is composed of residues 75–92, 
105–113 and 294–319 (zfP2X4 numbering) (Figure 2A and 
2G).  Using cysteine scanning mutagenesis along the upper 
vestibule, Damien et al found that MTS reagents had no effect 
on the currents of mutated P2X receptors[66], indicating that 
the center pathway is not involved in ion permeation.  The 
superimposition of closed and open structures revealed that 
the two upper bodies overlap well except for a slight right 
shift of β2 and β3 (Figure 2G), suggesting that the upper body 
might not undergo apparent conformational changes in the 
process of channel opening (Figure 2G), despite the direct 
contact between ATP and the side chains of R298 and K316 
(zfP2X4 numbering).  Therefore, Hattori et al proposed that the 
upper body behaved as a rigid body, which acted as a ‘brace’ 
in the ‘lever’ gating mechanism described above[33].  However, 
fast scanning atomic force microscopy revealed that the long-
period application of ATP under Ca2+-free condition caused 
pore dilation and allowed permeation of large organic mole-
cules, such as NMDG[67–69].  Zhao et al also reported the expan-
sion of the upper vestibule of P2X4 during 300-ns MD simula-
tions[45].  Thus, the role of the upper body domain in functional 
channels requires further clarification.

Lower body domain
The lower body domain is composed of residues 56–74, 
93–104, 188–207, 254–281 and 320–330 (zfP2X4 numbering) 

and is characterized by a β-sandwich motif formed by six 
β-sheets (Figure 2A and 2H).  Alanine/cysteine-scanning stud-
ies within the lower body had identified residues involved in 
ATP binding, supporting the roles of the lower body domain 
in agonist binding and the conformation transition pathway 
during channel gating[70–73].  Consistent with those studies, the 
crystal structure at the open state revealed that ATP contacts 
side chains and main chains of K70, K72, T189 and K193 in the 
lower body domain[33].  Thus, the residues of the lower body 
domain are pivotal for the agonist recognition of P2X recep-
tors.

P2X receptors have a large extracellular domain, with ATP 
binding sites locating far away (58.2 Å) from channel gates 
(Figure 1, middle panel).  Therefore, a series of conforma-
tional changes are required to translate from an extracellular 
domain into the TM region[74].  ATP binding-induced con-
formational changes of the LF and DF domains can trigger 
subsequent outward ‘flexing’ of the lower body domain and 
the expansion of the extracellular vestibule, which provides 
an ion influx pathway[66, 75] and results in an iris-like motion 
of TM helices to open the channel pore.  Double mutations of 
P62C/H192C, S65C/S190C, and S65C/D315C (rP2X2 number-
ing) that restrain the expansion of the lower body markedly 
attenuated ATP-induced maximal currents of mutant recep-
tors, which was rescued by DTT application[76].  Recently, the 
linker region between the lower body domain and TMs had 
also been systematically investigated[77–79], mutations of Y54A, 
Q55A, F198A, W259A, F324A, and G325A (rP2X4 numbering) 
resulted in a loss of channel function, suggesting that these 
residues contribute to the conformational transition from the 
lower body domain to the TM region.  These findings confirm 
the essential role of the lower body domain in conformational 
transitions during channel gating.  

D197 (rat P2X7, rP2X7 numbering), located in the lower 
body domain, is pivotal for acidic pH-induced channel inhibi-
tion[80], suggesting an additional function of the lower body 
domain that is independent to the movement of the LF and 
DF domains, and this was confirmed by the importance of the 
salt bridge E63-R274 (rP2X2 numbering) in this domain for the 
channel gating[81].  Actually, both the closure of binding site 
jaw and the movement of the lower body domain are required 
for the concomitant pore opening of P2X receptors[33].  Zinc is 
able to elicit inward currents following treatment with AM546 
on the mutated (K67C) P2X2 receptor[82], and the zinc-evoked 
currents are enhanced by lysine substitution at H319, located 
in the lower body domain[82].  Thus, the lower body domain 
possesses structural elements that independently affect the 
channel gating of P2X receptors.  

In summary, the lower body domain is not only directly 
involved in agonist recognition but also able to coordinate the 
bound-ATP induced conformational changes, conformational 
transitions, and the final channel pore opening.

Fluke
The TM helices (TM1 and TM2) of a single subunit delineate 
the ‘fluke’ of the ‘dolphin’ (Figure 2A and 2I) and are involved 
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the channel pore was controlled by the light-evoked isomeri-
zation.  This system provides an ideal tool to control the activ-
ity of P2X receptors with high spatial and temporal accuracy.  

The flukes of the three subunits form the channel pore, with 
TM2 lining the inner tunnel, and TM1 positioned peripher-
ally to TM2 (Figure 4C).  Both TM1 and TM2 are structurally 
coupled with the lower body.  Outward flexing of the lower 
body induces the TMs to expand in an iris-like motion to open 
the channel pore.  Due to the mismatch occurring in X-ray 
crystallography caused by rigorous conditions, Heymann et al  
proposed a model in membrane environments that stabilizes 
intersubunit interactions [101].  

N- and C-termini
The N-terminus of P2X receptors is composed of approxi-
mately 30 amino acid residues, while the C-terminus com-

Figure 4.  Bound ATP-evoked allosteric changes associated with channel opening in the P2X4 receptor.  (A–D) Bound-ATP evoked structural 
rearrangements at the ATP binding site (A), body domain (B), TM region (C) and overall structure of zfP2X4 receptors (D).  The dark-blue arrows 
indicate the conformational changes after ATP binding.  Structures at the resting and open states of zfP2X4 receptors are displayed in green and red, 
respectively.

in many properties of P2X receptors, including unitary con-
ductance and rectification, differential desensitization among 
subtypes, and voltage-dependence of P2X receptors[83–87].  
Functions of the TM domains in channel gating have been 
deeply studied, and its roles in pore location, ion permeabil-
ity and structural rearrangements were confirmed by crystal 
structures[88–97].  Under normal conditions, pore opening of 
P2X receptors is controlled by ATP binding.  However, when 
cysteine was introduced at position I328 (rP2X2 numbering), 
the channel pore of the P2X2 receptor was directly opened by 
propylmethanethiosulfonate (MTSP)[98], suggesting that the 
rearrangement of the TM domains is sufficient to initiate chan-
nel activation.  Guided by this idea, azobenzene compounds, 
namely MEA-TMA and BMA, were linked to P2X2 receptors 
carrying a cysteine substitution in the TM domain by an elec-
trophilic substitution reaction[99, 100], and the open or closing of 
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prises approximately 30–240 amino acid residues, varying 
among different subtypes.  To obtain a high quality crystal 
structure, both the N- and C-termini of zfP2X4 were trun-
cated, which might cause the loss of intrinsic property of 
P2X4 to some extent.  For example, the P2X4 receptor shows 
dynamic ionic selectivity, while the truncated P2X4 produces 
a constant current in response to long period exposures of 
ATP[33].  Moreover, the crystal structures made no contribution 
to research focusing on the intracellular domains.  Neverthe-
less, intracellular domains were found to play important roles 
in membrane trafficking, channel desensitization, protein-
protein interactions, and phospholipids modulation, which 
was unveiled by various approaches, including Western 
blot, co-IP, site-directed mutagenesis, and electrophysiology 
recording[16, 102–106].  The roles of the two termini have been well 
summarized previously[16, 102–106], and thus, will not be further 
discussed in this review.

Domain-domain interactions and coordinated motions 
of multi-domains evoke a final channel opening of P2X 
receptors
So far, the location and contributions of each domain in P2X 
functions and channel gating that we have discussed above 
are at the level of the single subunit.  Nevertheless, P2X recep-
tors are intertwined trimeric membrane proteins with inter- 
and intrasubunit interactions present throughout the entire 
channel.  Based on the 3D structure of the P2X4 receptor, those 
interactions can be divided into three compartments.  (1) The 
binding sites of ATP are contributed by domains from differ-
ent subunits, namely, the head and LF domains from the same 
subunit, and the DF and upper body domains from a neigh-
bor subunit (Figure 4A).  Therefore, there are three ATP bind-
ing sites in a three-fold symmetric mode, although a recent 
study showed that ATP binding at only two of the three sites 
is sufficient for channel opening[107].  (2) The body domains 
of the three subunits intertwine with each other, forming the 
fundamental core of the P2X receptors (Figure 4B), which is 
surrounded by the three ATP binding sites.  This ‘core’ can be 
further divided into upper and lower sections according to the 
‘dolphin’ body, with the upper part maintaining the stability 
of the P2X receptors, and the lower part translating conforma-
tional changes induced by ATP binding from the extracellular 
to the TM domain.  (3) Flukes of three subunits constitute the 
TM domain of P2X (Figure 1 and 4C).  Three TM2 helices com-
pose the channel pore while TM1 embrace TM2 from outside.  

These structural characteristics of P2X determine the gating 
process of P2X receptors (Figure 4D)[33, 44, 45, 49, 108].  Following 
ATP binding, the head domain moves downward, the DF 
domain moves upward and the LF domain is pushed away 
from the binding site.  Because of the coupling between the LF, 
DF and lower body domains, the relative motions of the LF 
and DF are capable of driving the outward expansion of the 
lower body, followed by the movements of TMs and subse-
quent opening of the ion access route.  In conclusion, the gat-
ing process consists of a series of complicated and coordinated 
motions of multiple domains, which leads to the final channel 

opening of P2X receptors.

Small molecules to change the channel gating of P2X 
receptors
As discussed above, the gating process of P2X receptors 
involves a cooperative system composed of multiple domains.  
Small molecules that interrupt this process by acting on certain 
sites/domains affect channel gating.  According to their effects 
on channel function, they are classified into antagonists and 
modulators.  Many compounds targeting P2X receptors have 
been developed.  AF-219, a selective P2X3 receptor antago-
nist, has been used in the treatment of osteoarthritis pain, 
interstitial cystitis and respiratory disorders[29].  AZD9056 
can selectively inhibit the P2X7 receptor and is used for treat-
ing rheumatic arthritis[109].  Although both compounds have 
entered into clinical studies, little is known regarding their 
binding sites or working mechanisms (Figure 3).  In combina-
tion with multidisciplinary approaches, including chimera and 
point mutations, electrophysiology, molecular modeling and 
molecular docking, Evans’ group discovered that NF449, a 
P2X1 receptor specific inhibitor, could fill up the cleft between 
the head and the dorsal fin domain, thus preventing the bind-
ing of ATP and the downward motion of head domain.  It is 
known that K138 (human P2X1, hP2X1, numbering), located 
in the head domain, is required for the binding of suramin, 
a broad spectrum inhibitor of P2X receptors.  However,  the 
difference in sensitivity to suramin between human and rat 
homologue P2X4 was determined by Q78 (rP2X4 number-
ing) located in the upper body domain[110].  This suggests 
that suramin may have different binding sites in different 
subunits and/or have more than one binding site for a cer-
tain subunit.  Similarly, the mutant E249K of rP2X4 acquires 
sensitivity to PPADS[61]; however, chimera analysis identified 
another domain of approximately 100 amino acids (81–183) 
that accounts for the higher PPADS sensitivity in the human 
isoform compared to the rat[110].  This domain is in accordance 
with the spatial location of R126, a residue that is respon-
sible for the species difference  in antagonists’ effects of the 
P2X7 receptor[111].  NF770, a suramin derivative that competi-
tively inhibits the P2X2 receptor at nanomolar concentrations, 
acts on G72, E167 and R290 (rP2X2 numbering), which are also 
important for ATP binding[112, 113].  Interestingly, nearly all of 
those identified sites are located in or around the ATP binding 
pocket except for IVM, a P2X4 positive modulator, which has 
been identified to act on the TM domains[114–117].

Questions to be answered
Although progress on the channel activation of P2X recep-
tors has been made since the structural determination of P2X 
receptors, many questions remain to be addressed.  

P2X receptors have seven subtypes, exhibiting different 
affinities for ATP, ranging from nanomolar to millimolar[3], 
whereas the amino acid residues directly participating in ATP 
binding are highly conserved among different subtypes[7, 33].  
The mechanism underlying those distinct affinities remains to 
be further investigated.
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In light of two crystal structures of P2X4, the process of ATP 
binding inducing channel open has been deduced.  However, 
the recovery process from open to resting state remains to be a 
mystery.  Furthermore, desensitization kinetics differs among 
the seven subtypes[3].  Although preliminary research indi-
cated that TMs and intracellular domains play important roles 
in P2X desensitization, the mechanism requires future studies.  

‘Pore dilation’ is one of the hottest but also toughest ques-
tions in P2X research.  Two hypothetical mechanisms, namely 
the gating model and the Pannexin-1 model, have been pro-
posed[3].  In the gating model, pore dilation resulted from long-
term ATP action, which leads to additional conformational 
change[118–124].  While in the Pannexin-1 model, the conforma-
tional changes of the P2X receptor resulted in allosterism of 
an auxiliary protein coupled with the P2X receptor, such as 
Pannexin-1, permitting molecules to enter cells through those 
proteins[125, 126].  Unfortunately, the mechanisms underlying the 
conformational changes from open to the dilated state of both 
models remain unclear.  

Endogenous P2X receptors are assembled in homotrimeric 
as well as in heterotrimeric forms, such as P2X2/3, P2X4/6 
and P2X1/5[8, 11, 127].  Unlike the symmetric gating mechanism 
of homotrimeric P2X receptors, the gating process of hetero-
trimeric P2X receptors is more complicated.  Limited studies 
have been performed on the heterotrimeric P2X receptors, 
mainly on subunit stoichiometry[11, 128, 129].  It remains unex-
plored in the field of gating mechanisms for heterotrimeric 
P2X receptors, including the drug-designs targeting heterotri-
meric receptors.

P2X receptors and ASICs showed unexpected similarities 
in their topology, despite their unrelated primary structures.  
Both contain many vestibules/pockets in their extracellular 
domains.  Multiple pockets/ligand binding sites were identi-
fied in ASICs, through which novel toxins and small molecules 
inhibited or activated ASICs via mechanisms distinct from the 
acidosis-induced channel activation[130–136].  Therefore, similar 
to ASICs, finding novel toxins and small molecules to activate 
or modulate the function of P2X receptors through interactions 
with those vestibules/pockets in the extracellular domain is 
possible.

Although the structures of P2X4 at both resting and ATP-
bound open states have been determined, structures of other 
subtypes are required to improve our understanding of the 
gating process of various P2X receptors.  Structures complexed 
with the allosteric, especially subunit specific molecules, are 
also in demand to provide the structural basis for rational 
drug designs.  In addition, the structure of the full-length 
P2X receptor with its intracellular domains has not been 
developed.  With the help of newly improved technology, 
such as cryo-EM[137, 138], discoveries of more P2X structures are 
expected.

Concluding remarks
Since ATP was identified as a signal molecule in 1975, seven 
subtypes of P2X have been cloned and their physiological 
and pathological functions recognized.  As a class of trimeric 

ion channels, the gating mechanism of P2X receptors differs 
from previously identified pentameric “cys-loop” ion chan-
nel family, tetramer voltage-gated potassium ion channels, 
TRP channels, or glutamate receptors.  The crystal structures 
of P2X reported in 2009 and 2012 marked the beginning of the 
post-structure era at the atomic level of P2X research.  The gat-
ing process of P2X receptors is a complex work by multiple 
domains.  In this work, we highlight the recent achievements 
in P2X structures and channel gating, aiming to illuminate 
the correlation between the gating process and the structural 
elements of P2X receptors.  All those studies have paved the 
way for developing new drugs targeting P2X receptors, which 
would contribute to novel therapeutic approaches in the 
future.  
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