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Resistance exercise is a popular form of conditioning for numerous sport disciplines, and recently different 
modes of strength training are being evaluated for health benefits. Resistance exercise differs significantly in nature, 
and several variables determine the direction and range of adaptive changes that occur in the muscular and skeletal 
system of the body. Some modes of resistance training can also be effective in stimulating the cardiovascular system. 
These variables include exercise selection (general, specific, single or multi joint, dynamic, explosive), type of resistance 
(free weights, variable resistance, isokinetics), order of exercise (upper and lower body or push and pull exercises), and 
most of all the training load which includes intensity expressed as % of 1RM, number of repetitions, number of sets and 
the rest interval between sets.  Manipulating these variables allows for specific adaptive changes which may include 
gains in muscle mass, muscle strength or muscle endurance. It has been well established that during resistance exercise 
fatigue occurs, regardless of the volume and intensity of work applied. The peripheral mechanisms of fatigue have been 
studied and explained in more detail than those related to the CNS. This review is an attempt to bring together the 
latest knowledge regarding fatigue, both peripheral and central, during resistance exercise. The authors of this review 
concentrated on physiological and biochemical mechanisms underlying fatigue in exercises performed with maximal 
intensity, as well as those performed to exhaustion with numerous repetitions and submaximal load. 
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Introduction 

Resistance exercise that requires both 
shortening (concentric) and lengthening 
(eccentric) contractions is a mode of training 
commonly accepted as an integral part in the 
athletes training regimen. The major objective of 
resistance exercise is the stimulation of structural 
and functional adaptation in the organism to 
improve performance in a sport specific physical 
task and/or induce health-related benefits. In case 
of athletes, to achieve this target, a carefully 
planned training program must be applied that 
focuses on appropriate frequency, length 
(volume) and intensity of work, and includes 
optimal rest intervals. Effectiveness of mechanical  
 

 
stimuli on muscle tissue also depends on type of 
contractions i.e. lengthening contractions have 
shown a more powerful stimulus for 
neuromuscular adaptation compared to 
shortening ones (Adams et al. 2004, Hortobagyi et 
al. 1996, Zebrowska et al. 2013b). Application of 
these factors varies depending on a given 
individual’s state of performance and fitness. It is 
well established that an efficient training program 
should be based on the so called overload 
principle which is defined as the workload 
demand on the body greater than that to which it 
is accustomed (Bompa 2005). This principle 
commonly accomplished by coaches inevitably  
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leads to frequently experienced by athletes, acute 
post exercise fatigue (Fry et al. 1991, Borresen and 
Lambert, 2009, Bangsbo et al. 2013). Adaptive 
changes in response to exercise occur only during 
rest, thus improper post exercise recovery may 
cause residual fatigue (Borresen and Lambert, 
2009), and as a consequence the athlete may not 
reach the supercompensation phase (Zatsiorsky 
and Kraemer 2006).  Systemic residual fatigue 
carries on to overtraining, defined as a state of 
overstress or failure to adapt to an exercise load 
and/or to a drop in performance level. In extreme 
cases, when not compensated it leads to the 
overtraining syndrome (Johnson and Thiese 1992, 
Kreher and Schwartz 2012). The overtraining 
syndrome is expressed in the inability to train 
hard, and occurs in two clinical forms: 
sympathetic and parasympathetic and generally 
their appearance are strongly depended on the 
type and mode of exercise applied. Both forms of 
fatigue may involve central, e.g. CNS, (Gandevia 
2001) and/or peripheral sites (Enika and 
Duchateau 2008). Studies indicate that peripheral 
fatigue  appears  when depletion of energy stores 
occurs, accumulation of by-products or 
impairment of muscle contractile mechanism is 
attained in response to exercise, and recently its 
relation to an immunological and genetic 
response is suggested (Poole et al. 2008, Jones et 
al. 2008, Vanhatalo et al. 2010, Keyser 2010, 
Finsterer 2012). Changes in performance in 
relation to the above mentioned factors were 
carefully investigated in humans in response to 
different types of exercise, yet they can’t fully 
explain fatigue symptoms appearing during 
endurance exercise (Bigland-Richte et al. 1986, 
Cooper et al.1988, Noakes, 2012). Thus, declines in 
performance during exercise are also attributed to 
CNS, which integrates input from various body 
parts and is known as a central fatigue. In case of 
resistance training, central fatigue is poorly 
investigated and recognized. 

Resistance exercise and local fatigue 
In general, desired adaptation in response 

to strength training can be induced by specific 
type of loading. Mostly two types of loading in 
strength training protocols are used, e.g. 
hypertrophic loading, and the so called maximal 
strength training. In both cases the amount of 
work performed, and especially the intensity of  
 

 
work with a proper recovery phase play a crucial 
role in generating muscle growth (Werborn et al. 
2007). Evidence presented in the literature 
highlights that both types of loading cause similar 
post-exercise intramuscular perturbations, e.g. 
decrease in intramuscular glycogen, 
phosphocreatine, ATP stores and an increase in 
inorganic phosphate and hydrogen ions (Dawson 
et.al. 1978, Hivonnen et al.1987, Green 1997, 
Westerblad et al. 2002, Takada et al. 2012). These 
changes are especially evident when exercise 
intensity during training sessions reach or are 
close to one repetition maximum (1RM) (Tesch eta 
al. 1986). This leads to muscle fatigue, and in turn 
to a reduction of skeletal muscle function. There is 
now evidence for the existence of a common 
physiological mechanism that may be involved in 
eliciting muscle fatigue and pain (Burnes at al. 
2008). Nociceptive afferent input may be involved 
in the modulation of central motor drive during 
exercise, and impaired motor function to prevent 
the development of fatigue (Amann et al. 2009). 
There are a few well recognized activating factors 
at the cellular level for group III and IV muscle 
afferents: ATP, inorganic phosphate and H+ ions 
(Allen et al. 2008). Release of ATP usually occurs 
in patients with muscle damage due to trauma 
(Mense 2008).  It is known that resistance exercise 
also induces muscle damage as indicated by 
muscle micro injures (Ribeiro 2008), and increased 
serum CK activity (Nosaka and Clarkson 1992, 
Rodriguez 2010, Jackman et al. 2010). Elevated 
plasma CK activity has been proposed as one of 
the best indirect indicator of muscle damage, 
especially in the case of resistance exercise (Koch 
et al. 2014). Some studies indicate an association 
between serum CK level, and both strength 
impairment and reduced ATP production after 
resistance exercise (Brancaccio et al. 2007, 
Brancaccio et al. 2010, Sorichter et al. 1999).  This 
type of exercise habitually performed in ischemic 
conditions simultaneously causes a fall in pH 
(Webster et al. 1993, Westerblad et al. 2002). 
Metabolic and chemical perturbations in skeletal 
muscle were also linked with transient fatigue 
after intermittent-sprint exercise performed with 
maximal intensity (Bangsbo et al.2006, Kayser 
2010). Evidence presented in human and animal 
studies highlight the connection between changes 
in metabolic products of muscular contraction 
and CNS function, by stimulation of III and IV  
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muscle afferents.  Myelinated group III afferents 
are more mechanosensitive, and are stimulated 
preferentially in response to muscle force 
production (Rotto and Kaufman 1988, Hayes et al.  
2009). Unmyelinated group IV afferents are 
primarily metabosensitive, as compared to group 
III (Haouzi et al. 1999). In regards to recent animal 
studies two different subtype of chemosensitive 
group III and IV muscle afferents were 
distinguished: metaboreceptors (ergoreceptors) 
and metabo-nociceptors, but its mutual 
participation in stimulating supraspinal areas is 
not known (Jankowski et al. 2013, Amann et al. 
2015). During muscle contractions both groups of 
afferents transmit information to the brainstem to 
adjust cardiorespiratory activity by increased 
sympathetic nerve activity (Murphy at al. 2011). It 
is not known how this mechanism operates 
during resistance exercise, despite the fact that 
dramatic increases in both blood pressure (BP) 
and heart rate in response to this type of exercise 
have been observed for years (Niewiadomski et 
al. 2008, Sale et al. 1993, Scharf et al. 1994, 
Zebrowska et al. 2013a). The rise in BP may be at 
least partially explained by compression of the 
vasculature from intracellular forces generated by 
muscles during static exercise (Lydakis et al. 
2008). Moreover, it was shown that during 
exhaustive contraction activation of group III and 
IV muscle afferents affect the regulation  of motor 
unit recruitment  by operating at spinal and 
supraspinal levels  (Gandevia  2001, Decherchi 
and Dousset 2003), and participate in motor 
command adjustment (Amman and Dempsey 
2008, Wang et al. 2010). It is not fully recognized 
which of these nerve fibers are mainly activated 
during resistance exercise. With regard to 
exhaustive contraction, activation of muscle 
afferents should especially occur during 
resistance exercise performed with intensity close 
to 1RM to prevent the magnitude of muscle 
fatigue and the danger of injuries (Taylor et al. 
2000). It is known  that recruitment of muscle fiber 
types depend on the intensity of exercise 
performed,  and type I fibers are recruited when 
exercise starts, whereas type II fibers are activated 
when exercise intensity increases (Merletti et al. 
1990). The consequences of such a recruitment 
pattern during exercise performed with intensity 
close to 1RM is that recruitment of both the type I 
and II motor units occurs. Because type I muscle  
 

 
fibers are O2–dependent, resistance exercise 
performed with intensity close to 1RM may cause 
a transient local hypoxic condition. This may 
suggest that peripherally-induced factors in 
response to resistance exercise should be 
primarily involved in activation of type III/IV 
muscle afferents within type I muscle fibers. In 
line with such an assumption, type I muscle fibers 
are always initially recruited during exercise (Sale 
1987). On the other hand  type II fibers achieve 
recruitment during high intensity fatiguing 
exercise and therefore it is suggested that a high 
share of II muscle fibers are recruited to perform 
resistance exercise with intensity close to 1RM 
(Komi and Tesch 1979). Following this notion, 
during brief maximal exercise, a greater metabolic 
stress indicated by reduction in ATP was 
demonstrated in human type II fibers in 
comparison to I type (Karatzaferi at al. 2001). 
Similarly, the decrease of ATP content during 
recovery was still lower in type II fibers than type 
I (Karatzaferi et al. 2001a). It is clear that an 
increase in lactate production mirrors recruitment 
and activity of type II muscle fibers, and this 
process starts at exercise intensity reaching the 
anaerobic threshold (Peinado et al. 2014). 
Accordingly, a high level of blood lactate levels 
was seen, after both unilateral and bilateral 
resistance exercise in young man with at least 6 
month strength training experience (Costa et al. 
2015). Thus, a sudden increased acidosis in type II 
fibers, and a high rate of phosphocreatine 
hydrolysis accompanied by concomitant inorganic 
phosphate accumulation during resistance 
exercise may be considered as a predominant 
factor stimulating type III/IV afferents. Some 
authors indicate that peripheral fatigue 
manifesting itself as a muscle locomotor 
impairment is very sensitive for hypoxemia and 
hypoxia conditions (Romer et al. 2006, Romer et 
al. 2007). This leads to the assumption that 
diminished oxygen delivery during resistance 
exercise, which has a considerable isometric 
component is a substantial factor affecting 
intramuscular metabolic perturbations. However, 
a recent study concerning handgrip exercise with 
blood flow occlusion provides evidence that the 
magnitude of fatigue development is not constant 
for small muscle mass exercise across O2 delivery 
conditions (Broxterman et al. 2015). In addition to 
this, recent studies with the utilization of nuclear  
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magnetic resonance showed that blood flow 
restricted and traditional resistance training 
performed to fatigue produced equal muscle 
hypertrophy (Farup et al. 2015). Currently, it is 
not fully recognized which of group III and IV 
muscle afferents are mainly activated during 
resistance exercise and this issue needs to be 
further investigated. A role of group III and IV 
muscle afferents on central motor drive has been 
lately reviewed by Laurin et al. (2015). 

Central fatigue and resistance exercise 
Limitations to strength are both 

neuromuscular and muscular in nature (Scale 
1998). Participation of CNS in strength generation 
is indirectly demonstrated by adaptation to 
resistance training seen without increasing in 
muscle girth during the initial weeks of strength 
training (McArdle et al. 2009). Research indicates 
that both central and peripheral fatigue expand 
more slowly during submaximal exercises in 
comparison to maximal voluntary contractions 
(Taylor and Gandevia 2008). Among potential 
mediators of CNS related fatigue, depletion of 
acetylcholine in the motor end plate may play a 
negligible role because neuronal impulses are not 
blocked during muscle fatigue at the 
neuromuscular junction structure, and 
acetylcholine is not fully depleted (Fitts 1994, 
Baker et al. 1993). This leads to the conclusion that 
motor neuron drive during resistance exercise 
must be regulated by higher structures in the 
central nervous system, and feedback signals 
from the muscle. The locomotor system is 
organized by neuronal networks of central pattern 
generators (CPGs) located in the spinal cord 
responsible for producing the basic rhythmic 
patterns (Guertin 2012). Higher-level centers (the 
prefrontal cortex, the motor cortex, basal ganglia 
and cerebellum) are responsible for the initiation 
of movement and modulation of its patterns to 
environmental conditions by changing its speed 
and direction (Grillner, 1997). The importance of 
all these brain regions for the generation of 
voluntary rhythmic motor patterns was 
documented by functional magnetic resonance 
imaging in humans (Jahn et al. 2004, 2008). 
Locomotor movements may also be shaped by 
nitric oxide (NO) acting as a meta-modulator by 
affecting other neuromodulators / 
neurotransmitters of monoaminergic brain system  
 

 
(McLean and Sillar, 2004, Chalimoniuk et al. 2005, 
Goekint et al. 2012), and recently the alternations 
in the nitric oxide/soluble guanylyl cyclase/cyclic 
guanosine 3’,5’- monophosphate pathway in 
motor control-related subcortical brain regions 
were suggested to take part in regulation of 
locomotor activity after endurance training 
(Chalimoniuk et al. 2015). In agreement with a 
possible involvement of resistance exercise in 
modulation of NO-dependent pathways are data 
showing participation of NO/cGMP/KATP 
pathway in ant nociception in rats. In this study 
increasing nitrite levels was seen both in plasma 
and CNS in resistance exercised rats (Galdino et 
al. 2015). Among CNS monoamines especially 
serotonin (5-HT), dopamine (DA) and 
noradrenaline (NA) have been merged with 
central fatigue by investigating micro dialysis 
probe from brain areas involved in control of 
locomotion (Meeusen 2005, Meeusen et al. 2007). 
Changes in 5-HT, as proposed by Newsholme et 
al. (1991) modulates neurotransmission and 
numerous physiological functions leading to 
central fatigue and attenuating exercise 
performance (Meeusen et al. 2006). This 
hypothesis assumes that elevation of plasma free 
fatty acids (FFA) and/or increase in muscle uptake 
and metabolism of branched-chain amino acids 
(BCAA) during exercise augments the ratio of 
unbound tryptophan. The increased amount of 
tryptophan facilitates its crossing through the 
blood-brain barrier, and therefore leading to 
higher 5-HT concentration within the brain 
potentially affecting performance. Referring to 
this hypothesis drawn out from the data of 
exhausting endurance exercise to resistance 
exercise, it’s worth indicating, that this type of 
exercise does not significantly affect plasma FFA 
concentration (Goto et al. 2007, Rezaee et al. 2014), 
but may increase the rate of BCAA metabolism, 
and thus reducing its plasma concentration 
(Shimomura et al. 2009).  Therefore, it can be 
postulated that during resistance exercise a shift 
in plasma BCAA concentration may be an 
important factor affecting central fatigue. On the 
other hand, nutritional strategy with BCAA 
supplementation have been shown to improve 
muscle repair after resistance exercise-induced 
muscle damage (Shimomura et al. 2009, da Luz et 
al. 2011), and considerably reduce muscle 
soreness (Jackman et al. 2010). Therefore, it can be  
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speculated that BCAA-induced reduction in 
muscle damage after resistance exercise may 
attenuate the involvement of group III/IV 
afferents in the development of central fatigue. 
However, their inhibitory effect on the output 
from spinal motoneurons (Amman et al. 2008, 
Amman et al. 2009) during resistance exercise 
needs to be investigated. It seems likely that a 
possible BCAA protective effect against muscle 
damage differs in the so called high and normal 
responders (Machado and Willardson 2010). One 
can speculate that it can happen at the skeletal 
microRNA level because high responders 
demonstrate different regulation of selected 
miRNA expression in comparison to low 
responders (Davidsen et al. 2011).  The 
tryptophan-serotonin theory has been expanded 
from data obtained in animal studies by 
indication that 5-HT release and reuptake can 
affect central fatigue (Bequet et al. 2002). 
Moreover, some authors introduced the concept 
of the ratio of 5-HT to DA, and other 
neurotransmitters as more closely related 
variables with central fatigue (Meeusen et al. 2006, 
Meeusen and Watson 2007). Upregulation of DA 
in the brain has been linked to exercise-induced 
elevation of blood calcium and its enlarged influx 
into CNS (Sutoo and Akiyama 2003). The 
responsible mechanisms for a rise in brain DA 
after endurance training has been attributed to 
both calcium/calmodulin-dependent DA synthesis 
and increased DA receptor affinity to DA (McRae 
et al. 1987, Sutto and Akiyama 2003). In this 
regard, there is a lack of cross sectional studies 
focused on resistance exercise. In spite of all,  
plasma level of calcium after resistance exercise 
was shown to reveal a biphasic pattern; lowering 
of calcium occurred during the first two hours 
after cessation of resistance exercise,  and a 
significant elevation from the second hour was 
recorded for a further two hours in sedentary 
subjects (Ashinzawa et al. 1997). In this study, 
during the entire examined period after cessation 
of resistance exercise, hypercalciuria appeared 
accompanied by acidosis (Ashinzawa et al. 1997), 
and the latter is known to stimulate the efflux of 
calcium from the bone (Bushinsky et al. 1983, 
Gren and Kleeman 1991). Hydroxylation of DA 
leads to NA synthesis. The noradrenergic neurons 
innervate the whole cerebral cortex, different 
subcortical areas, cerebellum and the brain stem  
 

 
(Bouret et al. 2005), with all of them involved in 
the regulation of movement. In case of NA, there 
are studies which attempted to investigate 
memory; learning and cognitive function during 
exercise and elevation of NA within the CNS was 
shown to improve the aforementioned functions 
(Dunn et al. 1996, Sarbadadhikari and Saha 2006, 
Ebrahimi et al. 2010). A significant role of DA and 
NA in control of performance was also 
documented during exercise in the heat (Meeusen 
et al. 2006). There is a lack of direct studies on 
central fatigue in response to resistance exercise. 
However, a recent study performed by means of 
Heart Rate Variability analysis indirectly indicates 
a pronounced activation of the autonomic 
nervous system after high-intensity body weight 
resistance exercise (Brian 2015). 

Research investigating brain activity 
related to central fatigue shows that 
neurotransmission can be influenced by by-
products of muscle metabolism and the effect of 
ammonia has been mostly explored. Under 
normal physiological conditions ammonia 
predominately appears in blood as the metabolic 
end product from gut and in a smaller extent by 
the gastrointestinal tract (Romero-Gomez et al. 
2009). Skeletal muscle has got a large capacity for 
ammonia production, what is usually revealed by 
its high blood accumulation during exercise above 
60 VO2max (Buono et al. 1984). Diet manipulation 
is another potent factor that may increase 
ammonia production during exercise of equal 
intensity, and it can entail dissociation between 
lactate and ammonia thresholds in healthy young 
men, commonly applied indicators for control of 
the training process (Czarnowski et al. 1995, 
Langfort et al. 2004). Rapid adenosine tri-
phosphate hydrolysis during high intensity 
exercise builds up adenosine di-phosphate and 
adenosine monophosphate (AMP). In the further 
metabolic degeneration cascade known as the 
purine nucleotide cycle, AMP is deaminated into 
inosinomono-phosphate, with the parallel 
formation of ammonia (NH3). Because ammonia 
is correlated with the number of fast switch 
muscle fibers, an increase in lactate and efficacy of 
oxidative metabolism (Meyer et al. 1980, Jansson 
et al. 1987, Dudley and Terjung 1985, Wilkinson et 
al. 2010), and all these factors are linked with 
resistance exercise, this may suggest that 
ammonia might be an important player in  
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modulation of central fatigue during resistance 
exercise. Such an effect was previously seen 
during prolonged exercise in humans and it was 
postulated that ammonia provoked central fatigue 
by affecting neurotransmitter metabolism (Nybol 
et al. 2005). There is a consensus that the impact of  
hiperammonemia on brain function can be seen 
when elevated systemic ammonia level sets up to 
200 �mol x l-1 (Banister and Cameron 1990, 
Brouns et al. 1990, Nybo et al. 2005, Mohr et 
al.2006). However, there is no research in this area 
in case of resistance exercise. The available data 
from prolonged endurance exercise and patients 
with liver disease may lead to the conclusion that 
induced in response to intense resistance exercise 
hiperammonemia does not have deteriorations in 
brain function. This is because the first symptoms 
of deterioration of CNS functions emerge with a 
delay of a few hours (~2 hrs) after eliciting 
hiperammonemia. Secondly, a higher uptake of 
ammonia by CNS may be “buffered” by the 
protective role of astrocytes.  The above 
mentioned issues and ammonia metabolism in 
relation to brain and fatigue have been excellently  
reviewed  and discussed by Wilkinson et al. (2010) 
despite the fact that the authors did not pay any 
attention to sweat ammonia excretion during 
exercise (Czarnowski and Górski 1991, 
Czarnowski et al. 1992).  

 
Conclusions and perspectives 

Recent human and animal experiments 
indicate that peripheral and central fatigue 
develops more slowly during submaximal 
exercise compared to maximal voluntary 
contractions (Taylor and Gandevia 2008). In this 
context, mechanisms underlying fatigue during 
high intensity resistance exercises have been 
poorly investigated. This fully justifies the 
designing of well controlled resistance exercise 
studies to reveal possible mechanisms of central 
fatigue using hypertrophy, maximal strength and 
power modes of exercise with both highly trained 
athletes and untrained subjects, to additionally 
determine adaptive mechanisms. Additional 
experiments can be carried out with the use of 
state-of the art technology, including magnetic 
resonance imaging and spectroscopy as well as 
positron-emission-tomography. The above 
mentioned techniques should be utilized with 
supplements preventing or delaying central 
fatigue and those inducing it during high 
intensity resistance exercise. Another possible 
approach to explain mechanisms responsible for 
central fatigue induced by resistance exercise 
could be revealed in studies with pharmacological 
manipulation of monoamine receptors. At the 
cellular level, a role in peripheral fatigue of some 
metabolites as prostaglandins, thromboxane, 
bradykinin and purinergic type 2X receptors (e.g. 
P2X and TPRv1) as well as ion channels (e.g. 
ASICs) in response to resistance exercise also 
needs to be investigated. 
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