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ABSTRACT: Diabetes and its complications are caused by chronic glucotoxicity driven by persistent hyperglycemia. 

In this article, we review the mechanisms of diabetic glucotoxicity by focusing mainly on hyperglycemic stress and 

carbon stress. Mechanisms of hyperglycemic stress include reductive stress or pseudohypoxic stress caused by redox 

imbalance between NADH and NAD+ driven by activation of both the polyol pathway and poly ADP ribose 

polymerase; the hexosamine pathway; the advanced glycation end products pathway; the protein kinase C activation 

pathway; and the enediol formation pathway. Mechanisms of carbon stress include excess production of acetyl-CoA 

that can over-acetylate a proteome and excess production of fumarate that can over-succinate a proteome; both of 

which can increase glucotoxicity in diabetes. For hyperglycemia stress, we also discuss the possible role of 

mitochondrial complex I in diabetes as this complex, in charge of NAD+ regeneration, can make more reactive oxygen 

species (ROS) in the presence of excess NADH. For carbon stress, we also discuss the role of sirtuins in diabetes as 

they are deacetylases that can reverse protein acetylation thereby attenuating diabetic glucotoxicity and improving 

glucose metabolism. It is our belief that targeting some of the stress pathways discussed in this article may provide 

new therapeutic strategies for treatment of diabetes and its complications. 

 

Key words: glucotoxicity, carbon stress, diabetes, hyperglycemic stress, reactive oxygen species, 

redox imbalance, pseudohypoxia 

 
 

 

 

Introduction 

Diabetes and its complications are diseases originated 

from impaired glucose metabolism [1-8]. As glucose 

metabolism is tightly regulated by insulin, aberrant 

glucose metabolism can also be regarded as the problems 

of insulin resistance or insulin deficiency [9-13]. In type 

1 diabetes, there is an absolute deficiency or lack of 

insulin due to β cell destruction [14-16]. But in type 2 
diabetes, it is more of an insulin resistance problem, at 

least at the early stage of the disease [11, 17-20]. As 

hyperglycemia persists, β cells attempt to secret more 

insulin to bring down the blood glucose levels [21]. This 

compensatory mechanism usually can't last long before 

eventual exhaustion of β cells as β cells cannot keep up 

with the ever increasing demand imposed by a persistent 

level of chronic hyperglycemia [22-24]. At this stage, 

insulin deficiency kicks in because of impaired β cell 

function, leading to frank type 2 diabetes [10, 21, 25, 26].  

Regardless of which type of diabetes, the apparent 

manifestation of the disease is a high level of blood 

glucose [15, 27, 28]. While many pathways are activated 
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or upregulated to dispose excess glucose, there is a price 

that the body has to pay, which is deterioration of cell or 

organ function caused by the toxicity of persistent 

hyperglycemia [2, 20, 29-32]. This glucose toxicity, often 

referred to as glucotoxicity, is mediated by many aberrant 

glucose metabolic pathways or signaling pathways that 

can eventually lead to cell death [33-36]. In this review 

article, we summarize these pathways that can be 

collectively placed under the umbrella of hyperglycemic 

stress or carbon stress. For hyperglycemic stress, after a 

brief overview of physiology and pathophysiology of 

insulin-mediated glucose metabolism, we discuss those 

stress pathways (Fig. 1) including the polyol pathway that 

contributes to reductive stress [36], the protein kinase C 

activation pathway, the hexosamine pathway, the 

advanced glycation end products (AGEs) pathway, and 

the enediol pathway that all culminate on oxidative stress 

[36, 37]. For carbon stress, we first discuss the sources 

and fates of acetyl-CoA and then expand on protein 

acetylation and succination [38, 39] that are mainly 

caused by the elevated levels of acetyl-CoA [40] fueled 

by increased utilization of fatty acids in diabetes [41]. It is 

our belief that understanding the mechanisms of 

hyperglycemic stress and carbon stress may help identify 

targets for controlling blood glucose levels and thus 

would benefit for combating diabetes. 

 

 

 

 

 
 

 
Figure 1. Major pathways upregulated by chronic hyperglycemia. These pathways include the polyol 

pathway, the hexosamine pathway, PKC activation, formation of advanced glycation end products (AGEs), 

and the enediol formation pathway. These pathways usually remain dormant under euglycemia conditions 

whereby majority of the body's glucose is combusted through glycolysis and TCA cycle. 
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Physiology and pathophysiology of insulin-mediated 

glucose metabolism 
 

The process of glucose extraction from food is achieved 

in the gastrointestinal tract [42]. This is followed by 

release of glucose into the blood stream and glucose 

stimulation of β cell insulin secretion that promotes 

uptake of glucose by muscle and adipose tissues [43]. Any 

surplus glucose will be stored in the form of glycogen in 

the liver and skeletal muscle, and in the form of fat in 

adipose tissue (Fig. 2) [43, 44]. Insulin secretion and high 

level of blood glucose will also suppress gluconeogenesis 

in the liver, a process that is impaired in diabetes [44-46]. 

In type 2 diabetes, both muscle and adipose tissues can be 

insulin resistant, and will not take up more glucose like 

they do postprandially under euglycemic conditions [44, 

47-49]. Interestingly, this phenomenon of resistance has 

been suggested to be a defense mechanism to prevent 

glucose toxicity to these tissues [50]. Indeed, diabetic 

complications in muscle and adipose tissues are very rare 

[50]. But the inability of these tissues, in particular, 

muscle, to take up more glucose, is the fundamental 

problem of glucotoxicity to other organs such as the brain, 

the kidney, and the lower limbs [51-54].  

 

 

 

 
 

 
Figure 2. Regulation of glucose homeostasis and pathophysiology of hyperglycemia. Glucose is 

extracted from food stuff in the gastrointestinal tract and is then released to the blood stream. High level 

of blood glucose stimulates insulin secretion from islet β cell in the pancreas, leading to uptake of glucose 

by muscle and adipose tissues. Insulin also suppresses the gluconeogenesis in the liver. Excess glucose is 

stored in the liver and the muscle as glycogen, and in the adipose tissue as fat. This glucose uptake and 

storage process and the overall control of glucose homeostasis are impaired in diabetes. 
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As mentioned above, insulin is tightly linked to 

glucose metabolism in the body [55-57]. Under normal 

physiological conditions, insulin stimulates numerous 

metabolic processes. As shown in Fig. 3, insulin triggers 

uptake of glucose by muscle and adipose tissue, stimulates 

fatty acid synthesis from acetyl-CoA, increases the 

activity of Na+/K+ pumps in muscle cells and adipocytes, 

and promotes glycogen synthesis in muscle and liver [58]. 

Insulin also promotes gene expression, protein synthesis, 

and amino acid uptake in all types of cells [58]. However, 

all these processes are perturbed in diabetes, leading to 

progressive glucotoxicity [2, 20, 37, 59] that includes 

hyperglycemic stress and carbon stress as is to be 

discussed in the following sections. 

  

 

 

 

 

 
 

 
Figure 3. Summary of insulin-stimulated biological processes. Hyperglycemia-induced secretion of insulin can 

mediate numerous biological processes such as glucose uptake, activation of Na+/K+ pumps, synthesis of fatty acid 

from acetyl-CoA and glycogen from glucose, amino acid uptake, gene expression, and protein synthesis. Figure adapted 

from reference [58]. 

 

 

 

 

A. Hyperglycemic stress 
 

A PubMed search indicates that the concept of 

“hyperglycemic stress” was first noted in diabetes in 1964 

[60]. However, a further search for both “hyperglycemic 

stress” and “glucotoxicity” returned a zero result, 

demonstrating that a link between glucotoxicity and 

hyperglycemic stress has not been clearly and firmly 

established. Herein, we define hyperglycemic stress as 

one that mainly encompasses the pathways shown in Fig. 
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1 that all can be attributed to chronic hyperglycemia in 

diabetes. The mechanisms of these stresses are all related 

to elevated levels of ROS production and oxidative stress 

[37] and hence these stress pathways are highly 

interrelated. 

 

1. Reductive stress 
 

Reductive stress is defined as excess reducing equivalent 

in a cell and is usually expressed as an increased ratio 

between NADH and NAD+ (or NADPH and NADP+) [36, 

61-65]. In chronic hyperglycemic situation, aldose 

reductase (AR), catalyzing the first reaction in the polyol 

pathway, is activated [66-69]. AR has a low affinity to 

glucose and hence is only active at high levels of glucose 

[54]. AR catalyzes reduction of glucose to sorbitol that is 

further oxidized to fructose by sorbitol dehydrogenase 

(the second reaction of the polyol pathway). As shown in 

Fig. 4, NADPH is consumed and NADH is produced, with 

accumulation of sorbitol and fructose that can affect 

cellular osmosis [70, 71]. While the activity of polyol 

pathway is usually negligible under euglycemic 

condition, it has been estimated that at least 30% of the 

body's glucose pool is disposed by this pathway under 

chronic hyperglycemic conditions [72]. Therefore, 

NADH level is highly elevated, leading to increased 

reducing equivalent reflected by an increased ratio 

between NADH and NAD+. As NAD+ level goes lower, 

cells undergo pseudohypoxia challenges [73-75].  

Pseudohypoxia is different from hypoxia in that the 

former has low levels of NAD+ in the presence of normal 

level of tissue oxygen [76, 77] while the latter experiences 

a lower level of tissue oxygen [78-80]. Regardless, both 

hypoxia and pseudohypoxia will be manifested by 

impaired NADH oxidation or impaired NAD+ 

regeneration. In this sense, pseudohypoxic stress is 

equivalent to reductive stress as both are caused by a net 

decrease in the content of NAD+ [36, 74], a central 

molecule involved in metabolism, signal transduction, 

and stress response [81-84].  

 

 

 

 
 
Figure 4. Glucose disposal via the polyol pathway under chronic hyperglycemic conditions in diabetes. This 

pathway includes two-step reactions. The first one is glucose reduction by aldose reductase to form sorbitol; while the 

second reaction is sorbitol oxidation by sorbitol dehydrogenase to form fructose. Reducing equivalent is transferred 
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from NADPH to NADH, leading to elevated level of NADH and reductive stress. The glycolytic pathway is also 

shown. 

Does activation of the polyol pathway lead to 

depletion of NADPH (the first reaction) in diabetes? This 

has been repeatedly discussed in the literature and it has 

been assumed in certain studies that the level of NADPH 

goes lower in diabetes [85-87], which can diminish GSH 

content as GSH synthesis requires NADPH [88, 89]. This 

assumption probably needs to be examined in a tissue 

dependent manner as it has been reported that in the lens 

of diabetic rats, NADPH level was not decreased [90]. 

Moreover, it has been reported that the pentose phosphate 

pathway that makes NADPH is also upregulated by 

chronic hyperglycemia [91, 92], leading to a net transfer 

of excess reducing equivalent from NADPH to NADH 

[93]. Indeed, it has been demonstrated that NADPH 

depleted by the polyol pathway can be quickly 

replenished by the pentose phosphate pathway [64] and 

potentially by other pathways as well [94]. Therefore, the 

pentose phosphate pathway in diabetes could also 

contribute to reductive stress. Hence, reductive stress may 

be attributed to both the polyol pathway and the pentose 

phosphate pathway that are activated or upregulated by 

hyperglycemia in diabetes.  

Additionally, as the second reaction of the polyol 

pathway consumes NAD+, the polyol pathway can 

compete for NAD+ with glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) [95], potentially down-

regulating the glycolytic pathway. This competition, 

together with the fact that excess NADH will also inhibit 

GAPDH [67, 96, 97], can lead to more glucose being 

diverted to the non-conventional pathways as shown in 

Fig. 1, thereby aggravating glucotoxicity. Given the 

detrimental effects of the polyol pathway in diabetes, 

inhibition or disruption of this pathway has been 

demonstrated to ameliorate diabetes and its complications 

[98-100].   

While there is an oversupply of NADH in diabetes 

due to persistent hyperglycemia and enhanced fatty acid β 

oxidation [101-104], there is also likelihood that NAD+ 

could be depleted. This is due to the activation of poly 

ADP ribose polymerase (PARP) by oxidative DNA 

damage during oxidative stress [105-108]. PARP uses 

NAD+ as its substrate and is a nuclear enzyme responsible 

for DNA repair after damage [109-111]. However, this 

enzyme, when over-activated, can deplete NAD+, which 

is often the case in diabetes [105, 112, 113]. Hence PARP 

activation has been demonstrated to be involved in cell 

death [114-117]. That over-activation of PARP 

contributes to the pathogenesis of diabetes has been 

further supported by evidence that PARP knockout or 

deficient animals are protected from chemical-induced 

diabetes [118-120] and that PARP inhibitors prevent 

development of diabetes and its complications [121-125].   

 

 

 
 
Figure 5. Glucose disposal via the hexosamine pathway. This pathway involves activation of glutamine 

fructose-6-P amidotransferase that converts fructose 6-P to glucosamine 6-P. This is followed by the 
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formation of UDP-GlcNAc that is the substrate for protein translational modifications. This pathway is 

known to be involved in insulin resistance and diabetes. The glycolytic pathway is also shown. 

Overall, the toxicity of reductive stress is generally 

reflected by an increased ratio between NADH and NAD+ 

or redox imbalance between NADH and NAD+, which 

can impair NAD-dependent enzyme function, deregulate 

energy metabolism and cell signaling pathways, increase 

cellular ROS production, and elevates oxidative damage 

to macromolecules.  

 

2. The hexosamine pathway 

 

As shown in Fig. 5, this pathway originates from fructose-

6-P in the glycolytic pathway [126, 127]. It is another 

pathway that is significantly upregulated by chronic 

hyperglycemia [126-128]. Fructose-6-P is transformed to 

glucosamine-6-P by the enzyme glutamine fructose-6-P 

amidotransferase (GFAT), glucosamine then promotes 

the synthesis of uridine diphosphate-N-acetylhexosamine 

(UDP-GlcNAc) that then serves as a substrate for N- or 

O-glycation of numerous proteins [129, 130]. It should be 

noted that the mechanism by which hyperglycemia 

activates GFAT is poorly understood. This 

posttranslational modification can enhance glucotoxicity 

by impairing protein function [131, 132] and has been 

demonstrated to be involved in insulin resistance and 

pathogenesis of diabetes [133-136]. 

 

3. The protein kinase C (PKC) activation pathway 

 

This pathway can originate from either fructose-6-P or 

glyceraldehyde-3-P in the glycolytic pathway (Fig. 1). 

The initial species formed is dihydroxyacetone that is 

further converted to glycerol-3-P. Glycerol-3-P then 

forms diacylglycerol (DAG) that can activate several 

isoforms of PKC [137, 138]. PKC then drives numerous 

signaling processes via protein phosphorylation that 

regulates signaling protein functions. One of the down-

stream targets of PKC is known to be NADPH oxidase 

whose activation drives superoxide production and thus 

exacerbates oxidative damage to macromolecules thereby 

enhancing glucotoxicity [139, 140]. 

 

4. The advanced glycation end products (AGEs) 

pathway 

 

There are two mechanisms by which advanced glycation 

end products (AGEs) can be formed. The first one is the 

one shown in Fig. 1 (pathway 4) via the formation of 

methylglyoxal from glyceraldehyde-3-P [37, 141]. 

Methylglyoxal then reacts with cysteine, lysine, and 

arginine residues of proteins, forming advanced glycation 

end products [142-145]. The second pathway is 

nonenzymatic, direct attachment of glucose to protein 

lysine residues via Schiff base formation [53, 146, 147]. 

The Schiff base then transforms slowly to form stable 

advanced glycation end products. Many proteins can form 

AGEs, such as HSP27 [148, 149] and hemoglobin 

(HbA1c) [27, 150], the quantitation of the latter is often 

used as an index to measure the progress of diabetes [16]. 

The glucotoxicity of this pathway has also been 

demonstrated by observations that the NF-KB signaling 

pathway can be activated to generate nitric oxide involved 

in inflammation that can drive the progression of diabetes 

[151, 152]. Moreover, formation of AGEs can also 

activate NADPH oxidase [153, 154], leading to 

superoxide production and oxidative stress. Hence, 

inhibition of NADPH oxidase could preserve islet β cell 

functions and lessens glucotoxicity [155-157]. 

 

5. The enediol pathway 
 

Chronic hyperglycemia can also elevate the level of 

enediol, a by-product originated from autoxidation of 

glyceraldehyde-3-P in the glycolytic pathway [158]. This 

autoxidation process can generate alpha-ketoaldehyde 

and ROS, thereby elevating levels of oxidative stress [37]. 

Formation of enediol has been shown to be involved in 

pathogenesis of diabetes  [159]. 

 

6. Oxidative stress 

 

Oxidative stress has been thought to play a central role in 

the pathogenesis of diabetes and its complications [160-

166]. It is induced by overwhelming production of ROS 

that can attack macromolecules including lipids, DNA, 

and proteins [28, 167-170]. ROS can be generated by a 

variety of systems such as mitochondrial electron 

transport chain [168, 171, 172], d-amino acid oxidase 

[173-175], dihydrolipoamide dehydrogenase [176-182], 

α-keto acid dehydrogenase complex [183-187], NADPH 

oxidase [188, 189], and xanthine oxidase [190, 191].  It 

should be noted that in the presence of nitric oxide, 

superoxide can react with nitric oxide to form 

peroxynitrite [192, 193], a highly reactive species that is 

known to exert cytotoxicity via modification of 

macromolecules [194-196] implicated in diabetes [197-

201]. Given the role of oxidative stress in diabetes, a 

variety of antioxidants and phytochemicals have been 

evaluated for their protective or preventive effects on 

diabetes and its complications [202-211]. 

Each of the pathways shown in Fig. 1 can lead to 

oxidative stress [36, 37]. However, in this section, we 

would like to focus our discussions on oxidative stress that 
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is preceded by reductive stress in diabetes [36]. As 

mentioned above, reductive stress is induced by redox 

imbalance between NADH and NAD+. Moreover, excess 

NADH can overwhelm mitochondrial complex I (NADH-

ubiquinone oxidoreductase), a complex that has at least 45 

subunits in mammalian cells and serves as the first 

electron entry point into the mitochondrial electron 

transport chain [212-216].  As polyol pathway is activated 

to increase NADH content and poly ADP ribose 

polymerase is activated to decrease NAD+ content [36], 

cells undergo persistent reductive stress as the overall 

ratio between NADH and NAD+ is increased [36]. One 

consequence of this redox imbalance is NADH overload 

of mitochondrial electron transport chain that is known to 

be capable of generating most of the ROS under 

pathological conditions [217, 218]. While the first three 

complexes (I to III) can all generate ROS via the 

formation of superoxide anion, complex I would be the 

major one that makes more ROS under NADH pressure 

as it is the only site in mitochondria that makes NAD+ 

from NADH [219, 220]. Furthermore, an inherent feature 

of complex I is that the more NADH it oxidizes, the more 

superoxide it would produce [219, 221]. Therefore, as 

shown in Fig. 6, complex I could be a pathogenic factor 

in diabetes [222-224] and could also be a promising target 

for lowering NADH level and ameliorating reductive 

stress or oxidative stress [225-229]. In fact, complex I has 

been the target for metformin in type 2 diabetes, whereby 

metformin inhibits complex I [230-232], reduces ATP 

production, and activates AMPK [223, 233-235], leading 

to improved metabolism in diabetes [236]. Importantly, 

the action of metformin seems to exert no cellular toxicity, 

presumably because fuel combustion via complex II can 

rescue cells from metformin toxicity [237] (Fig. 6).  

 

 

 

 

 

 

 
 

Figure 6. Summary of events leading to redox imbalance between NADH and NAD+ in diabetes. On one 

hand, the polyol pathway produces excess NADH; on the other hand, the activation of poly ADP ribose 

polymerase could potentially deplete NAD+, leading to great pressure on mitochondrial complex I that is in 

charge of NADH oxidation and NAD+ production. NADH overload on complex I can lead to more ROS 

production. Therefore, complex I could be a pathogenic factor in diabetes and could also be a target for diabetic 

therapies. 

 

 

 

B. Carbon stress 
 

A literature search in PubMed indicates that the concept 

of carbon stress was first mentioned in 1973 by Hopson 

and Sack in their studies of changes in cellular phosphorus 

associated with low carbon stress [238]. In the context of 

hyperglycemia and diabetes, however, we would like to 

focus on protein acetylation and succination induced, 

respectively, by excess acetyl-CoA and fumarate as both 

forms of posttranslational modifications have been 

implicated in diabetic glucotoxicity [38, 39, 239, 240]. It 

should be noted that over-consumption of alcohol can also 

lead to carbon stress via protein acetylation, which falls 

beyond the scope of this review [241, 242]. 
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1. Protein acetylation 
 

Excess acetyl-CoA can over-acetylate protein lysine or 

cysteine residues, leading to protein dysfunction or 

aberrant protein function [40, 239, 243]. Acetyl-CoA is a 

central intermediate in metabolism (Fig. 7). On one hand, 

there are many ways that acetyl-CoA can be produced in 

a cell. These include pyruvate decarboxylation by 

pyruvate dehydrogenase complex following glycolysis, β 

oxidation of fatty acids, deamination and oxidation of 

amino acids [244]. On the other hand, acetyl-CoA can be 

used as a source molecule for the synthesis of sterols and 

fatty acids, can enter into the TCA cycle for complete 

degradation to H2O and CO2, can form ketone bodies after 

long term fasting or starvation, and can be used as a 

substrate for modification of proteins, which is a chemical 

process that is largely independent of enzymes [241, 245-

248]. In diabetes, persistent hyperglycemia itself can raise 

the level of acetyl-CoA, but persistent hyperglycemia can 

also enhance fatty acid oxidation that can generate a large 

amount of acetyl-CoA [44]. It is this chronic excess 

acetyl-CoA that starts attacking proteins via toxic 

acetylation mechanisms, thereby leading to impairment in 

protein function, a process contributing to carbon stress 

[249].  To cope with this carbon stress, cells have evolved 

mechanisms of detaching the acetyl groups from over-

acetylated proteins, which is achieved by a class of 

enzymes called sirtuins [250-253] (Fig. 8). 

 

 

 

 
 

Figure 7. Sources and fates of acetyl-CoA. Acetyl-CoA is mainly generated by combustion 

of glucose, fatty acid, and proteins. When in excess, acetyl-CoA can be used to make sterols 

and fatty acids, and can also conjugate to proteins, forming acetylated protein products. In 

long term fasting or starvation, acetyl-CoA can be used to form ketone bodies that are needed 

for brain function [288, 289]. Under normal conditions, acetyl-CoA is metabolized to provide 

energy via TCA cycle and oxidative phosphorylation inside mitochondria. 

 

    Sirtuins can be activated under certain stress conditions 

such as starvation and caloric restriction [254-256] to 

increase the efficiency of metabolism to cope with 

metabolic stress. However, sirtuins are usually less active 

under overnutrition conditions such as diabetes because of 

overproduction of NADH that can inhibit sirtuins activity 

[257, 258]. This can make acetylation widespread and 

toxic in the presence of elevated levels of acetyl-CoA 

[259, 260]. Therefore, sirtuins have been touted as 

promising targets for diabetic therapy if their activities 

can be enhanced [261, 262].  

However, sirtuins are NAD+-dependent deacetylases 

and are unfortunately usually down-regulated in diabetes 

[251, 263-267]. If sirtuins have to be upregulated to cope 

with carbon stress, such approaches will certainly lead to 

more consumption of NAD+, the level of which is already 

low given the activation of poly ADP ribose polymerase 

and over production of NADH [36]. Therefore, it seems 
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that upregulation of sirtuins in diabetes will compete for 

NAD+ with other NAD+-dependent enzymes such as 

PARP and CD38 [105, 268-270] and thus will aggravate 

the situation of pseudohypoxia. How this can be 

reconciled needs to be further investigated before sirtuins 

can be designed as therapeutic targets for diabetes [271, 

272].  

 

 

 

 

 
 
Figure 8. Excess acetyl-CoA produced by hyperglycemia and hyperlipidemia in diabetes can 

increase nonenzymatic acetylation of proteins via lysine residues. This modification can regulate 

protein function under stress conditions via sirtuins actions that remove the acetyl groups from the target 

proteins. 

 

 

 

 

2. Protein succination 
 

Protein succination [39, 273, 274], another form of carbon 

stress, originates from fumarate [240, 275-277] that is an 

intermediate in the TCA cycle. When the level of acetyl-

CoA is elevated, so is the level of fumarate. Fumarate can 

then attack protein cysteine residues, resulting in protein 

succination [240, 278]. Succination can also occur to 

glutathione [279]. This modification can severely disrupt 

protein functions given that protein cysteine residues are 

intricately involved in protein function and redox 

signaling [280-287]. For example, GAPDH could be 

inactivated via succination in diabetes [39, 277]. 

Moreover, in mitochondria, increased succination has 

been linked to glucotoxicity under hyperglycemia or in 

diabetes [240]. It should be noted that given the 

observations that both acetylation of lysine residues and 

succination of cysteine residues are linked to 

glucotoxicity, carbon stress may also be placed 

conceptually under hyperglycemia stress. 
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Summary and perspectives 

 

In this article, we have reviewed the concept of diabetic 

glucotoxicity. We classified diabetic glucotoxicity into 

two categories of stress: hyperglycemic stress and carbon 

stress. Under hyperglycemic stress, we discussed several 

mechanisms of glucotoxicity such as reductive or 

pseudohypoxic stress, the polyol pathway, the 

hexosamine pathway, the PKC pathway, the AGEs 

pathway, and the enediol pathway. We emphasize that all 

the pathways culminate on oxidative stress [37]. As redox 

imbalance between NADH and NAD+ is the precursor of 

oxidative stress [36], we further discussed the role of 

mitochondrial complex I in glucotoxicity as this complex 

can produce more ROS in the presence of hyperglycemia 

and excess NADH and is responsible for mitochondrial 

regeneration of NAD+. We think that complex I can be 

both a pathogenic factor and a potential therapeutic target 

in diabetes. Under carbon stress, we focused on protein 

acetylation and succination; both of which can manifest 

diabetic glucotoxicity. In the context of protein 

acetylation, we touched on sirtuins that are acetylases 

capable of improving metabolism by removing acetyl 

groups off from target proteins. Future in-depth studies 

targeting these hyperglycemic- and carbon stress 

pathways may help design novel strategies for treatment 

of diabetes and its complications. 
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