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Abstract
The control of radioresistance and metastatic potential of surviving cancer cells is important

for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene
encodes for a homeobox transcription factor involved in morphogenesis and its deregula-

tion was found in human solid tumors and hematologic malignancies. Here we investigated

the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition

(EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated

A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231

cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of

Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells

showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overex-

pressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced

EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and

invasion, and CSCmarker expression. The reduced colony-forming ability in irradiated

cells was partially restored by DLX2 overexpression. On the other hand, the depletion of

DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phos-

phorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2

increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a

key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indi-

cating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These

results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced

EMT and CSCmarker expression, and the expression of DLX2 is regulated by Smad2/3

signaling in A549 and MDA-MB-231 cell lines.
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Introduction
Radiotherapy is one of the most common therapies for cancer, but one of its limitations is that
some of surviving cancer cells can gain radioresistance [1] and metastatic ability [2] following
the repeated radiotherapy. The presence of epithelial to mesenchymal transition (EMT) and
cancer stem cells (CSCs) has been implicated as a putative cause of tumor radioresistance in
patients [2]. CSCs are a distinct population of tumor cells with properties of self-renewal and
regeneration, and have been identified in various human malignant tumors [3, 4, 5]. CSCs
show typical characteristics of EMT [6, 7], and EMT is again associated with radioresistance [8,
9]. For this reason, the research and development of predictive biomarkers and targeted thera-
peutic strategy for CSC and EMT are especially important for prognosis evaluation and radio-
sensitivity improvement in radiation therapy [10, 11]. Representative CSC markers include
Oct4, Sox2, Slug/Snail [12, 13, 14], and recent reports have identified particularly CD44 as a
CSC-related potential biomarker for radiotheraphy in lung and breast cancer cells [15, 16, 17].

In EMT process of cancer cells, the expressions of the epithelial genes such as E-cadherin
and Vinculin are inhibited, whereas the expressions of the mesenchymal genes such as N-cad-
herin and Vimentin are enhanced [18, 19, 20]. As a result of EMT, the cells acquire metastatic
properties including loss of contact inhibition, disordered growth control, and aggressive inva-
siveness [18, 21]. EMT is regulated by transcription factors including Snail, Twist, and ZEB [7,
22, 23, 24]. Matrix metalloproteinases (MMPs) are also important mediators of EMT, which
decompose ECM and allow the migration and invasion of cancer cells to distant sites resulting
in tumor metastasis [25].

In a normal condition, TGF-β acts as a tumor suppressor but is also known to enhance
EMT and to support angiogenesis in the late stage of tumorigenesis [26]. Recently, several
reports showed that IR promotes EMT via Smad-dependent TGF-β signaling in cancer cell
lines [6, 27, 28]. In TGF-β pathway, TGF-β receptors recognize ligands and trigger the phos-
phorylation of receptor-associated Smad proteins (Smad2/3) which associate with Smad4.
Smad2/3/4 complexes accumulate in the nucleus and participate in the regulation of target
genes expression [29].

Vertebrate distal-less homeobox2 (DLX2) acts as a homeo-box transcription factor and has
crucial roles in embryonic development, craniofacial development, tissue homeostasis. Accord-
ing to recent reports, deregulation of DLX2 was found in human solid tumors and hematologic
malignancies [30, 31, 32], and DLX2 is speculated to be involved in tumor progression via the
regulation of metabolic stress-induced necrosis [33]. Moreover, DLX2 itself is a target gene of
Smad-dependent TGF-β signaling and acts as a negative feedback factor of TGF-β signaling
[34]. These studies made us to focus on the potential role of DLX2 in the acquirement of CSC
and EMT characteristics via Smad-dependent TGF-β signaling in IR-treated cancer cells.

In this study, we have investigated the role of DLX2 in association with stem cell-like prop-
erties and epithelial to mesenchymal transition (EMT) and its regulation by Smad2/3 signaling
in irradiated A549 human lung cancer cells and MDA-MB-231 human breast cancer cells. We
report here that IR induced the expression of DLX2 through activation of Smad2/3, and DLX2
promoted migration and invasion, and radioresistance in A549 and MDA-MB-231 cell lines.

Materials and Methods

Antibodies
Antibodies against DLX2, Smad2/3, CD44, β-catenin, N-cadherin and E-cadherin were pur-
chased from Thermo Scientific (Rockford, IL, USA). Anti-Snail, anti-Vimentin and anti-Vin-
culin antibodies were purchased from Cell Signaling Technologies (Danvers, MA, USA). An
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anti-pSmad2/3 antibody was purchased from Kerafast, Inc. (Boston, MA, USA). Anti-β-actin
antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Cell culture and Irradiation
A549 (human non-small cell lung cancer cell line) and MDA-MB-231 (human breast cancer
cell line) were purchased from Korean Cell Line Bank (Seoul, Korea). Cells were maintained in
RPMI1640 supplemented with 10% fetal bovine serum (FBS; Hyclone, UT, USA), 100 U/ml
penicillin, 100 μg/ml streptomycin at 37°C in a humidified 5% CO2 atmosphere. Cells were
detached from the culture dish using 0.25% trypsin and diluted to 1.5 × 105 cell/ml. Cells were
irradiated with 137Cs γ-rays using a Gammacell 40 Exactor (MDS Nordion, Ontario, Canada)
at the KAERI and then re-plated in culture dishes or chambers.

Construction of the DLX2 overexpression vector and transfection
An insert of human DLX2 was amplified from pCMV-sports6/DLX2 (Korea Human Gene
Bank, Seoul, Korea) by PCR using the following primers: EcoRI (forward): 5'-CGGAATTC AT
GACTGGAGTCTTTGAC-3' and XhoI (reverse): 5'-CTCTGAGT TTAGAAAATCGTCCC
CG-3'. DLX2 inserts was cloned in the vector pcDNA3-myc which allows expression of c-myc-
tagged protein in mammalian cells. pcDNA3-myc/DLX2 or pcDNA3-myc was then delivered
to cells (4 μg/2.5 × 105 cells) using HilyMax (Dojindo Molecular Technologies, Rockville, ML,
USA) transfection reagent according to the manufacturer’s instruction. After incubation for
24 h, the cells were detached and irradiated.

Small-interfering RNA (siRNA) transfection
The si-RNAs targeting DLX2 and Smad2/3 were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). For transfection, cells were plated and grown to 70–90% confluence.
Target si-RNA or negative control si-Ct was then delivered to cells (si-DLX2: 50 μM/2.5×105

cells; si-Smad2/3: 100 μM/2.5×105 cells) using HilyMax transfection reagent according to the
manufacturer’s instruction. After incubation for 24 h, the cells were detached and irradiated.

RNA extraction and Quantitative real-time PCR
After 24 h irradiation, total RNA extracts (1×106 cells) were isolated by Trizol Reagent
(Ambion, Carlsbad, CA, USA) according to manufacturer’s protocol. Reverse transcription
was performed for cDNA synthesis using TOPscript RT DryMIX containing reverse transcrip-
tase, RT buffer, dNTP mixture, Oligo dT (Enzynomics, Seoul, Korea). Quantitative real-time
PCR was performed by a StepOne Real-Time PCR (Applied Biosystems, CA, USA) with SYBR
Green reagent (Enzynomics, Seoul, Korea). Primers were designed using Primer-BLAST
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and the sequences are presented in Table 1.
Total reaction volume of PCR mixture was 20 μl, and reaction conditions were 15 min of initial
denaturation at 95°C and 40 cycles of 10 sec at 95°C, 15 sec at 60°C and 20 sec at 72°C. The
comparative Ct method was used and relative mRNA expression level was calculated based on
normalization to β-actin. All experiments were repeated in three times independently.

Clonogenic assay
Detached cells were exposed to various doses of irradiation and incubated for 7 days (A549)
and 10 days (MDA-MB-231) at 37°C. The medium of all cultures was renewed every 3 days.
The colonies were fixed with 60% methanol and stained with 0.5% crystal violet. Colonies
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containing 50 cells or more were counted as clonogenic cells. The reported survival fraction
values are the mean of six replicates from three independent experiments.

Cell migration assay
To measure their migration, irradiated A549 and MDA-MB-231 cells were seeded in a trans-
well (Corning Incorporated, NY, USA) at a density of 2.5 × 104 cells/well in 200 μl of serum-
free medium and incubated for 7 h (A549) or 3 h (MDA-MB-231) at 37°C. After incubation,
the medium was removed. Cells were fixed through incubation with 100% methanol and
stained with 0.5% crystal violet for 15 min. The membrane was cut away from each chamber
and migrated cells on the lower surface of the filter were counted per filter in randommicro-
scopic filed at a 200-fold magnification (Leica, Heidelberg, Germany). The reported values are
the mean of three independent experiments.

Cell invasion assay
The ability of irradiated A549 and MDA-MB-231 cells to pass through matrigel-coated filters
was measured in a Boyden chamber invasion assay. Matrigel was applied to the top a polycar-
bonate filter (pore size, 8 μm). Cell invasion assays were performed using a matrigel invasion
assay kit (BD Biosciences, Bedford, MA, USA) according to the manufacturer’s instructions.

Table 1. Primer sequence for real-time quantitative PCR.

Primer Sequences

DLX2

Forward 5'-GCACATGGGTTCCTACCAGT-3'

Reverse 5'-ACTTTCTTTGGCTTCCCGTT-3'

OCT4

Forward 5'-AGCAAAACCCGGAGGAGT-3'

Reverse 5'-CCACATCGGCCTGTGTATATC-3'

SOX2

Forward 5'-GTGAGCGCCCTGCAGTACAA-3'

Reverse 5'-GCGAGTAGGACATGCTGTAGGTG-3'

LIF

Forward 5'-GTTCCCCAACAACCTGGACA-3'

Reverse 5'-ACGACTATGCGGTACAGCTC-3'

TWIST

Forward 5'-CTCGGACAAGCTGAGCAAGA-3'

Reverse 5'-TTGCCATCTTGGAGTCCAGC-3'

SNAIL

Forward 5'-TTTCCTCGTCAGGAAGCCCTC-3'

Reverse 5'-TGCTGGAAGGTAAACTCTGGATTAG-3'

MMP2

Forward 5'-GGAAAGCCAGGATCCATTTT-3'

Reverse 5'-ATGCCGCCTTTAACTGGAG-3'

MMP7

Forward 5'-GTCACTTCTTCGGTTGTAGGGA-3'

Reverse 5'-TCAGAGGAATGTCCCATACCCA-3'

β-actin

Forward 5'-GACCTGTACGCCAACACAGT-3'

Reverse 5'-CCAGGGCAGTGATCTCCTTC-3'

doi:10.1371/journal.pone.0147343.t001
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Briefly, cells were seeded in the upper chamber at a density of 2.5–5×104 cells/well in 500 μl of
serum-free medium and incubated for 48 h (A549), 24 h (MDA-MB-231) at 37°C. Cells that
invaded the lower surface of each membrane were fixed with 100% methanol and stained with
0.5% crystal violet for 15 min. The membrane was cut away from each chamber and invaded
cells on the lower surface of the filter were counted per filter in random microscopic filed at a
100-fold magnification (Leica, Heidelberg, Germany). The reported values are the mean of
three independent experiments.

Western blot analysis
After 24 h irradiation, total cell lysates (2×106 cells) were prepared using RIPA lysis buffer
(Thermo Scientific, Rockford, IL, USA) containing 10 mM phenylmethanesulphonylfluoride
(PMSF), 10 mM sodium fluoride (NaF), 1 mM sodium orthovanadate (Na3VO4) and a com-
plete protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA) and the protein content
was measured using the BCA protein assay reagent (Thermo Scientific, Rockford, IL, USA),
with bovine serum albumin as the standard. Equal amounts of protein were resolved by 10%
SDS–PAGE and transferred onto a polyvinylidene difluoride membrane (Amersham Hybond,
Freiburg, Germany). The membrane was then washed with Tris-buffered saline (10 mM Tris
and 150 mMNaCl) containing 0.1% Tween 20 (TBST), and blocked with TBST containing 5%
nonfat dry milk powder. The membrane was incubated overnight with primary antibody and
the blot was exposed to horseradish peroxidase-conjugated secondary antibody and developed
using ECLWestern blot detection reagents (Millipore Corporation, Billerica, MA, USA).

Immunofluorescence (IF) staining
To analyze the intracellular localization of F-actin and marker proteins, A549 and MDA-MB-
231 cells were seed in Lab-Tek chamber slide 8 well glass slide (Nunc, NY, USA) and transfec-
tion with si-Ct or si-DLX2 for 24 h and then incubation for 24 h after IR. Cells fixed in 4%
formaldehyde were stained through incubation with primary antibody (rabbit polyclonal anti-
N-cadherin/Vimentin/E-cadherin/Vinculin antibody, diluted 1:100) for overnight at 4°C. They
were then rinsed with PBS, incubated with blocking buffer, and treated with an Alexa 546-con-
jugated anti-rabbit antibody (Molecular Probes, CA, USA) for 3 h at room temperature.
Finally, intracellular F-actin was stained using Alexa-phalloidin-488 (diluted 1:300, Molecular
Probes, CA, USA) for 1 h. The nucleus of the cell was stained with TO-PRO-3 (Molecular
Probes, Eugene, USA). Stained cells were mounted and imaged using a laser confocal scanning
microscope (Leica, Heidelberg, Germany).

Determination of TGF-β1 in cell culture supernatants
A549 and MDA-MB-231 (5×105 cells/well) cells were exposed to IR at 8Gy, 4Gy and incubated
at 37°C for 24 h. The level of TGF-β1 protein in culture supernatants was measured using a
TGF-β1 ELISA kit (BD Biosciences, San Diego, USA) according to the manufacturer's instruc-
tions. The absorbance at 450 nm was measured using a microplate reader (Molecular Devices,
Sunnyvale, CA). The TGF-β1 protein levels were determined from three different experiments
and are expressed as pg/ml.

Statistical analysis
All experiments were performed three times. Statistically significant differences were identified
using Student’s t-test. Statistical probability of P<0.05 was considered significant. Data repre-
sent the mean ±S.E.M. of the three experiments, each performed in triplicate.
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Results

Ionizing radiation induces EMT and increases CD44 and DLX2
expression
We first analyzed the radiation sensitivity of human A549 lung carcinoma and MDA-MB-231
breast adenocarcinoma cells by clonogenic assay. In this assay, cell survival was dose-depen-
dently decreased by IR (0, 2, 4, 6, 8Gy) in both cell lines, but MDA-MB-231 cells were more
sensitive to IR than A549 cells (Fig 1A). The morphological changes of cells following exposure
to IR were verified in A549 cells irradiated at 8Gy and MDA-MB-231 cells at 4Gy. The irradi-
ated A549 and MDA-MB-231cells showed spindle-shaped and elongated morphologies, which
are typical of EMT morphological phenotypes when compared with the control cells (Fig 1B).

We next investigated the dose-and time-dependent changes of CSC- and EMT-related
marker expression. In consistency with the previous studies, IR increased the expression of
TGF-β signaling factor pSmad2/3, a CSC marker (CD44), EMT positive markers (N-cadherin,
Vimentin), and transcription factors regulating EMT (Snail, β-catenin), and decreased the
expression of EMT negative markers (E-cadherin, Vinculin) dependently on IR-dose or time
in both cell lines (Fig 2A and 2B). Interestingly, the expression of DLX2 was also increased by
IR in both cell lines. Dose–response experiments revealed that DLX2 induction was observed
at 8Gy in A549 and at 4Gy or higher in MDA-MB-231 (Fig 2A and S1 Fig), and time-course
experiments showed that DLX2 protein levels were dramatically increased at 24 h after irradia-
tion in both cell lines (Fig 2B and S2 Fig). Also, IR triggered upregulation of mRNA levels of
stemness markers (OCT4, SOX2, LIF), transcription factors (Twist, Snail), and metastasis
markers (MMP2, MMP7) in both cell lines at 24 h after irradiation by a single dose of 8Gy for
A549 cells or 4Gy for MDA-MB-231 cells (Fig 2C and 2D).

Overexpression of DLX2 enhances EMT and radioresistance
To examine whether DLX2 can upregulate radiation resistance and metastatic potential, A549
and MDA-MB-231 cells were transiently transfected with pcDNA3-myc vector expressing
DLX2 or pcDNA3-myc control vector, and we examined the expression of CSC and EMT
markers by western blot analysis. Overexpression of DLX2 increased the expression of a CSC
marker (CD44) and EMT positive markers (N-cadherin, Vimentin) and decreased the expres-
sion of EMT negative markers (E-cadherin, Vinculin) in both cell lines. Irradiation induced
similar changes of these markers as DLX2 overexpression. However, phosphorylation of
Smad2/3 was slightly decreased (A549) or not changed (MDA-MB-231) by overexpressed
DLX2 but increased by irradiation in both cell lines. Overexpression of DLX2 increased expres-
sion of Snail in A549 but not in MDA-MB-231 cells. The expression of β-catenin was not
altered by DLX2 overexpression in both cell lines (Fig 3A).

To investigate the metastatic effect of DLX2 and IR in A549 and MDA-MB-231 cells, migra-
tion and invasion assays were performed. DLX2-overexpressed A549 and MDA-MB-231 cells
exhibited enhanced migration ability by 3 and 4 folds, respectively, compared with the vector
control (Fig 3B). Also, the exposure to IR (8Gy for A549, 4Gy for MDA-MB-231) increased
migrating cell numbers by 3.2 folds in both cell lines (Fig 3B). These results showed that DLX2
overexpression and IR significantly enhanced the cell motility of A549 and MDA-MB-231
cells. To examine whether cell invasion ability was similarly enhanced by IR or DLX2 overex-
pression, A549 and MDA-MB-231 cells were applied to invasion chambers and numbers of
adhesive cells were counted. DLX2-overexpressed A549 and MDA-MB-231 cells exhibited
enhanced invasive ability by 3 and 5.3 folds, respectively (Fig 3C). Additionally, the exposure
to IR increased the invading cell numbers of A549 and MDA-MB-231 cells by 2.5 and 3.6
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folds, respectively (Fig 3C). These results demonstrate that overexpression of DLX2 or IR sig-
nificantly enhanced the migratory and invasive ability as well as the expression changes of CSC
and EMT-related genes in A549 and MDA-MB-231 cells.

Fig 1. Survival curves andmorphological change of A549 and MDA-MB-231 cells by ionizing radiation. (A) Detached-cells (1×105cells/ml) were
exposed to various doses of irradiation and incubated for 7 days (A549) and 10 days (MDA-MB-231) at 37°C. Colonies containing 50 cells or more were
counted as clonogenic cells. The surviving fraction was calculated by dividing the plating efficiency of treated sample with the plating efficiency of control.
Plating efficiency was calculated by dividing the number of colonies with the number of cells plated. The reported values are the mean of six replicates from
three independent experiments. (B) IR induces morphological change in A549 and MDA-MB-231 cells after 24 h of exposure (A549-8Gy, MDA-MB-231-
4Gy). The magnification of the image is ×100. Ct, control cell; IR, irradiated cells.

doi:10.1371/journal.pone.0147343.g001
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We determined next whether DLX2 would provide increased cancer cell survival after irra-
diation. DLX2-overexpressing A549 and MDA-MB-231 cells were irradiated at 8Gy and 4Gy,
respectively, and then clonogenic assay was performed. The surviving fraction of cells

Fig 2. Ionizing radiation increases the expression of DLX2 and CSCmarkers, and induces EMT. (A) A549 and MDA-MB-231 cells were exposed to IR
at 0-8Gy and incubated at 37°C for 24 h. Lysates were subjected to western blot analysis with the labeled antibodies. Two independent experiments obtained
similar results. (B) A549 and MDA-MB-231 cells were harvested on 0/3/6/24 h after 8Gy (A549) or 4Gy (MDA-MB-231). Lysates were subjected to western
blot analysis with the labeled antibodies. Two independent experiments obtained similar results. (C), (D) A549 and MDA-MB-231 cells were exposed to IR at
8Gy (A549) or 4Gy (MDA-MB-231) and incubated at 37°C for 24 h. Subsequently, cells were isolated by Trizol and subjected to real time PCR analysis with
the labeled primers. All results were obtained from three independent experiments (***P < 0.001, **P < 0.01, *P < 0.05 versus Ct). Ct, control cell; IR,
irradiated cells.

doi:10.1371/journal.pone.0147343.g002
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Fig 3. DLX2 overexpression and irradiation increases the expression of CSCmarkers, and induces EMT andmetastatic ability in A549 and
MDA-MB-231 cells. (A) Cells were transfected with 4 μg pcDNA-myc/DLX2 or pcDNA-myc and incubated at 37°C for 24 h. After cell detachment, the cells
were exposed to IR at 8Gy (A549) or 4Gy (MDA-MB-231) and incubated at 37°C for 24 h. Subsequently, cells were lysed and the lysates were subjected to
western blot analysis. Two independent experiments obtained similar results. (B) Cells were transfected with 4 μg pcDNA-myc/DLX2 or pcDNA-myc and
incubated at 37°C for 24 h. After cell detachment, the cells were exposed to IR at 8Gy (A549) or 4Gy (MDA-MB-231) and incubated at 37°C for 6 h (A549), 3 h
(MDA-MB-231), in transwell (migration assay). The photographs are representative fields of migrated cells on the membrane. The graph indicates average of
migrated cell number from three independent experiments ±SE (***P < 0.001 vs. the vector control cells). (C) Cells were transfected with 4 μg pcDNA-myc/
DLX2 or pcDNA-myc and incubated at 37°C for 24 h. After cell detachment, the cells were exposed to IR at 8Gy (A549) or 4Gy (MDA-MB-231) and incubated
at 37°C for 48 h (A549), 24 h (MDA-MB-231), in matrigel (invasion assay). The photographs are representative fields of invaded cells on the membrane. The
graph indicates average of invaded cell number from three independent experiments ±SE (***P < 0.001 vs. the vector control cells).

doi:10.1371/journal.pone.0147343.g003
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transfected with control vector declined after irradiation compared to non-irradiated cells.
However, DLX2-overexpressing cells showed significantly higher survival rate compared to
vector-transfected cells after irradiation (Fig 4A and 4B). In non-irradiated cells, colony forma-
tion was not affected by DLX2-overexpression (Fig 4A and 4B). These results indicate that
DLX2-overexpression at least partially contributes to radioresistance in A549 and MDA-MB-
231 cells.

Silencing of DLX2 inhibits IR-induced EMT and radioresistance
Next, we examined whether DLX2 silencing would suppress metastatic potential and radiore-
sistance conferred by IR. A549 and MDA-MB-231cells were transiently transfected with 50 μM
siRNA of DLX2 (si-DLX2) or si-RNA control (si-Ct) for 24 h prior to irradiation (8Gy for
A549, 4Gy for MDA-MB-231). Then we analyzed the expression of CSC and EMT related
genes, migrating and invading abilities, and colony-forming ability. Silencing of DLX2 by
siRNA prevented EMT as demonstrated by reduced protein levels of EMT positive markers
(N-cadherin, Vimentin) (Fig 5A, S3 Fig and S4 Fig) and increased level of EMT negative mark-
ers (E-cadherin, Vinculin) in irradiated A549 and MDA-MB-231 cells (Fig 5A, S5 Fig and S6
Fig). Inhibition of DLX2 also prevented the induction of transcription factors critical for EMT
(Snail and β-catenin), and a CSC marker (CD44) in irradiated A549 and MDA-MB-231 cells.
Interestingly, activation of TGF-β signaling factor, Smad2/3, was not affected by si-DLX2 in
irradiated cells (Fig 5A).

To investigate the anti-metastatic effect of si-DLX2 in irradiated cells, migration and inva-
sion assays were performed. DLX2-silencing in MDA-MB-231 cells slightly reduced migration
ability compare to the si-Ct cells. Also, in irradiated A549 and MDA-MB-231 cells, transfection
of si-DLX2 decreased the migrating cell numbers by 1.7 folds compared to si-Ct transfection
(Fig 5B). These results show that silencing of DLX2 by siRNA significantly inhibited cell motil-
ity of A549 and MDA-MB-231 cells. To examine whether cell invasion ability was similarly
reduced by DLX2 silencing, irradiated cells were applied to invasion chambers and the num-
bers of adhesive cells were counted. In non-irradiated cells, DLX2-silencing inhibited invasive

Fig 4. DLX2-overexpression increases cell survival in irradiated A549 and MDA-MB-231 cells. Cells were transfected with 4 μg pcDNA-myc/DLX2 or
pcDNA-myc and incubated at 37°C for 24 h. After cell detachment, the cells were exposed to IR at 8Gy (A549) or 4Gy (MDA-MB-231) and incubated at 37°C
for 7 days (A549), 10 days (MDA-MB-231) and cell clonogenicity measured by clonogenic assay in A549 (A) and MDA-MB-231 (B). The photographs are
representative plate of survival cells. The graph represents the average of three independent experiments ±SE (***P < 0.001 vs. the IR exposed cells).

doi:10.1371/journal.pone.0147343.g004
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ability of A549 cells by 1.4 folds, but no significant change was observed in MDA-MB-231
cells. In irradiated A549 and MDA-MB-231 cells, transfection of si-DLX2 decreased invading
cell numbers of A549 and MDA-MB-231 cells by 2.3 and 2.2 folds, respectively (Fig 5C). These
results demonstrated that silencing of DLX2 in irradiated A549 and MDA-MB-231 cells signif-
icantly inhibited the expression of genes associated with CSC and EMT, and migratory and
invasive ability which were induced by IR.

We analyzed next whether DLX2-silencing influences cancer cell survival after irradiation.
A549 and MDA-MB-231 cells transfected with si-DLX2 or si-Ct were irradiated at 4Gy and
2Gy, respectively, and then the colony formation was examined. In non-irradiated cells, DLX2
silencing resulted in a slight decrease of surviving fraction in both cell lines. In irradiated cells,
DLX2 silencing leaded to an additional decrease in cell survival to a significant extent (1.5-fold
decrease for A549 and 1.6-fold decrease for MDA-MB-231) (Fig 6A and 6B). These results
indicated that silencing of DLX2 suppressed IR-induced EMT potential and enhanced radia-
tion sensitivity.

Fig 5. DLX2-silencing suppresses the expression of CSCmarkers, EMT andmigratory and invasive ability in irradiated A549 andMDA-MB-231
cells. (A) Cells were transfected with 50 μM si-DLX2 or si-Ct and incubated at 37°C for 24 h, the cells were exposed to IR at 8Gy (A549) or 4Gy (MDA-MB-
231) and incubated at 37°C for 24 h. Subsequently, cells were lysed and the lysates were subjected to western blot analysis. Two independent experiments
obtained similar results. (B) Cells were transfected with 50 μM si-DLX2 or si-Ct and incubated at 37°C for 24 h. After cell detachment, the cells were exposed
to IR at 8Gy (A549) or 4Gy (MDA-MB-231) and incubated at 37°C for 6 h (A549), 3 h (MDA-MB-231), in transwell (migration assay). The photographs are
representative fields of migrated cells on the membrane. The graph indicates average of migrated cell number from three independent experiments ±SE
(***P < 0.001). (C) Cells were transfected with 50 μM si-DLX2 or si-Ct and incubated at 37°C for 24 h. After cell detachment, the cells were exposed to IR at
8Gy (A549) or 4Gy (MDA-MB-231) and incubated at 37°C for 48 h (A549), 24 h (MDA-MB-231), in matrigel (invasion assay). The photographs are
representative fields of invaded cells on the membrane. The graph indicates average of invaded cell number from three independent experiments ±SE
(***P < 0.001).

doi:10.1371/journal.pone.0147343.g005

Fig 6. DLX2-silencing increases radiation sensitivity of A549 and MDA-MB-231 cells.Cells were transfected with 50 μM si-DLX2 or si-Ct and incubated
at 37°C for 24 h. After cell detachment, the cells were exposed to IR at 4Gy (A549) or 2Gy (MDA-MB-231) and incubated at 37°C for 7 days (A549), 10 days
(MDA-MB-231) and cell clonogenicity measured by clonogenic assay in A549 (A) and MDA-MB-231 (B). The photographs are representative plate of survival
cells. The graph represents the average of three independent experiments ±SE (***P < 0.001).

doi:10.1371/journal.pone.0147343.g006
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IR-induced DLX2 expression is regulated by Smad2/3
IR promotes EMT via Smad-dependent TGF-β signaling in cancer cell lines [6, 27, 28], and
DLX2 is a target gene of Smad-dependent TGF-β signaling and negative feedback factor [34].
Therefore, we examined the association of TGF-β signaling with IR-induced DLX2 expression.
Irradiation of A549 cells (8Gy) and MDA-MB-231cells (4Gy) increased the amount of TGF-β1
secreted into the culture medium (Fig 7A). Also, IR promoted phosphorylation of TGF-β signal-
ing factor Smad2/3 (Figs 2A, 2B, 3A, 5A and 7C, S1 Fig and S2 Fig). However, overexpression of
DLX2 rather slightly decreased phosphorylation of Smad2/3 (Fig 3A). The phosphorylation of
Smad2/3 was not affected either by si-DLX2 in irradiated A549 and MDA-MB-231 cells (Fig
5A). Therefore, we next examined whether the induction of DLX2 by IR is regulated by Smad2/3
signaling. Smad2/3 silencing by siRNA abrogated the IR-induced DLX2mRNA expression (Fig
7B) and DLX2 protein expression (Fig 7C and 7D). These results indicate that IR-induced DLX2
expression is dependent on Smad2/3 signaling.

Fig 7. Silencing of Smad 2/3 abrogates the induction DLX2 in irradiated A549 andMDA-MB-231 cells. (A) The levels of immunoreactive TGF-β1 were
quantified from the cell culture medium by ELISA, as described in the Materials and methods (***P < 0.001, **P < 0.01, versus Ct). Ct, control cell; IR,
irradiated cells. (B) Cells were transfected with 100 μM si-Smad2/3 or si-Ct, incubated at 37°C for 24 h. Then the cells were exposed to IR at 8Gy (A549) or
4Gy (MDA-MB-231) and incubated at 37°C for 24 h. Total RNA was isolated from the cells and subjected to real time PCR analysis. The graph represents the
average of three independent experiments ±SE (***P < 0.001). (C) Cells were transfected with 100 μM si-Smad2/3 or si-Ct and incubated at 37°C for 24 h.
Then the cells were exposed to IR at 8Gy (A549) or 4Gy (MDA-MB-231) and incubated at 37°C for 24 h. Subsequently, the cell lysates were subjected to
western blot analysis. Three independent experiments obtained similar results. (D) Protein levels were quantified by densitometry. Data are represented as
relative values to those of si-Ct after normalization with β-actin (***P < 0.001, **P < 0.01, *P < 0.05 versus si-Ct).

doi:10.1371/journal.pone.0147343.g007
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Discussion
Radiation therapy is a critical component of cancer management, but some of surviving cancer
cells gain radioresistance [1] and metastatic ability [2] on the repeated radiotherapy. The pres-
ence of cancer stem cells (CSC) among cancer cell population and the epithelial to mesenchy-
mal transition (EMT) during repeated irradiation are thought to be important factors
contributing to cancer relapse and metastasis [2]. To overcome this impediment, the identifica-
tion and development of predictive biomarkers and targeted therapeutic strategy for CSC and
EMT are especially important for prognosis evaluation and radiosensitivity improvement in
radiation therapy.

The DLX2 genes is a member of the Drosophila distal-less family and has multiple functions
as transcription factor in different stages of development or in different tissues and cell types
[35]. According to recent reports, DLX2 deregulation is known to enhance cell survival and
proliferation and prevent differentiation [36, 37]. Interestingly, Abnormal expression of DLX2
was found in malignant progression of human solid tumors including gastric adenocarcinoma,
acute lymphoblastic leukemia, melanoma, glioma, breast, lung and prostate cancer [30, 32, 34,
38]. Also, DLX2 is speculated to be involved in tumor progression and aggressiveness by the
regulation of metabolic stress-induced necrosis via the regulation of mitochondrial ROS [33].

These studies made us to focus on the potential role of DLX2 in the acquirement of CSC and
EMT characteristics in IR-treated cancer cells. In this study, we have investigated the role of
DLX2 in expression of CSCs and EMT-related genes, migration and invasion ability, radioresis-
tance in irradiated A549 human lung cancer cells andMDA-MB-231 human breast cancer cells.

We first found that expression of DLX2 was increased by IR in A549 and MDA-MB-231
cells (Fig 2A and 2B). Besides, we confirmed the IR induced dose-and time-dependent changes
of CSC marker (CD44), EMT positive markers (N-cadherin, Vimentin), transcription factors
regulating EMT (Snail, β-catenin), and EMT negative markers (E-cadherin, Vinculin) in both
cell lines (Fig 2A and 2B). By quantitative real-time PCR, we confirmed IR-induced upregula-
tion of mRNA levels of stemness markers (OCT4, SOX2, LIF), transcription factors (Twist,
Snail), and metastasis markers (MMP2, MMP7) in both cell lines (Fig 2C and 2D). Then we
tested the effects of ectopic expression of DLX2 on the radiated A549 and MDA-MB-231 cells.
We found that overexpression of DLX2 significantly increased the expression of CD44, N-cad-
herin, Vimentin and enhanced the migratory and invasive ability of A549 and MDA-MB-231
cells as similar as by IR (Fig 3A and 3B). In clonogeinic assay, DLX2-overexpressing cells
showed significantly higher survival rate compared to vector-transfected cells after irradiation
(Fig 4A and 4B). Conversely, down-regulation of DLX2 expression with si-DLX2 in irradiated
A549 and MDA-MB-231 cells significantly inhibited the expression of genes associated with
CSC and EMT, and migratory and invasive ability which were induced by IR (Fig 5A–5C). In
clonogeinic assay, DLX2 silencing leaded to a significant decrease in cell survival in irradiated
cells (Fig 6A and 6B). These results indicate that DLX2 expression promotes invasion, migra-
tion, and radioresistance of A549 and MDA-MB-231 cells.

Recent studies suggest that the stem-like properties of cancer cells may be quite plastic and
associated with the EMT. In patients, EMT and CSCs increased resistance to radiotherapy [2].
EMT is promoted by various soluble factors, and especially TGF-β is a strong inducer for EMT
[26]. In TGFβ-induced EMT process, cells lead dynamic cytoskeletal remodeling and morpho-
logical change of epithelial to mesenchymal transition [26, 29, 39]. Importantly, several reports
indicated that IR induces Smad-dependent activation of TGF-β signaling in cancer [40–42],
and the blocking of TGF-β pathway prior to irradiation increased radiosensitivity of murine
and human lung cancer cells [43]. Interestingly, DLX2 is reported to play a dual role in TGF-β
signaling [34]. DLX2 is a downstream target gene of phosphorylated Smad2/3 and upregulated
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upon TGF-β treatment. On the other hand, DLX2 can also act as a negative feedback factor of
TGF-β signaling and inhibit TGF-β-induced cell-cycle arrest and apoptosis increasing primary
tumor growth and metastasis in B16 melanoma cells. In spite of these previous reports, the role
of DLX2 in acquisition of CSC and EMT characteristics and its association with Smad-depen-
dent TGF-β signaling in irradiated cancer cells have been remained elusive. In this study, we
demonstrated that DLX2 acted as a crucial downstream mediator of TGF-β signaling in irradi-
ated A549 and MDA-MB-231 cells. We observed that IR increased the phosphorylation of
Smad2/3, a TGF-β signaling factor (Fig 2A and 2B). However, phosphorylation of Smad2/3
was not affected either by overexpression of DLX2 (Fig 3A) or by silencing of DLX2 (Fig 5A).
We further investigated whether the induction of DLX2 by IR is regulated by Smad2/3 signal-
ing and found that Smad2/3 silencing by siRNA abrogated the IR-induced DLX2 expression
(Fig 7). These results indicated that DLX2 is a downstream target gene of phosphorylated
Smad2/3, and IR-induced DLX2 expression is dependent on Smad2/3 signaling. Although a
vast of reports support that TGF-β is a key regulator of EMT and Smads mediate this process, a
few studies reported that TGF-β-induced EMT process can also occur through Smad-indepen-
dent pathways [44, 45]. Therefore, the role of DLX2 in EMT process may differ with respect to
the types of tumor cells and EMT stimuli.

In this study, we showed for the first time that DLX2 is associated with IR-induced EMT
process and acquisition of CSC properties. Smad2/3 was activated in response to IR and
induced DLX2 expression. DLX2 in turn promoted the expression of CSC and EMT-related
genes resulting in the enhanced migration and invasion ability and radioresistance in A549
and MDA-MB-231 human cancer cells. Since elevated expression of DLX2 has been found in
many malignant tumors [30, 32, 34, 38], our results strongly support the possible involvement
of DLX2 in EMT and radioresistance in many tumors. However, the role of DLX2 should be
further confirmed in more in vitro studies with other human tumor cells as well as in animal
studies to utilize the DLX2 as a therapeutic target for reducing metastatic ability and increasing
radiosensitivity of tumors.

Supporting Information
S1 Fig. Radiation dose-dependent protein expression of DLX2, CSC and EMTmarkers in
A549 and MDA-MB-231 cells. A549 (A) and MDA-MB-231(B) cells were exposed to IR at 0-
8Gy and incubated at 37°C for 24 h. Lysates were subjected to western blot analysis. Two inde-
pendent experiments obtained similar results (Fig 2A). Protein levels were quantified by densi-
tometry. Data are represented as relative values to those of si-Ct after normalization with β-
actin (���P< 0.001, ��P< 0.01, �P< 0.05 versus 0Gy).
(TIF)

S2 Fig. Time-dependent protein expression of DLX2, CSC and EMTmarkers in irradiated
A549 and MDA-MB-231 cells. A549 (A) and MDA-MB-231 (B) cells were harvested on 0/3/
6/24 h after 8Gy (A549) or 4Gy (MDA-MB-231). Lysates were subjected to western blot analy-
sis with the labeled antibodies. The β-actin was used as a loading control. Two independent
experiments obtained similar results (Fig 2B). Protein levels were quantified by densitometry.
Data are represented as relative values to those of si-Ct after normalization with β-actin
(���P< 0.001, ��P< 0.01, �P< 0.05 versus 0 h).
(TIF)

S3 Fig. DLX2-silencing suppresses IR-induced expression of N-cadherin in A549 and
MDA-MB-231 cells in immunofluorescence staining. A549 (A) and MDA-MB-231(B) cells
were transfected with si-Ct or si-DLX2 for 24 h and then incubated for 24 h after IR. Focal
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adhesions were visualized by immunofluorescence staining of F-actin stress fibers with phalloi-
din (green, a, b and c) and N-cadherin (red, d, e and f). The nucleus is stained with DAPI (g, h
and i). (j, k and l) Merged images. The expression of stress fibers and N-cadherin is increased
during IR stimulation (a/b, d/e). Also, DLX2-silencing suppresses the expression of IR-induced
stress fiber and N-cadherin (b/c, e/f). The magnificent of the image is ×100.
(TIF)

S4 Fig. DLX2-silencing suppresses IR-induced expression of Vimentin in A549 and
MDA-MB-231 cells in immunofluorescence staining. A549 (A) and MDA-MB-231(B) cells
were transfected with si-Ct or si-DLX2 for 24 h and then incubated for 24 h after IR. Focal
adhesions were visualized by immunofluorescence staining of F-actin stress fibers with phalloi-
din (green, a, b and c) and Vimentin (red, d, e and f). The nucleus is stained with DAPI (g, h
and i). (j, k and l) Merged images. The expression of stress fibers and Vimentin is increased
during IR stimulation (a/b, d/e). Also, DLX2-silencing suppresses the expression of IR-induced
stress fiber and Vimentin (b/c, e/f). The magnificent of the image is ×100.
(TIF)

S5 Fig. DLX2-silencing restores IR-suppressed expression of E-cadherin in A549 and
MDA-MB-231 cells in immunofluorescence staining. A549 (A) and MDA-MB-231(B) cells
were transfected with si-Ct or si-DLX2 for 24 h and then incubated for 24 h after IR. Focal
adhesions were visualized by immunofluorescence staining of F-actin stress fibers with phalloi-
din (green, a, b and c) and E-cadherin (red, d, e and f). The nucleus is stained with DAPI (g, h
and i). (j, k and l) Merged images. The expression of stress fibers is increased and the expres-
sion (a/b) of E-cadherin is decreased during IR stimulation (d/e). Also, DLX2-silencing repairs
the expression of IR-inhibited E-cadherin (e/f). The magnificent of the image is ×100.
(TIF)

S6 Fig. DLX2-silencing restores IR-suppressed expression of Vinculin in A549 and
MDA-MB-231 cells in immunofluorescence staining. A549 (A) and MDA-MB-231(B) cells
were transfected with si-Ct or si-DLX2 for 24 h and then incubated for 24 h after IR. Focal
adhesions were visualized by immunofluorescence staining of F-actin stress fibers with phalloi-
din (green, a, b and c) and Vinculin (red, d, e and f). The nucleus is stained with DAPI (g, h
and i). (j, k and l) Merged images. The expression of stress fibers is increased and the expres-
sion (a/b) of Vinculin is decreased during IR stimulation (d/e). Also, DLX2-silencing repairs
the expression of IR-inhibited Vinculin (e/f). The magnificent of the image is ×100.
(TIF)
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