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Abstract
A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by

inputs of genetic, physiology, pedo-climatic and management information. Application of

numerical methods for model exploration assist in evaluating the major most influential

inputs, providing the simulation model is a credible description of the biological system. A

sensitivity analysis was used to assess the simulated impact on yield of a suite of traits

involved in major processes of crop growth and development, and to evaluate how the sim-

ulated value of such traits varies across environments and in relation to other traits (which

can be interpreted as a virtual change in genetic background). The study focused on wheat

in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits

(90) was evaluated in a wide target population of environments (4 sites × 125 years), man-

agement practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The

Morris sensitivity analysis method was used to sample the parameter space and reduce

computational requirements, while maintaining a realistic representation of the targeted trait

× environment × management landscape (* 82 million individual simulations in total). The

patterns of parameter × environment × management interactions were investigated for the

most influential parameters, considering a potential genetic range of +/- 20% compared to a

reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity

indices calculated for most of APSIM-Wheat parameters allowed the identification of 42

parameters substantially impacting yield in most target environments. Among these, a sub-

set of parameters related to phenology, resource acquisition, resource use efficiency and

biomass allocation were identified as potential candidates for crop (and model)

improvement.
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Introduction
Progress in plant breeding is limited by the ability to predict plant phenotype based on its geno-
type, especially for complex traits such as yield. Suitably constructed process-based models
provide a mean to reduce this gap in particular by dissecting the complexity of the genotype-
environment interactions and by simulating expected impacts in various environmental condi-
tions [1–3], including consideration of future climates [4, 5].

From a modeling point of view, crops are complex systems arising from interactions among
genetic determinants, physiological processes, pedo-climatic factors and management prac-
tices. The combination of these elements, which are either chosen (cultivar and management)
or given (soil and climate) in any sown crop, generates greatly variable stress patterns [6, 7]
and results in high genotype (G) × environment (E) × management (M) interactions. A num-
ber of such interactions has been reported in the literature [8, 9], and sources of yield variation,
especially in rainfed systems, commonly arise primarily from the genotype × environment
(G×E) interactions, rather than the genotype (G), i.e. G×E> G as observed for field pea in
Canada [10], sunflower in Argentina [11], sorghum in Australia [12], wheat in north-east Aus-
tralia [13] and globally [14] and maize in Midwestern US states [15, 16] Modeling approaches
have been developed to better understand G×E×M interactions and attempt to take advantage
of genetic and environmental resources more efficiently. For example, Hammer et al. [17]
show that the multi-year risk of crop failure for farms within a given sorghum region can be
reduced by the adoption of better combinations of GxM (“local G” and “local M”) compared to
use of the combination of “global G” and “global M” that would be adopted if using the entire
sorghum production area.

Process-based crop models are useful tools to integrate scientific knowledge and simulate
varietal or management impacts on productivity in the target population of environments
(TPE), i.e. the set of environments to which newly bred varieties need to be adapted [18, 19].
Hence, the predictive capability of crop models is used to explore the complex G×E×M land-
scape and assists breeding programs to take advantage of genetic and environmental resources
more efficiently [2, 20, 21]. While such models are based on mathematical equations translat-
ing biological processes in relation to crop growth and development, their parameters can be
controlled to mimic effects of genotypic variability and explore the G×E×M landscape using
virtual genotypes [22, 23]. Numerical exploration of crop models for the target population of
environments thus allows exploration of the entire G×E×M landscape, assuming that the crop
simulation model gives a credible description of the biological system.

To be relevant, exploration of the G×E×M landscape has to be applied to environments and
management practices related to targeted production systems. A recent study characterized the
drought environment of rainfed wheat for the Australian target population of environments
[7], an interesting target given that Australia is the fourth wheat exporter worldwide and that
Australian wheat crops have to adapt to a high variability (spatial and inter-annual) in drought
patterns, which strongly impedes crop breeding [9, 13, 24] The Australian wheatbelt extends
ca. 13 million ha (Australian Bureau of Statistics, 2013) and has soils ranging from shallow
sandy to deep clay soils and include temperate, Mediterranean and subtropical climates [25,
26]. Chenu et al. [7] undertook a simulation-based study (60 sites × 5 initial soil moisture × 5
sowing dates) to capture the variability in environmental and management conditions of this
TPE. To study genotypic variation in such a TPE raises computational challenges if variations
in multiple plant traits with high granularity (resolution) are desired, i.e. requiring the simula-
tion of many levels of small increment for each of the factors explored.

The APSIM (www.apsim.info) Wheat model [27–29] is used to simulate crop performance
as a function of plant traits, pedo-climatic variability and management practices. This model
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has been extensively used and tested across Australia [6, 27, 28, 30]. Numerical experiments
with crop models allow exploration of large G×E×M landscape. However, sampling the
G×E×M landscape using a factorial design with as few as six levels for each parameter of the
APSIM-Wheat model in the Australian TPE considered in this study would require to perform
9.72 × 1073 simulations. Such an approach would require absurdly high computing resource
and could be considered as partly wasteful given that it considers all parameters including
those of minimal importance. An alternative is to apply a numerical method designed to more
efficiently explore complex landscapes. For instance, global sensitivity analysis allows investiga-
tion of how the uncertainty in the output of a model can be apportioned to different sources of
uncertainty in the model input [31, 32].

Few computational studies have used sensitivity analysis to address cropping problems, e.g
assessing the impact of phenology and management on sugarcane yield in various environ-
ments [33], the influence of geometrical and topological traits on light interception efficiency
of apple trees [34] and the impact of physiological traits on wheat grain yield and protein con-
centration in Europe [35]. Recently, Zhao at al. [36] performed a sensitivity analysis on the
APSIM-Wheat model with a focus on a narrow set of cultivar-specific traits (10 parameters)
with the aim to improve an incoming calibration step.

The aims of this paper were (i) to assess the impact of a suite of physiological traits on yield
for Australian rain-fed wheat crops and (ii) to evaluate how the value of such traits varies
across environments and in relation to other traits. A large set of traits (103) were evaluated in
APSIM-Wheat for a wide population of environments related to four representative locations
[7, 24] and 125 years of historical records of weather data (Fig 1). In addition to this representa-
tive set of 500 environment conditions, simulations were performed for three sowing dates,
three levels of nitrogen fertilization and two levels of CO2 (i.e. 9000 conditions in total) to
assess the effects of management and CO2 factors. We used a global sensitivity analysis to
determine the effects of all traits on yield for all the conditions studied (i.e. each site × year ×
management combination). Traits found to have substantial and frequent impacts on yield
were further studied through variance analysis to investigate the influence of environmental-
factors and their impact on integrated traits such as plant leaf area, biomass production, and
grain size and number.

Material and methods

Overview
A global sensitivity analysis was applied on the APSIM-Wheat crop model to identify potential
candidate traits for yield improvement in a large population of environments. Fig 1 describes
this workflow, showing how the “genetic diversity” was considered, sampled and screened in
silico. In summary, from 516 parameters of the APSIM-Wheat model (with a broad-sense defi-
nition of parameter which included e.g. physical constants, optional parameters used for other
crops and parameters repeated for different stages), 90 independent parameters that could be
considered as “component traits” were selected to reflect a potential genetic variability. Each of
the 90 component traits was assumed to vary in a ± 20% range around the value for the refer-
ence cultivar Hartog. The number of considered traits prevented the use of a factorial design,
and so the Morris method [37, 38] was used to sample the total parameter space (90 traits, 6
levels, 100 reps; i.e. 9100 “genotypes”). Simulations for those genotypes were performed with
APSIM-Wheat (Version 7.5) for (1) 4 locations and 125 years (from 1889 to 2013) to test the
impact of component traits in the TPE (Table 1) and (2) for 3 sowing dates (i.e. early, TPE-
level and late), 3 levels of nitrogen (i.e. low, TPE-level and high fertilization) and 2 levels of
CO2 (380 and 555 ppm to represent CO2 level in 2010 and 2050) to test trait impact in other
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environmental conditions related to farmer management practices and future climates. The
impact of the 90 component traits were considered for 8 output variables (“integrated traits”,
Table 2) related to phenology (flowering and maturity dates), leaf development (Leaf Area
Index at flowering), biomass production (at maturity), and grains (grain number, size, protein
and yield). Overall 42 component traits were identified as “influential” (i.e. main average
impact on yield greater than 20 kg ha-1) and considered as potential candidates to improve
yield in the TPE. They were analyzed in more detail with a variance analysis. Several interesting
traits related to phenology, resource acquisition, resource use efficiency and biomass allocation

Fig 1. Framework of cropmodel simulation and the sensitivity approach used to assess the potential impact of plant traits. A global sensitivity
analysis was applied on the APSIM-Wheat crop model to identify potential candidate traits for yield improvement in a large population of environments. This
workflow presents how the “genetic diversity” was considered, sampled and screened in silico. In summary, 90 independent APSIM-Wheat parameters
considered as “component traits”, associated with the main physiological processes that are modeled, were selected to reflect a potential genetic variability.
Each of the 90 component traits was assumed to vary in a ± 20% range around the value for the reference cultivarHartog and the Morris method [37, 38] was
used to sample the total parameter space (90 traits, 6 levels, 100 reps; i.e. 9100 “genotypes”). Simulations for those genotypes were performed with
APSIM-Wheat (Version 7.5). The impact of the 90 component traits were considered for 8 output variables (“integrated traits”, which result from the
complexity of the dynamic modeling of development and growth). The impact on crop yield allowed to screen component traits for influential traits (n = 42) in
the target population of environments while a study on trait × environment interactions was used to explore their variability across environments.

doi:10.1371/journal.pone.0146385.g001
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were studied in more detail as their impact could be related to specific environmental factors.
A more complete description of the workflow and analysis is given below.

Simulations and sensitivity analysis
A global sensitivity analysis was performed on parameters of the crop model APSIM-Wheat
version 7.5 [28, 29] to assess their impact on yield in the Australian wheatbelt (Figs 1–2). Five
main steps were followed: (1) listing the input APSIM-Wheat parameters (input factors) to be
included in the analysis, (2) setting the variation range for each factor, (3) sampling the param-
eter space with the Morris method, (4) simulating the virtual experiment with APSIM-Wheat

Table 1. Characteristics of the locations, soils andmanagement representing the target population of environments. Plant available water capacity
(PAWC) is indicated for each soil, as well at the level of initial soil water used in the simulations (median of plant available water at sowing which was esti-
mated from [7]). Applied nitrogen dose are indicated by “a/b/c”: respectively, the fertilization applied at sowing (a), at the stage “end of tillering” (b) and at the
stage “mid-stem elongation” (c). Annual and seasonal (1-May to 1-Nov) climatic data were considered for 1889-2013.

Emerald Narrabri Yanco Merredin

latitude (degree) -23.53 -30.32 -34.61 -31.5

longitude (degree) 148.16 149.78 146.42 118.22

rainfall pattern summer dominant summer dominant evenly distributed winter dominant

annual rainfall (mm) 635 650 425 303

seasonal rainfall (mm) 170 249 228 209

seasonal PET (mm) 843 640.2 462.2 601.6

daily mean temperature (celcius) 18.4 13.9 11.9 13.1

daily mean radiation (MJ.m-2) 18.3 15.7 13.3 14.5

soil type black vertosol grey vertosol brown sodosol shallow loamy duplex

PAWC (mm) 133.5 217.5 190.8 101.1

sowing date 15/05 15/05 15/05 15/05

sowing PAWC (mm) 132 175 99 39

initial nitrogen (kg.ha-1) 30 30 50 30

applied nitrogen (kg.ha-1) 50/0/0 130/0/0 40/40/40 20/20/30

doi:10.1371/journal.pone.0146385.t001

Table 2. Description of integrated traits (APSIM-Wheat output variables) and environmental indices included in the analysis. Environment indices
were computed for the sowing-harvest period, for all considered environments. Water-deficit index correspond to the simulated water supply-demand ratio
and relates to the degree to which the water available to the roots matches the plant water demand [7]. Nitrogen stress index relates to the level of nitrogen
stress on photosynthesis. Stress indices are expressed as scalars so that values range from 0 (low stress) to 1 (high stress).

Type Variable Description Unit

Crop Flowering Flowering date day

Crop Maturity Maturity date day

Crop LAI Leaf area index at flowering -

Crop Grain Size Dry biomass of an individual grain g

Crop Grain Number Grain number grain

Crop Grain Protein Grain protein content %

Crop Biomass Crop aerial dry biomass at harvest t ha-1

Crop Yield Crop grain yield at harvest t ha-1

Environment Water Average soil water deficit ratio -

Environment Nitrogen Average nitrogen stress factor -

doi:10.1371/journal.pone.0146385.t002
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and (5) computing the sensitivity indices to assess the impact of each factor singly (main effect)
or in combination (interaction).

1. Defining input factors. As for most crop models, APSIM-Wheat has parameters (S1
Table) that specify quantitative effect of processes related directly or indirectly to crop growth
and development [27–29, 39]. Those parameters are typically either single values or arrays of
paired vectors (S1 Table and S1 Fig), in which case one vector relates to the piloting a state vari-
able (x; e.g. stage values) and the second one corresponds to the considered trait (y; e.g. values
of root biomass partitioning for the different key stages considered). Each defined value,
whether it is a single-value parameter or a point in an array can be considered as a parameter;
in which case, APSIM-Wheat has 516 parameters (v. 7.5, as documented in Zheng et al. [29]).
As all numerical coefficients in APSIM are completely external to the code, these “parameters”
actually included a lot of constants and coefficients that would never be changed. Not all
parameters were considered when assessing the impact of plant traits on crop performance as
(1) four parameters representing soil physics and general physical constants (e.g. ammonium
diffusion rate) were not considered, (2) 22 parameters deliberately set to have no impact on

Fig 2. Map of the studied sites and climatic variability in aridity index. The map shows potential evapotranspiration over precipitation ratio (1 / aridity
index, data from Zomer et al. [41]), points correspond to locations sampled in the target population of environments.

doi:10.1371/journal.pone.0146385.g002
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wheat crops (e.g. multiplicative scalars which are set to 1.0 by default in the released version of
APSIM-Wheat) were not considered and (3) values in vectors (parameter arrays) were consid-
ered as dependent parameters, counting one parameter for the whole “function”.

This process greatly reduced the number of parameters to 103 (62 single values and 41 func-
tions), yet there was no information loss on the system description. In addition, some parame-
ters were grouped [38] to avoid aberrant situations and computational errors (e.g new min
thresholds being greater than new max thresholds). In total, 20 parameters (annotated with �

in S1 Table) were grouped into 7 “meta-parameters” that govern their variation (e.g. nitrogen
demand, leaf expansion processes). Overall, 90 parameters (p = 103 − 20 + 7 = 90) were consid-
ered in the sensitivity analysis, with all the crop processes from APSIM-Wheat being tested (i.e.
no process was removed from the analysis).

2. Setting the variation range. The range of parameter values is biologically constrained
by the genetic diversity existing in wheat. However, most crop models have typically been
designed to only simulate major differences among cultivars (e.g. phenology), as their primary
aim has been to address crop management problems. As a result, crop models such as APSIM--
Wheat only have a few parameters that are by default considered as cultivar-dependent, while
all the other parameters are assumed to be constant for the species. Given the lack of knowledge
related to the range of the genetic variability existing for most of the model parameters, a fixed
range of 40% variation for all parameters was tested in the sensibility analysis. Where possible,
equal variation around the nominal value (± 20%) was considered, but for hard-bounded
parameters (e.g scalars comprised between 0 and 1) the 40% variation was considered below
(or above) the nominal value. Nominal values were considered for the reference cultivarHartog
and scaled using two consecutive rules: (1) direct scaling of the single value, or of all the y vec-
tor for function parameters (e.g. proportion of biomass partitioned to the roots at different
stages) and (2) scaling only one single point in the x or y vector when this improved the biolog-
ical meaning (e.g. threshold of leaf-expansion sensitivity to water deficit). S1 Fig illustrates the
shape and variation range for function parameters studied in this sensitivity analysis.

3. Sampling the parameter space. We used the Morris method [37] as implemented by
Campagnolo et al. [38] to sample the parameter space and compute sensitivity indices. The
method consists in a discretization of the input space for each factor (n = 6 levels), then per-
forming a given number of one-at-a-time (OAT) design (r = 100) on the 90 parameters. The
OAT designs were randomly chosen in the input space, and the variation direction was also
random but their dispersion in the input space was maximized [38]. The repetition 100 times
of these steps allowed the estimation of elementary effects for each input factor [37]. The
implementation in the sensitivity R package used the space-filling optimization of the design
[38]. Parameter design was normalized to account for the different magnitudes in input factors
(parameters expressed in different units).

Considering the total number of input factors and the sampling conditions, the total size of
parameter design was 90 + 1 × 100 = 9100, where each sample (i.e. set of parameter values) can
be interpreted as a virtual genotype (i.e. 9100 in total). The numerical sampling of the parame-
ter space can be viewed as an exploration of virtual genotype materials where there is no
restriction in the combination of traits considered (i.e. no genetic linkage or epistasis).

4. Design of experiments for crop simulations. The previous parameter design (i.e. the
9100 parameter combinations) was used with the APSIM-Wheat crop model to simulate 9100
virtual genotypes. APSIM-Wheat simulations were first done for the target population of envi-
ronments (TPE, i.e. control conditions, Table 1) defined by 4 sites (Emerald, Narrabri, Yanco
and Merredin; Fig 2, Table 1) and 125 years (1889-2013) of climatic data (4 × 125 = 500 envi-
ronments). Crop management in these simulations (Table 1) was chosen to mimic local farm-
ing practices [7]. Additional simulations were performed for 3 sowing dates 21/04; 15/05; 07/
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06), 3 nitrogen fertilization levels (low: 50% of TPE-level, TPE-level and high fertilization:
TPE-level plus 50 kg.ha-1) and 2 CO2 levels (TPE-level of 380 ppm and 555 ppm to represent
CO2 level in 2010 and 2050) to explore the impact of parameters in contrasting N and CO2

conditions.
Nitrogen fertilization rules followed an APSIM decision model: at sowing, nitrogen was

applied as nitrate in Merredin and as urea in the rest of the wheatbelt. In Yanco, fertilisation at
“end of tillering” stage only occurred if cumulative rainfall since sowing was greater than 100
mm, and fertilisation at “mid-stem elongation” stage only occurred if plant available water was
greater than 60% of the PAWC. At Merredin, fertilisation at “mid-stem elongation” only
occurred if plant available water was greater than 60 mm.

Overall, 9000 (3 × 3 × 2 × 500 = 9000) environmental conditions were tested, and 81.9 mil-
lion of crops (9100 × 9000) were simulated on the CSIRO distributed computing cluster which
can sustain a peak throughput of approximately 8000 simultaneous processes [40]. Parameter
impacts were tested on eight output variables from APSIM (Table 2): number of days from
sowing to flowering and from sowing to maturity, leaf area index (LAI), biomass production,
the number, size and protein content of grains and yield.

The baseline simulations were performed with the reference cultivar Hartog to estimate
environmental indices (Table 2) and crop performance in each environment. In addition, the
growing environments were characterized in terms of drought environment types, as described
in Chenu et al. [7].

5. Computation of sensitivity indices. Sensitivity indices were computed as statistics of
elementary effect, i.e effect of the factor for each repetition [37, 38]. In this approach, the main
effect (noted m�

i in Iooss et al. [42]) is a measure of the influence of the i-th input on the output,
and is calculated as the mean of the absolute value of the elementary effects. The larger m�

i is,
the more the input contributes to the dispersion of the output. The interaction effect (σi in
Iooss et al. [42]), is a measure of non-linear and/or interaction effects of the i-th input. σi is
computed as the standard deviation of the elementary effects. An input with a large σi can be
considered as having non-linear effects or being involved in an interaction with at least another
input. We also computed a standardized sensitivity index to be able to compare indices across
different output variables and growing conditions. In this case, for each growing environment,

the model output variables were standardized (x0 ¼ x�meanðxÞ
sdðxÞ ) before computing elementary

effects and sensitivity indices.

Clustering parameters according to their impact
All of the considered parameters were subdivided into three groups according to the mean value
of their main effect in the target population of environments (i.e. mean of m�

i across environ-
ments): (1) null impact group, in which parameters had no impact on crop yield in any environ-
ments (2) low impact group, in which the parameters had an average m�

i lower or equal to 0.02 t
ha-1 and (3) impactful group, in which parameters had an average main effect on yield that was
greater than 0.02 t ha-1. A hierarchical clustering based onWard distance was applied to the
matrix of impactful parameters and the eight output variables (averaged across environments) to
group these parameters and identify those with similar patterns of effect on output variables.

Analysis of trait × environment interactions and computation of
environment indices
For plant traits corresponding to influential parameters, we conducted a variance analysis to
assess the effects of environmental factors on the variability of impact. Hence, for each trait, a
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linear model (Eq 1.) was fitted with environment-related factors considered as categorical fixed
effects and with no interaction as Y = αsite + βsowing + γCO2

+ δnitrogen + � with Y, vector of main
effects for one trait in the 9000 environments; α, β, γ, δ are the additive main effects of the levels
in factor CO2, site, sowing and nitrogen, respectively (Eq 1.). The effect of each environmental
factor (e) on trait impact was estimated by the proportion of total sum of square (η2) as SSe/
(TSS). Note that both the effect of “uncontrollable” environmental factors (i.e. climate) and the
interactions among factors were pooled in the residuals.

Finally, we considered the response to the environment of a small subset of candidate traits
and defined several environmental stress indices (Table 2) to further illustrate the ecophysio-
logical basis of trait × environment interactions. Using the ASPIMWheat model, daily com-
puted indices related to water and nitrogen stresses were averaged for the duration of the crop
cycle. In the model, water-stress is computed as a function of the soil water extractable by roots
(water supply) and potential crop transpiration (water demand) [7]. The nitrogen-stress deter-
mined the limiting nitrogen level affecting leaf photosynthesis [29]. In this study, both indices
were set to range from 0 (no-stress) to 1 (extreme stress) to allow comparison between stress
indices.

Software
All data processing, statistical analysis and graphics were performed with R 3.1.0 [43] with
additional R packages dplyr (data processing [44]), sensitivity (sensitivity analysis, version
1.10.1 [45]) and ggplot2 (visualization [46]).

Results

A target population of environments with contrasting environmental
conditions
Four sites were chosen to capture part of the variability in soil types and rainfall patterns that
are experienced across the dryland wheatbelt (Table 1; Fig 1). Simulated yield for 1889-2013
reflected these differences in environments, with median yield ranging from 1.72 t ha-1 in
Emerald to 4.10 t ha-1 at Narrabri (Fig 3). High inter-annual variability was also simulated and
reflected the broad range of water deficits and temperature events that Australian wheat experi-
ence across seasons [5, 7].

About a half of the studied traits had little or no impact on yield in the
target population of environments (TPE)
A global sensitivity analysis was performed to get a general picture of the effect of APSIM--
Wheat parameters on yield response in the TPE. While the results from the sensitivity analysis
strongly depend on the ranges of variation for the input traits, such ranges are scarcely available
for all the considered traits despite numerous studies and reviews giving informative indica-
tions of partial genetic ranges for some traits [47–50]. To perform a broad screen of parame-
ters, the sensitivity analysis was done with variations of ± 20% from the reference value
(Hartog cultivar) of each parameter (S1 Table), except for some function parameters for which
variations were adapted to increase the biological likelihood of the results (see S1 Fig). Another
analysis was conducted with variation of ± 50% to test a broader range of variation, but this led
to a high proportion of crop failure, due in particular to excessive senescence (data not shown).

About half of the studied traits (48/90) were not or only weakly impacting yield (average
effect of less than 20 kg ha-1) in the TPE (Fig 4). Among those traits, 21 had no impact on yield
or any other of the studied output variables (i.e. flowering, maturity, LAI, biomass, grain
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number, size and protein) in any environments. Two options could explain such null impacts:
(1) the parameter corresponding to the trait simply did not have any role in the model algo-
rithm for wheat (some parameters are only used for other crops in the APSIM framework) or
(2) the traits were influential only in agricultural conditions other than tested here (e.g the sum
of temperature until emergence failure, tt_emerg_limit).

The other 27 traits showed a weak mean impact on yield (< = 20 kg ha-1) in the TPE, often
because the conditions required to induce a substantial impact are rarely encountered. This
group included traits that may have been considered as important a priori, such as potential
leaf area (y_leaf_size) or maximum temperature for thermal-time accumulation (x_temp).

Traits with a mean impact on yield of> 20 kg ha-1 were considered in more detail (42 traits;
Fig 4). Overall, 29 traits had a mean impact between 20 and 25 kg ha-1, eight traits had an
impact between 25 and 50 kg ha-1, and only five traits had a mean impact greater than 50 kg
ha-1. The five most influential traits in terms of both mean and interaction effects (m�

i and σi)
in the tested conditions were: the water extractability by roots (ll_modifier), the thermal time
required to reach floral initiation (tt_end_of_juvenile), the photoperiod sensitivity

Fig 3. Heatmap of yield response to climate andmanagement practices in all growing environments studied. Simulated yield for cv. Hartog is
presented for each sites (Emerald, Merredin, Narrabri, Yanco),CO2 levels (380 and 555 ppm), sowing dates (21 April, 15 May, 7 June), fertilization (x-axis,
potential mineral nitrogen applied before decision model, in kg ha-1) and climatic years (y-axis) i.e 9000 growing environments in total.

doi:10.1371/journal.pone.0146385.g003
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(photop_sens), the radiation use efficiency (y_rue), and the radiation extinction coefficient
(y_extinct_coef).

Among the 42 influential traits, only a few showed a linear impact on yield, i.e. their main
effect was greater than their interaction effect, e.g. the fraction of biomass partitioned to the
spike rachis (y_frac_pod), the water extractability by roots (ll_modifier), the wheat coefficient
for transpiration efficiency (transp_eff_cf) and the temperature effect on grain demand
(x_temp_grain_fill). Most of the influential traits had a ratio of interaction:main effect between
1 and 1.8, denoting either a large non-linear effect or an effect largely influenced by other traits.
Traits such as senescence-related traits and grain potential biomass (max_grain_size) had
higher ratio (> 1.8).

Several traits had a strong impact on physiological processes related to
phenology, biomass and grain production
To better understand the effects of plant traits in the TPE, the 42 influential component traits
were clustered based on their main effect on eight integrated traits related to phenology, leaf
area, and nitrogen and carbon accumulation and partitioning (Fig 5). Component traits were
mainly clustered in three groups (dashed line in Fig 5): lesser influential traits, traits that
strongly impacted all outputs, and traits that strongly impacted a subset of integrated traits.

Overall, crop phenology (flowering and maturity time) was mostly affected by six compo-
nent traits (thermal time from emergence to floral initiation, from floral initiation to flowering
and to a lesser extent from flowering to the beginning of grain filling; photoperiod sensitivity
and two leaf senescence traits), while the remaining traits had little to no impact. Traits affect-
ing grain-filling (x_temp_grain_n_filling, x_temp_grainfill, potential_grain_filling_rate) were
clustered together, and had a high impact on grain size, grain protein and yield. On the other
hand, about another 10 traits were found to substantially impact leaf area, biomass and grain
production. As may be expected, the water extractability (ll_modifier), which affects the maxi-
mum amount of soil water that can be extracted, impacted traits such as LAI at flowering, bio-
mass at maturity, grain number and yield. The trait grains_per_gram_stem which relates to the
potential of the crop to set grains based on its carbon status (proportional to stem weight at
flowering), affected grain number but had a relatively little impact on yield given trade-offs on
grain size in these largely water-limited environments.

Globally, the impact pathway of traits on physiological processes reflected the sub-compo-
nent of the crop model where parameters were involved.

Impacts of influential traits were strongly dependent on environmental
and management conditions
The variability of trait impacts arose from high trait × environment interactions (Fig 6), i.e. the
modification of a trait did not result in the same change in output trait depending on the grow-
ing conditions. Main yield impacts of individual component traits ranged from 0.02 t ha-1

Fig 4. Screening for influential traits in the TPE (control conditions). Traits were ranked by increasing
mean main sensitivity index and were grouped into three groups (panels): null impact, low impact and
impactful group. Note that all impacts are positive, as given by the sensitivity analysis method. A description
of traits is presented in S1 Table. Concerning sensitivity indexes, the main effect (circle) is an estimation of
the linear influence of the considered trait on grain yield, while the interaction effect (cross) is an estimation of
non-linear and/or interaction effect(s) of the trait. The horizontal dashed line corresponds to the 20 kg ha-1

threshold above which traits are considered as impactful.

doi:10.1371/journal.pone.0146385.g004
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Fig 5. Overview of APSIM-Wheat sensitivity to trait modification. The heatmap shows the impact (positive in the Morris method) of selected component
traits (model inputs, x-axis) modification on integrated traits (model outputs, y-axis). Component traits (top dendrogram) and integrated traits (right
dendrogram) were ordered with hierarchical clustering based on the similarities among impacts. Trait impact was standardized to be comparable across
integrated traits (model output variables).

doi:10.1371/journal.pone.0146385.g005

Fig 6. Yield sensitivity to a variation of selected influential trait. Trait main impacts were calculated from a sensitivity analysis and are presented for
different nitrogen treatments (A), sowing dates (B) and sites (C) and in the TPE (control conditions) unless mentioned (i.e. high/low nitrogen, early/late
sowing).

doi:10.1371/journal.pone.0146385.g006
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(screening threshold) to 2.87 t ha-1 (potential radiation use efficiency, y_rue, under high nitro-
gen conditions).

Most traits had a larger yield impact when management practices and climatic conditions
were “non-limiting”, e.g. high fertilization, high soil water holding capacity (Yanco, Narrabri)
and early sowing (i.e. long cropping season). By contrast, response traits (e.g. x_temp_grain_fill,
transp_eff_cf) impacted yield in more extensive conditions (e.g. low nitrogen). For instance,
water extractability by roots (ll_modifier) had more impact for late-sown than for early-sown
crops, as such crops are more prone to drought.

Identification of influential traits with low dependence to climate
uncertainty
The variance of trait impacts on yield across the 9000 studied environments was partitioned
for each studied traits into four controllable environmental factors (site, sowing date, nitrogen
fertilization and CO2 level) and one uncertainty-related factor (residuals) that aggregated the
factor year, the interaction among “controllable” factors and the residuals (Fig 7). Despite the
coarseness of the approach and the fact that trait main impacts were only considered as abso-
lute value (no distinction between negative and positive impact on yield), traits with both a
strong mean impact and an impact variability that mainly depends on “controllable” factors
would potentially be easier for consideration for breeding.

Traits were a posteriori clustered in four groups (horizontal panels in Fig 7), which can be
described as: (1) site/sowing impact, which may be related to water or temperature driven pro-
cesses, (2) nitrogen impact, (3) CO2 impact and (4) high residuals (uncertainty). Traits in the
site/sowing, nitrogen and CO2 groups displayed both high and relatively stable main impact on
yield. The nitrogen-impact group included all studied traits related to grain filling, indicating
that modifications of such traits could reliably impact yield providing adequate nitrogen fertili-
zation. On the other hand, the site/sowing-driven group included traits such as the potential
radiation use efficiency (y_rue), the light extinction coefficient (y_extinct_coef) and the poten-
tial leaf surface area (y_sla), which may be linked to the available water resources or thermal
regime (e.g. short/long crop cycle). Traits in the high residuals group were influential but not
stable, meaning that a modification of such traits did not yield the same return depending on
years and/or due to interaction with other traits. Phenology-related traits (tt_end_of_juvenile,
tt_floral_initiation) and water extractability by roots (ll_modifier) displayed such behavior,
indicating that impact was likely linked to the level of environmental resources available (water
or temperature, in this case), which is expected in these types of environments.

This variance analysis also highlighted expected trait × environment interactions. For
instance, a high CO2 concentration triggered the impact of the CO2 response on transpiration
efficiency (y_co2_te_modifier). Note that the effect on radiation use efficiency (co2_rue_modi-
fier) was not identified as influential in the TPE (i.e. when no change in CO2; Fig 4) and was
thus not included in the further analysis. Also, photoperiodic and vernalization sensitivities
(photop_sens, vern_sens) had contrasting effect across sites and sowing dates. These results are
consistent with field observations [21].

Trait impacts were related to the availability of environmental resources
Strong interactions were identified between environmental factors and trait impact on yield
(Fig 8) for several traits involved in plant development (tt_end_of_juvenile), resource acquisi-
tion (ll_modifier), biomass production (y_rue) and biomass allocation (potential_grain_fillin-
g_rate) processes. Computed seasonal stress indices for water and nitrogen (see caption of Fig
8) were used to highlight these dependencies between environmental stress and the impact
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resulting from a trait modification. Modifications in phenology (tt_end_of_juvenile) impacted
yield the most in wet environments (stress index near zero), when yield potentials were the
greatest (Fig 8A). Nevertheless, this trait had substantial impacts in all environments, including
the most severely water limited. Change in water extractability by roots (ll_modifier) also
responded to water deficit (Fig 8B) with maximum impacts in severe water deficits. Impacts
were slightly less important in mid-early water deficits. They rapidly decreased in less stressed
conditions, but remained substantial. Modifications in potential photosynthesis (y_rue) had
impacts related to both water and nitrogen availability (Fig 8C). The relation between impact
and nitrogen availability was linear within each drought environment type, and the slope of the
relation decreased with the severity of the water deficit (i.e. the impact response to N was
greater in non-limiting water conditions). Modifications in biomass allocation to grains (poten-
tial_grain_filling_rate) led to maximum yield impact in low water deficit (Fig 8D) and in severe
nitrogen deficits. Yield impact was increasing with nitrogen deficit but showed a weaker linear
correlation in conditions with severe nitrogen stress (r = 0.47).

Discussion

An in silicomethod to search for potential candidate traits for breeding
Environmentally-adaptive traits do not scale well from molecular-, organ- or plant-level to the
crop level, particularly when targeting yield under stressful conditions [2, 51–53]. This diffi-
culty in demonstrating and estimating the impacts of traits across scales potentially limits infer-
ence of trait value, and is partly responsible for the non-integration of physiological progress in
breeding programs.

Here, the problem was approached in the opposite direction (top-down), to unravel the
phenotypic plasticity observed in complex traits into individual trait contribution at the crop
level. Process-based crop models are designed to integrate physiological processes and their
impact on the local environment (e.g. soil water uptake) based on parameters reflecting plant
traits (parameterization), environmental factors and management inputs. As a result, such
models simulate genotype × environment interactions and estimate integrated traits (e.g. yield)
as emergent properties [1, 2, 22, 54, 55]. Here, the APSIM-Wheat model, which has been
widely tested for Australian conditions was used to weigh the impact of numerous plant traits
across the Australian wheatbelt, taking into account climatic variability, trait × trait interac-
tions and trait × environment interactions.

While APSIM-Wheat has over 500 parameters with 103 identified as potentially varying
with genotype, the approach proposed in this paper allowed the identification of 42 influential
traits in the target population of environments (TPE; Fig 4). Of these 42 traits, 23 had an
impact that was relatively stable, meaning that the variance of their impact was explained by
“controllable” factors (i.e. site, sowing date, nitrogen fertilization and CO2 level) more than
those dependent on climate uncertainty.

Fig 7. Variance components of trait main impact for major environmental factors. For each influential
trait, the proportion of variance explained by environmental factors (site, nitrogen fertilization, sowing date
andCO2 level) was calculated in an ANOVA on simulated yield for crops in the 9000 studied growing
conditions. Traits were clustered in groups based on the proportion of explained variance by environmental
factors (horizontal panels). Cluster identified corresponded to traits mainly impacted by site and sowing date
(first panel), nitrogen fertilization (second panel), CO2 (third panel) and traits having a high residual
component (fourth panel).

doi:10.1371/journal.pone.0146385.g007
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Fig 8. Sensitivity index of standardized yield for selected component traits involved in crop development (A), resource acquisition (B), biomass
production (C) and biomass allocation (D) relative to seasonal water- or nitrogen-stress indices. Yield impact was assessed for the thermal time
required to reach floral initiation (tt_end_of_juvenile), the water extractability by roots (ll_modifier), the radiation use efficiency (y_rue), and biomass allocation
to grains (potential_grain_filling_rate). As sensitivity indices are computed independently for each condition (combinations of sites × year × management), a
standardized sensitivity index was used to allow comparison of indices across environments. In this case, simulated yield was standardized (x0 ¼ x�meanðxÞ

sdðxÞ )

within each of the 9000 environment conditions before computing elementary effects and sensitivity indices (which are always positive in Morris method). The
water-stress index [7] indicates the degree to which the soil water extractable by roots (water supply) is able to match the potential crop transpiration (water
demand). The nitrogen-stress index is a factor computed by APSIM that determines limiting N level affecting leaf photosynthesis [29]. Both indexes ranged
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Overall, the screening phase (sensitivity analysis) allowed the identification of the most
influential traits for yield (Figs 4–6); and the searching phase (variance analysis, relation with
specific environmental factors) gave indications as to which traits to target when considering
different types of environments within this sample of Australian environments, e.g. high vs low
N conditions; Figs 7 and 8. Such an approach could thus help in estimating trait scalability, and
give a form of return on investment with an estimation of expected gains from trait modifica-
tions. However, additional knowledge is required when considering the potential value for
crop breeding (e.g. degree of genotypic variability that may exist for these traits, trait
heritability).

Potential candidate traits for improving yield in the Australian wheatbelt
Based on the APSIM-Wheat simulations and a global sensitivity analysis, traits relative to phe-
nology (tt_end_of_juvenile, photop_sens, tt_floral_initiation), resource acquisition (water
extraction, ll_modifier and light interception, y_extinct_coef), resource use efficiency (y_rue,
transp_efficiency_coef) and biomass allocation to the grain (potential_grain_filling_rate, grain-
s_per_gram_stem) were among the most important traits in the TPE, assuming a “genetic” var-
iation of ± 20% around trait value of the reference cultivar Hartog (Fig 4). It is important to
keep in mind that the results of a sensitivity analysis strongly depend on the chosen range of
trait variation, and that the ± 20% trait variation used in this study under-estimated existing
variations for some traits (e.g. vern_sens) while it may have over-estimated unknown variations
in others. However, assuming that (1) the APSIM model behaves relatively linearly (interac-
tion:main effect ratio of 1-1.5 for most parameters, Fig 4) and (2) new interactions do not arise
from this extension in the parameter ranges, a moderate change of this range would not have
strongly affected the estimated impacts (main effect), i.e. the most influent traits have correctly
been identified in this study. Overall, the approach allowed a first screening of a wide range of
traits for which the range of genetic variability is unknown. This work could be improved in
the future through the incorporation of knowledge on genetic variability of selected traits.
Adjustments on the TPE could also be investigated, for instance, TPE for future climate scenar-
ios could be explored to identify potential traits of future importance, providing crop models
can properly deal with these future conditions.

The most important trait in terms of impact on yield was the water extractability by roots
(ll_modifier; Figs 4 and 5), especially in Narrabri and Yanco, which had heavy deep soils and
thus a high water-holding capacity (Fig 6). Genotypic variation in water extractability at depth
was observed in root chambers by Manschadi et al. [50], who assessed that this trait could
bring about an extra 50 kg ha-1 for every mm of water extracted during the grain filling period,
for crops grown in the north-eastern part of the wheatbelt (i.e. ability to extract more water late
in the season has a high marginal value in terminal stress environments). Compared to other
root-related traits, Veyradier et al. [56] found that this trait was a strong candidate for breeding
purpose in terms of potential impact. Field experiments for two cultivars with contrasting
water extractability at depth also highlighted the potential of this trait to improve yield in
drought-prone conditions [50, 57], which agrees with the increasing yield impact simulated for
increasing drought severity (Fig 8B).

from 0 (no-stress) to 1 (extreme stress). Data are presented for representative drought-pattern environment types (colors), namely “low” (ET1) with stress-
free or short-term water-deficits; “mild-late” (ET2) with mild water shortage mainly occurring during grain filling; “mild-early” (ET3) with severe water stress
starting during the vegetative stage and relieved during mid-grain filling; and “severe” (ET4) with water deficit from early stages throughout the grain-filling
periods [7]. Lines represent linear regressions fitted by environment types.

doi:10.1371/journal.pone.0146385.g008
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Several traits involved in wheat development were identified as playing a major role in
crop performance in the TPE (Figs 4–6). Traits related to phenology are usually considered
as the primary means to adapt crops to their growing environments [58, 59]. Recently, an
association mapping study [60] focused on three traits (earliness per se, photoperiod sensitiv-
ity and vernalization requirement), whose corresponding parameters in APSIM-Wheat
model (tt_end_of_juvenile, photop_sens and vern_sens, respectively) were ranked among the
most influential ones in this study (i.e. average main impacts on yield respectively of 0.72,
0.62 and 0.04 t ha-1), despite the fact that our reference cultivar (Hartog) has a low vernaliza-
tion requirement (vern_sens of 1.5). These three traits were found to vary in the ranges of
515-980°Cd, 0-4.1 and 0-2.9 respectively for a broad range of Australian cultivars [21],
which is substantially greater than the range tested here (444-666°Cd, 2.4-3.6 and 1.2-1.8),
especially for the vernalization requirement. The relative importance of those traits on yield
is expected to change when changing their range of variation. In particular, vern_sens is
expected to have a greater impact in the TPE, as found by Zhao et al. [36] who tested a range
of 0-5 for this trait in a similar analysis. Also, unsurprisingly, these three traits were found to
be strongly dependent on the site and sowing date (Fig 7) but had a high level of variations
(high residuals in Fig 7), which is likely related to interactions with stresses.

Other traits had a strong impact on yield. The most important of these include: (1) the
potential RUE (y_rue) which is a major target for current research projects aiming to improve
photosynthesis efficiency [61–64], (2) plant architecture (y_extinct_coef) which has been of
interest to some breeders (e.g. durum-wheat CIMMYT) who have selected for erect wheat
genotypes [65], and (3) the potential grain filling rate (potential_grain_filling_rate), which may
be improved by the current efforts of breeders and pre-breeders selecting for stay-green pheno-
type [66–68], cooler canopy temperature [59, 69, 70], greater reserve remobilisation [71, 72]
and/or greater spike photosynthesis [73, 74].

The importance of properly considering the target population of
environments
Depending on the environment/management conditions considered, the ranking of trait main
impacts varied across traits (Fig 6), thus highlighting the need to appropriately consider trait
effects across the target populations of environments [75]. For instance, the sensitivity to pho-
toperiod (photop_sens) had a small impact in Emerald but an important impact in Narrabri
and Yanco (Fig 6C). Hence, while most influential parameters by Zhao et al. [36] were also
identified as the most influential subset in our study, the discrepancies in trait impact between
these two studies partly rose from differences in conditions considered (e.g. sowing dates, fertil-
ization, plant density). Our study also explored climate change impacts on the 42 influential
traits and indicated that traits of most value may change in the future, as illustrated for the
impact of transpiration-efficiency response to CO2 (y_co2_te_modifier) under different levels
of CO2 (Fig 7). Note that other traits such as radiation-use-efficiency response to CO2 (co2_r-
ue_modifier), which had only minor impact in current climates (Fig 4) and were thus not stud-
ied in detail, are likely to have a substantial impact in the future.

The importance of considering trait combinations rather than single traits
Sadras and Richards [52] argued and illustrated how indirect breeding methods often fail to
improve yield not because yield is complex, but rather because those methods do not account
for the proper levels of organization, time scales and interactions among traits and with the
environment. Similarly, trait impacts in crops subjected to multiple stresses (e.g. nitrogen and
water limitation) are rarely considered in traditional physiological approaches [52]. Working
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with an integrative crop model, we illustrated in this paper how the potential value of traits, in
combination with others and for a specific TPE, can be assessed in silico by testing (1) whether
the trait is likely to impact crop performance (e.g. estimation of main sensitivity index), (2) if
this impact is modified by controllable (management) or uncontrollable (climate,
genotype × environment interactions) factors, and (3) how the trait impact is distributed
among environment-type of importance for the TPE [7].

The systematic presence of interaction effects found with the sensitivity analysis (Fig 4)
illustrated that trait interactions are common. Such results highlight the importance of focusing
on collections of traits rather on individual traits [76].

Furthermore, although of high importance, links among carbon, water, and nitrogen trans-
fers within crops are experimentally difficult to assess due to their genetic, physiologic, and
agronomic complexities. For instance, efficiencies in water- and nitrogen-use can be either
unrelated, positively (synergy) or negatively (trade-off) related depending on the environment,
the genotype, the level of organization, and the time scale at which such efficiencies are defined
[52, 77, 78].

Overall, the complexity of crop systems highlights the potential benefit of using modeling
approaches. Together with genetic criteria (e.g. availability of genetic variability, pleiotropy and
heritability) and technical criteria (rapid, cost-effective, and reliable phenotyping), model-
based approaches (assuming the relevance of the process-based model, of the genetic range
tested and of the TPE) could help breeding to improve crop performance under changing envi-
ronments [2, 52].

A tool to overview and improve crop models
From a modeling point of view, crop models are evolving over time, while physiological knowl-
edge underlying crop functioning gradually improves. Model improvements are thus regularly
performed with algorithm modifications being tracked over time. However, the effects of such
modifications on the model-prediction capacity are usually not clearly documented nor shared
among all model users and developers. Hence, with different developers focusing simulta-
neously or successively on a model, there is a high risk of developing increasingly complex and
harder to understand algorithms. Problems caused by this increased complexity may affect the
quality of the model, but may be revealed and addressed by using exploration methods
throughout model-development phases to visualize the in-progress modeling state. Systems
analyses, as done in this paper can for instance enable developers to quickly assess changes in
model response due to variation in specific processes, and notice potential problems.

In this study, we attempted to consider the maximum proportion of traits utilized in
APSIM-Wheat. The use of function-table parameters in APSIM complicated the estimation of
the total number of values used as parameters and the assessment of individual parameter impact
on output variables. Overall, about half of the plant-related parameters of APSIM-Wheat had no
impact, keeping in mind that those parameters may be useful for other crops, or other processes
(e.g. responses to high-temperature or soil minerals). While using a global sensitivity analysis to
identify such parameters may appear as an excessive method, the computational cost to include
all parameters (with null, low or high impact) was lower than the time and expertise needed
to analyze the source code and manually identify subsets of parameters, in the case of this com-
plicated crop model.

In total, 42 parameters were identified as influential, as they had an average main impact
greater than 20 kg ha-1 in the TPE. However, only 5 parameters had a mean impact greater
than 50 kg ha-1. Martre et al. [76] proposed physiological reasons to explain such a surprisingly
low number of influential parameters in crop models: (1) number of trade-offs occur with traits
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often having compensating effects when scaling up from plant to crop level (e.g. once canopies
are well established, increasing the leaf surface area may not improve light interception and
thus photosynthesis) and (2) the fact that complex characters such as grain yield and protein
concentration are inherently determined at the population level rather than at the organ or
plant level [79]. While model over-parameterization can result from model development as
well as model design, indicators can help to track the model complexity and performance. In
this context, the use of the exploration methods described here provides an overview of the
model global response to perturbation (e.g. Figs 3–5).

Finally, such sensitivity analysis can help to identify traits most important for parameter cal-
ibration for cultivars [36]. Such targeted calibration can later be implemented with either fre-
quentist [80] or Bayesian parameter estimation algorithms [81].

Conclusion
Phenotyping and breeding strategies can be improved by better understanding the yield-trait
performance landscapes [82]. We performed a Morris global sensitivity analysis on the
APSIM-Wheat model to assess the impact of 90 physiological traits on yield for Australian
rain-fed wheat crops. The genotype × environment × management (G×E×M) landscape was
explored using 82 million individual simulations for the target population of environments
(TPE), combining a factorial design for the environment × management effects and a Morris
sampling design for APSIM trait parameters. Our analysis highlights 42 parameters substan-
tially impacting yield in most of the TPE. Among those, a few parameters related to phenology,
resource acquisition, resource use efficiency and biomass allocation were identified as potential
candidates for crop improvement.

As a final conclusion, the integration of G×E×M interactions through modeling approaches
is an increasingly topical consideration to help prioritizing investments of research efforts for
the benefit of breeding [17]. However, newly-gained computational knowledge has to be con-
stantly confronted to physiological reality in order to determine the complexity of G×E×M
interactions that impede progress in crop productivity.

Supporting Information
S1 Fig. Range of variation used for function parameters. Each graph represents one function
parameter (x and y vectors), except for grouped parameters (i.e. leaf, stem and pod nitrogen
demand). The graph titles match the Process column in S1 Table. Nominal values are indicted in
green, while minimum and maximum values are displayed blue and red, respectively. As some
parameters were grouped to be modified together, different symbols are used for related pro-
cesses (maximum, critical and minimum nitrogen content) as defined in APSIM-wheat [29].
(PDF)

S1 Table. Description of the APSIM-wheat parameters included in the sensitivity analysis.
Module refers to the sub-model where the parameter is used in APSIM-wheat, Process refers to
the physiological process targeted by the considered parameter and Factor is the parameter
name used in the present study and in the APSIM documentation [29], where a complete
description of the parameters is given. The Default Value field lists the nominal value of the
parameter for cultivar Hartog in APSIM-wheat 7.5 (only first three values were presented
when the parameter is defined as a vector). In the Process field, influential parameters in indi-
cated in bold and parameters that were grouped together for physiologic reasons are identified
by (�).
(PDF)
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