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Computer simulations of an implicit-solvent particle-based model are performed to investigate the
interactions between small spherical nanoparticles and tensionless lipid bilayers. We found that
nanoparticles are either unbound, wrapped by the bilayer, or endocytosed. The degree of wrapping in-
creases with increasing the adhesion strength. The transition adhesion strength between the unbound
and partially wrapped states decreases as the nanoparticle diameter is increased. We also observed
that the transition adhesion strength between the wrapped states and endocytosis state decreases with
increasing the nanoparticle diameter. The partial wrapping of the nanoparticles by the tensionless
bilayer is explained by an elastic theory which accounts for the fact that the interaction between
the nanoparticle and the bilayer extends beyond the contact region. The theory predicts that for
small nanoparticles, the wrapping angle increases continuously with increasing the adhesion strength.
However, for relatively large nanoparticles, the wrapping angle exhibits a discontinuity between
weakly and strongly wrapped states. The size of the gap in the wrapping angle between the weakly
wrapped and strongly wrapped states increases with decreasing the range of nanoparticle-bilayer
interaction. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939764]

I. INTRODUCTION

Significant advances in nanoscience and nanotechnology
during the last two decades have led to an increasing
use of nanomaterials in a range of applications including
medicine, cosmetics, food, imaging, nanoelectronics, and
data storage. A wide variety of nanomaterials, including
gold nanoparticles (NPs),1 magnetic NPs,2 quantum dots,3

single-wall carbon nanotubes,4 polymer based nanocapsules,5

and NP conjugates,6 have emerged as promising agents
for biosensing,7,8 medical imaging,9 gene therapy,10 and
potential treatment of diseases such as cancer.11 Meanwhile, a
particularly challenging environmental concern has emerged
due to the increasing production of NPs in research
laboratories and industry. In particular, there is a growing
concern that many types of NPs are discharged into the
environment while their potential toxic effect on living
organisms remains poorly understood.12 Since the plasma
membrane constitutes the point of entry for living cells,
a fundamental understanding of how NPs interact with
biomembranes is urgently warranted.

Understanding the cellular uptake of NPs is prerequisite
to their safe use in many applications, while minimizing
their potential health hazards. The main uptake of material
by the plasma membrane occurs through the membrane
engulfment of the material. Such uptakes are divided into
two main processes known as phagocytosis and endocytosis.13

Phagocytosis is the uptake process by specialized cells, such
as monocytes and neutrophils, of particles larger than 1 µm

a)Author to whom correspondence should be addressed. Electronic mail:
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such as bacteria. The uptake of smaller particles proceeds
mainly via endocytosis and is typically mediated by clathrin or
caveolin proteins. However, it is also known that endocytosis
may proceed without clathrin or caveolin.13–15 In particular,
Au and TiO2 NPs with diameters ranging between 20 and
200 nm have been observed to enter red blood cells, which
lack phagocytic and caveolin- or clathrin-mediated endocytic
capabilities.16 A question that arises is whether uptake through
clathrin- or caveolin-independent endocytosis of NPs still
necessitates other proteins13 or may be spontaneous without
the involvement of any protein activity. Le Bihan et al.17

have shown through cryo-electron tomography that surface-
modified gold and silica NPs are internalized by 1 µm-sized
liposomes through an enodocytic-like process, indicating that
the internalization of NPs by lipid membranes can be a
spontaneous process which does not necessitate energy input.
Interestingly, the same authors found that smaller particles,
with diameter less than 30 nm, were however not internalized
by the liposomes.17 More recently, Tahara et al.18 also observed
that soft poly(lactide-co-glycolide) NPs are spontaneously
internalized by multicomponent giant unilamellar vesicles.

The adhesion of spherical NPs, nanoshells, anisotropic
NPs as well as functionalized NPs has been considered
theoretically and through numerical simulations.19–27 In
particular, Deserno et al.19,20 used the Helfrich Hamiltonian28

with contact adhesion interaction between the NP and the
bilayer to show that in the case of a bilayer under tension,
the NP is either unbound, partially wrapped, or completely
wrapped by the bilayer. However, the NP is either unbound
or fully wrapped by a tensionless bilayer.19,20 These two
states can be obtained using the following argument: The
free energy of a partially wrapped NP, with diameter D, by
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a tensionless bilayer with a bending modulus κ and with A
being the wrapped area is approximately given by 8κA/D2,
where only the bending energy of the bilayer in contact with
the NP is accounted for. The adhesion energy is given by
−wA, assuming that it is a contact energy, with w being the
adhesion energy per unit of area. Therefore, adhesion of the NP
occurs for w > 8κ/D2. Since both the adhesion and bending
energies are proportional to the contact area, the free energy
is minimized for A = πD2, i.e., when the NP is fully wrapped.
More recent molecular dynamics simulations of Ruiz-Herrero
et al.21 found partially wrapped states in the case of tensionless
bilayers, but these were interpreted as metastable states.
Recent theoretical calculations were performed of the binding
of elastic nanoshells22,23 and simulations of the adhesion of
anisotropic NPs24,25 as well as functionalized NPs.26,27 A
question that remains is whether partially wrapped NPs by
tensionless bilayers are stable equilibrium states. The theory
of Deserno et al. is clearly valid for NPs or colloidal particles
that are much larger than the thickness of the bilayer. For
small NPs, however, the approximation that their interaction
with the bilayer is through a contact potential should not be
valid, and the interaction of the NP with a portion of the
bilayer in the neck region should be accounted for.

In the present article, we demonstrate through a simple
model of self-assembled lipid membranes that spherical NPs
can be partially wrapped by tensionless lipid bilayers, with
the degree of wrapping that increases with increasing the
adhesion strength. Full wrapping and spontaneous endocytosis
is also observed. The transition adhesion strength from the
wrapped states to endocytosis decreases with increasing the
NP’s diameter. The partial wrapping of the NP is explained

using a theory accounting for the curvature energy of the lipid
bilayer and non-contact interaction potential between the NP
and the bilayer.

This article is organized as follows: In Sec. II, the model
and the computational approach are presented. Detailed results
are presented and discussed in Sec. III. The elastic theory of
NPs adhesion to tensionless bilayers is presented in Sec. IV.
Finally, a summary of the results and conclusion are presented
in Sec. V.

II. MODEL AND COMPUTATIONAL APPROACH

The present computational study is based on a mesoscale
implicit-solvent model, developed by us as an efficient model
for self-assembled lipid membranes.29 Here, lipid molecules
are coarse-grained into short semi-flexible chains composed of
one hydrophilic bead, h, followed by two hydrophobic beads,
t. Nanospheres are constructed from hydrophilic beads, n, that
are arranged in a faced-centered-cubic lattice, with harmonic
bonds linking nearest neighbor beads. The potential energy of
the system is composed of three parts

U ({ri}) =

i, j

U
αiα j

0

�
ri j

�
+


i

U
αiα j

bond

�
ri j

�

+

i

Uαi
bend (ri−1,ri,ri+1) , (1)

where ri is the position of bead i, ri j = |ri − r j |, and type of
bead i, αi = h, t, or n for a lipid head bead, lipid tail bead, or
a NP bead, respectively. In Eq. (1), U

αiα j

0 is a soft two-body
interaction between beads i and j and is given by

Uαβ
0 (r) =




(
Uαβ

max −Uαβ
min

) (rm − r)2
r2
m

+Uαβ
min if r ≤ rm

−2Uαβ
min

(rc − r)3
(rc − rm)3

+ 3Uαβ
min

(rc − r)2
(rc − rm)2

if rm < r ≤ rc

0 if r > rc

, (2)

where Uαβ
max > 0 for any pair (α, β). A negative value of Uαβ

min
implies a short-range attraction between two beads of types
α and β at intermediate distances. Except for (α, β) = (t, t)
or (α, β) = (h,n), Uαβ

min = 0 for any other interacting pair.
A negative U t t

min allows for the self-assembly of the lipid
molecules into thermodynamically stable bilayers,29–31 and a
negative Uhn

min allows the NPs to adhere to the lipid bilayer.
Beads that belong to a single lipid molecule or a NP are

connected with each other through Uαβ
bond given by

Uαβ
bond(r) =

kαβ
bond

2

(
r − aαβ

b

)2
, (3)

where kαβ
bond is the bond stiffness coefficient and aαβ

b
is the

preferred bond length.

Uα
bend is the three-body interaction potential energy which

provides stiffness to molecules and is given by

Uαi
bend (ri−1,ri,ri+1) =

kαi
bend

2

(
cos θ0 −

ri, i−1 · ri, i+1

ri, i−1ri, i+1

)2

, (4)

where kα
bend is the bending stiffness coefficient and θ0 is the

preferred splay angle. We take θ0 = 180◦ for lipid chains.
In our model, we found that for relatively high value of
kn

bond, a three-body interaction is not necessary to maintain
a practically rigid structure of the NPs. We therefore take
kn

bend = 0. The values of the interaction parameters used in the
present study are
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Uhh
max =Uht

max = Unn
max = Unt

max = 100ϵ,
U t t

max =Unh
max = 200ϵ,

Uhh
min =Uht

min = Unn
min = Unt

min = 0,
U t t

min = −6ϵ,
Unh

min = −E,
kht

bond = k t t
bond = 100ϵ/r2

m, (5)
knn

bond = 2800ϵ/r2
m,

kh
bend = 100ϵ,

kn
bend = 0,

rc = 2rm,

aht
b = at t

b = 0.7rm,

ann
b = 0.35rm.

The strength of the interaction between a NP and the bilayer
is dictated by the adhesion strength E and a large value of
E implies a strong affinity between the NP and the lipid
head groups. We note that besides the present model, there
have been other implicit-solvent models for lipid bilayers
which have been proposed during the last few years.32–35 An
advantage of the present model is that it uses soft interactions
between beads, similar to those used in dissipative particle
dynamics,36 while being solvent-free and while accounting
for the lipids internal degrees of freedom. Despite the softness
of the short-range repulsive part of the interaction potential
between the lipid beads and the NP, we found that with the
parameters listed in Eq. (5), lipid beads do not penetrate the
NP.

In the present study, the beads are moved using a
molecular dynamics scheme with a Langevin thermostat,37

ṙi(t) = vi(t)
and

mv̇i(t) = −∇iU ({ri}) − Γvi(t) + σΞi(t), (6)

where m is the mass of a single bead (same for all beads), Γ
is a bead’s friction coefficient, and σΞi(t) is a random force
due to the heat bath. Ξi(t) obeys

⟨Ξi(t)⟩ = 0, (7)

⟨Ξ(µ)i (t)Ξ(ν)j (t ′)⟩ = δµνδi jδ (t − t ′) , (8)

with µ, ν = x, y , or z. To achieve thermal equilibrium, Γ and
σ are inter-related through the fluctuation-dissipation theorem
leading to Γ = σ2/2kBT .

The constant tension simulations are performed in the
NVTΣ ensemble, where N is the total number of beads in the
system, V = LxLyLz is the system volume, and Σ is the lateral
tension of the bilayer. The effective Hamiltonian is therefore
given by

H = U ({ri}) + ΣAp, (9)

where Ap = LxLy (the projected area of the bilayer) and
the constraint Lx = Ly, and the bilayer is parallel to the
x y-plane. During a time step, the equations of motion of all
beads are integrated using the velocity-Verlet algorithm with
Γ =
√

6m/τ where the model’s time scale τ = rm(m/ϵ)1/2,

with rm and ϵ being used here as scales for length and
energy. Then, an attempted new linear size of the system
along the x y-plane, L′x = Lx + Λ, is selected, with Λ being
is a small random deviation in length in the interval
(−0.1rm,0.1rm). Attempted new bead positions are rescaled
to x ′i = xiL′x/Lx, y ′i = yiL′x/Lx, and z′i = zi

�
L2
x/L′x

�2. The
acceptance or rejection of this attempt is performed using the
standard Metropolis criterion with the effective Hamiltonian
in Eq. (9).

To ensure that systems reach thermal equilibrium, most
of the simulations were run for at least 107∆t, with the time
step ∆t = 0.02τ. The simulations are run at kBT = 3ϵ , at
which the bilayer is in the fluid phase.31 Simulations are
performed on planar bilayers composed of 11 250–31 250
lipid molecules, corresponding to 33 750–93 750 lipid beads,
respectively. Lipid bilayers with constant zero tension (Σ = 0)
were considered here. At kBT = 3ϵ , the average number
density of beads in a NP is ν ≈ 10.62r−3

m and the average
density of lipids in a tensionless bilayer is σ ≈ 3.13r−2

m .

III. SIMULATION RESULTS

A. Wrapping and endocytosis of single nanoparticles

We performed a systematic set of simulations of single
NPs with diameter, D, ranging between 2.8 nm and 17.4 nm,
for varying values of the adhesion strength, E. Equilibrium
configurations of a small NP with D = 2.8 nm next to
a tensionless bilayer for 0.6ϵ ≤ E ≤ 7.0ϵ are shown in
Figs. 1(a)-1(g). This figure shows that the NP adheres to
the membrane at values of E ≥ 1.0ϵ and that the NP is
wrapped by the bilayer for E between 1.3ϵ and 6.5ϵ , with
the degree of wrapping that increases with increasing E. The
NP is almost completely wrapped at E = 6.5ϵ , and the NP is
endocytosed at E = 7.0ϵ . The projected area of the bilayer,
shown in Fig. 1(f), decreases with increasing E as a result of
wrapping of the NP. The value of adhesion energy at which
the NP is endocytosed is inline with the prediction of Harries
et al. of a protein with about 10 unit charges and of diameter
3 nm wrapped by a bilayer composed of anionic and neutral
lipids.38

A similar set of configurations of NPs with a larger
diameter, D = 8.7 nm, and at adhesion strength 0.01ϵ ≤ E ≤ ϵ
are shown in Fig. 2. As in the case of D = 2.8 nm, Fig. 2
shows that the larger NP is partially wrapped by the bilayer
for a range of intermediate values of E. The larger NP is
endocytosed at E ≈ 1.0ϵ , smaller than that for the case of
D = 2.8 nm which is endocytosed at E ≈ 7.0ϵ . This implies
that the adhesion strength needed for wrapping and endocy-
tosis of NPs decreases with increasing their size.

A series of equilibrium configurations of NPs with
diameters ranging between 2.8 nm and 14.4 nm on tensionless
bilayers and at an adhesion strength E = 0.6ϵ are displayed in
Figs. 3(a)-3(d). This figure shows that while the smallest NP
(D = 2.8 nm) simply adheres to the bilayer at this adhesion
strength, with a small amount of contact lipids, NPs with
2.8 nm < D < 14.4 nm are wrapped by the bilayer with a
degree of wrapping that increases with increasing the NP
diameter. At D = 14.4 nm, the NP is fully endocytosed.
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FIG. 1. Sequence of equilibrium snapshots of a NP (green) with diameter
D = 2.8 nm interacting with a tensionless lipid bilayer. Snapshots (A)–(G)
correspond to the adhesion strength E = 0.6, 1.0, 1.3, 2.0, 4.0, 6.5, and 7.0ϵ,
respectively. Graph (H) in the bottom shows the bilayer’s projected area, Ap,
as a function of the adhesion strength.

FIG. 2. Sequence of equilibrium snapshots of a NP (green) with D = 8.7 nm
interacting with a tensionless lipid bilayer. Snapshots (A)–(G) correspond
to the adhesion strength E = 0.01, 0.40, 0.50, 0.60, 0.80, 0.90, and 1.0ϵ,
respectively.
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FIG. 3. Sequence of equilibrium snap-
shots of a NP (green) with a bilayer
at E = 0.6ϵ. (A)–(D) correspond to NP
diameter D = 2.8 nm, 8.7 nm, 11.5 nm,
and 14.4 nm, respectively.

The degree of wrapping at equilibrium, defined as
z = (1 − cos θ) /2, where θ is the wrapping angle of the NP
by the bilayer, shown in Fig. 4 quantitatively demonstrates
that the NPs can be partially wrapped by the tensionless
bilayer, a result that is apparently different from the theory of
Deserno et al. which predicts that NPs are either unbound or
completely wrapped by tensionless membranes.19,20 Fig. 4 also
shows that the rate of change of z with increasing E increases
with increasing the NP’s diameter. These data suggest that
large NPs should either be weakly wrapped by the bilayer for
low values of E or almost completely wrapped or endocytosed
for large values of E.

B. Phase diagram

The results for different values of the NP diameter, D, and
adhesion strength, E, are summarized by the phase diagram in
Fig. 5. As mentioned earlier, three main phases are observed:
(I) a free or unbound-NP phase which occurs at low values of
E; (II) an adhesion phase which occurs at intermediate values
of E; and (III) an endocytosis phase at high values of E, in
which the NP is completely encapsulated by a vesicle that is
detached from the bilayer. In the adhesion phase, the amount
of membrane wrapping the NP increases with increasing E,
as shown earlier in Figs. 1 and 2. The NPs are almost fully
wrapped by a bud right below the transition to the endocytosis
phase, except for a small region around the bud’s neck. This
phase diagram reemphasizes that the values of E at the I-II
and II-III phase transitions decrease with increasing the NP
diameter, implying that it is easier for large NPs to (1) adhere
to the bilayer and (2) to be endocytosed than small NPs. This

FIG. 4. The degree of wrapping, z = (1−cos θ)/2, vs adhesion strength for
the case of D = 8.7 nm (red circles) and D = 2.8 nm (black circles). The red
and black solid lines are guides to the eye for the red and black numerical
data, respectively.

is in qualitative agreement with the experimental work of Le
Bihan et al.,17 and the mean field theoretical argument that
the adhesion strength for I-II phase transition decreases with
increasing the NP diameter.20 However, the main discrepancy
between our numerical results and Deserno’s theory is that the
NPs can be partially wrapped by the bilayer, despite the fact
that the bilayer is tensionless.

From Fig. 5, the transition line from the unbound phase
to the bound phase follows E ∼ D−1.3, while the transition
line from the bound phase to the endocytosis phase follows
E ∼ D−1.8. This implies that the region where the NPs
are partially bound narrows with increasing NPs diameter
and should eventually disappear. The extrapolation of the
simulation results to large NP diameters therefore agree well
with the mean field arguments.19,20

In order to determine whether the NP’s partial wrapping
by the bilayer is an equilibrium state or a metastable state,
we performed a series of simulations of a NP with diameter
D = 8.7 nm and varied the adhesion strength as follows: First,
the NP is equilibrated at E = 0.025ϵ . At this low adhesion
strength, the NP is not bound to the bilayer. E is then suddenly
changed to 0.6ϵ , and the simulation is run for 1.95 × 105τ
(stage I). E is then reduced to 0.4ϵ and the simulation is run
for 1.85 × 105τ (stage II). Finally, E is increased again to 0.6ϵ
and the system is let to equilibrate during 3.6 × 105τ (stage
III). The degree of wrapping, z, of this series of simulations
is shown as a function of time in Fig. 6. Final configurations
of each stage are also shown in Fig. 6. During stage I, the NP

FIG. 5. Phase diagram of the adhesion of a spherical NP to tensionless lipid
bilayer. Black circles represent the state of a fully endocytosed NP. Red
circles represent states where the NP is bound to the lipid bilayer with partial
wrapping. The blue line corresponds to the phase boundary between the two
phases. The slope of the blue solid line is −1.8. Blue circles correspond to
the phase boundary between the unbound NP-phase and the bound NP phase.
The inset shows the same data in a log-log plot. The slope of the solid violet
line is −1.3.
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FIG. 6. The degree of wrapping, z = (1−cos θ)/2, vs time for the case
D = 8.7 nm. The system is simulated at E = 0.6ϵ in regime I, after an
equilibration at E = 0.025ϵ. The system is then simulated at E = 0.4ϵ in
regime II, then again at E = 0.6ϵ in regime III. The snapshots correspond
to the final configurations for each regime.

is fairly wrapped with z ≈ 0.75, corresponding to a wrapping
angle about 120◦. In stage II, the degree of wrapping is quickly
reduced to z ≈ 0.2, corresponding to a wrapping angle about
53◦. Note that the same wrapping angle at E = 0.4ϵ is obtained
if the initial configuration is that of an unbound NP. In stage
III, where E is increased again to 0.6ϵ , the same degree of
wrapping as in stage I is achieved. These series of simulations
imply that the partially wrapped states at E = 0.4ϵ and 0.6ϵ
are achieved regardless of the initial configuration. Therefore,
the states of partially wrapped NPs are thermodynamically
equilibrium states.

IV. ELASTIC THEORY OF NANOPARTICLES
ADHESION TO TENSIONLESS LIPID BILAYERS

Previous theoretical calculations of a spherical colloidal
particle adhering to a tensionless bilayer, based on the Helfrich
Hamiltonian, predict that the particle is either unbound or fully
wrapped by the bilayer.19–21 In these calculations, it is assumed
that the NP is much larger than the bilayer thickness and that
the NP interacts with a bilayer via a contact potential energy.
In the present study, we focus on the interaction between lipid
bilayers and spherical NPs with diameter comparable to the
thickness of the bilayer, and where the interaction between the
bilayer and the NP is not merely a contact interaction. In what
follows, the previous calculations are extended to the case of
small NPs with short range interactions with the lipid bilayer.

The geometry of the system, shown in Fig. 7, follows
that used earlier by Deserno and Gelbart19 and Ruiz-Herrero
et al.,21 except that in our case, the bilayer is assumed to
have a finite thickness, ω. The portion of the top leaflet of
the bilayer that is in direct contact with the NP is colored
green. Due to the short range interaction between the NP
and the bilayer, a portion of the neck region, shown in blue,
also interacts with the NP. Since rm is the minimum of the
interaction potential, the radius of curvature of the portion of
the top leaflet that is in contact with the bilayer is R + rm. In
the following calculations, we will assume that the top leaflet
of the bilayer cannot be at a distance shorter than R + rm from
the NP’s center of mass, and we will assume that the range
of the interaction between any point within the NP and the
hydrophilic portion of the bilayer is rm + λ. Furthermore, we
will consider the case where λ < ω, implying that the NP
can only interact with the top leaflet of the bilayer. Using the
same general form of the potential used in our simulations,
Eq. (2), the interaction between the NP and the top leaflet of
the bilayer is then generalized to

U (r) =



∞ if r < rm

2E
(
λ + rm − r

λ

)3

− 3E
(
λ + rm − r

λ

)2

if rm ≤ r < λ + rm

0 if r ≥ λ + rm

, (10)

where r is the distance between an arbitrary point within the
NP and the top leaflet of the bilayer. In our simulations, we
considered the case of λ = rm (see Eq. (2)). λ will be varied
to investigate the effect of the range of the interaction between
the NP and the bilayer. We note here that we are allowing a thin
shell within below the NP’s surface to interact with the lipid
head groups. The thickness of this shell should be about
the Thomas-Fermi screening length. For semiconducting
particles, this screening length is lFT =


ϵkBT/e2N , where

ϵ is the dielectric constant, e is the carrier charge, and N
is the doping number density. lFT can therefore be tuned
through the doping density. In the case of metallic NPs, the

screening length is about or lower 1 nm, about the length
considered in our simulations.40

In Fig. 7, θ is the wrapping angle, from which the degree
of wrapping is defined as z = (1 − cos θ)/2. The region of
the bilayer, defined as rim, between the circle at which the
top leaflet separates from the NP and the circle at which the
bilayer recovers to the planar configuration is assumed to be
a section of a torus.19,21 The free energy of the system is
therefore written as

F (θ, ρ) = Fcurv(θ, ρ) + Fadh(θ, ρ), (11)

where the curvature free energy is given by
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Fcurv(θ, ρ) = F (contact)
curv (θ) + F (rim)

curv (θ, ρ)
=

κ

2

 Acontact

da
(

2
R + rm + ω/2

)2

+
κ

2

 Arim

da
(

1
ρ
− sin α

δ − ρ sin α

)2

= 4πκ (1 − cos θ) + πκρ

 θ

0
dα (δ − ρ sin α)

(
1
ρ
− sin α

δ − ρ sin α

)2

, (12)

where we used the fact that the curvatures at a point A
in the bilayer located in the rim at an angle α from the
z-axis (turquoise dot in Fig. 7) are given by c1 = 1/ρ and
c2 = − sin α/(δ − ρ sin α), with

δ = (R + ω + rm) sin θ + ρ (sin θ − sin α) . (13)

The adhesion energy of the bilayer which has contribu-
tions from both the contact and the rim regions of the bilayer
is given by

Fadh (θ, ρ) = F (contact)
adh (θ) + F (rim)

adh (θ, ρ) . (14)

The adhesion energy of an element of area da at point A
in the contact region of the top leaflet, as a result of interaction
with the shaded region of the NP with volume dV (r) (Fig. 8),

defined as the intersection between the NP and a spherical
shell centered at A of radius r and thickness dr , is given by

d2F contact
adh = σνU (r) da dV (r), (15)

where σ and ν are the areal number density and volume
number density of beads within the top leaflet of the bilayer
and the NP, respectively. In Eq. (15),

dV (r) = −π
s

r
�
r2 − 2sr + s2 − R2� dr, (16)

with rm < r ≤ rm + λ and s = R + rm. In Eq. (15), the
element of area da = 2π(R + rm)2 sin α dα, with 0 ≤ α ≤ θ.
The adhesion energy of the contact region of the bilayer is
therefore given by

F contact
adh (θ) = −2π2σν (R + rm) (1 − cos θ)

 rm+λ

rm

dr r
�
r2 − 2sr + s2 − R2�U (r)

= Ũ
(

2R
15λ
+

3rmR
10λ2 −

rm
15λ
− 1

28

)
(1 − cos θ) , (17)

where

Ũ = 2π2σνλ4(R + rm)E . (18)

The contribution to the adhesion energy from the rim of the bilayer is calculated similarly and is given by

F (rim)
adh (θ, ρ) = Ũ

ρ

R + rm

 θ

0
dα

δ − ρ sin α
R + l(α, ρ) A(α, ρ), (19)

where the length l(α, ρ) (see Fig. 7) is given by

l(α, ρ) =

(R + ρ + rm)2 + ρ2 − 2ρ(R + ρ + rm) cos (θ − α)

1/2
−R (20)

and

A(α, ρ) = 2l7

105λ7 +

(
1
20
− rc

10λ
+

2R
15λ

)
l6

λ6 +

(
r2
c

5λ2 −
rc
5λ
− 3rcR

5λ2 +
3R
10λ

)
l5

λ5

−
(

r3
c

6λ3 −
r2
c

4λ2 −
r2
cR
λ3 +

rcR
λ2

)
l4

λ4 −
(

2r3
cR

3λ4 −
r2
cR
λ3

)
l3

λ3 +

(
r5
c

10λ5 −
r4
c

4λ4

)
l2

λ2

−
(

r6
c

15λ6 −
r5
c

5λ5 −
r5
cR

5λ6 +
r4
cR

2λ5

)
l
λ
+

r7
c

70λ7 −
r6
c

20λ6 −
r6
cR

15λ7 +
r5
cR

5λ6 .

Using Eqs. (12)-(21), the net free energy of the system,
Eq. (11), is then minimized numerically with respect to (θ, ρ)
for varying values of the NP radius, R, and adhesion strength,
E.

A. Effect of NP’s diameter

In Fig. 9, the degree of wrapping, z = (1 − cos θ)/2, is
shown for NPs with diameter ranging between 4 and 2000 nm,
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FIG. 7. The model bilayer-NP system used in the calculation. ω is the
bilayer’s thickness. R =D/2 is the radius of the NP. The distance between
the surface of the NP and the top leaflet in the contact region is rm. The
portion of the top leaflet of the bilayer that is in direct contact with the NP is
shown in green. The portion of the top leaflet that interacts with the NP but is
not in direct contact with the NP is shown in blue. ρ is the radius of the rim of
the bilayer. θ is the wrapping angle and 0 ≤ α ≤ θ. r , used in Eq. (10), is the
distance between an arbitrary point in the NP and the top leaflet of the bilayer.
l(α, ρ) is the distance between the center of the NP and a point within the rim
of the top leaflet of the bilayer and is given by Eq. (20).

for the case of κ = 50kBT and range of the NP-bilayer interac-
tion, λ = rm. This figure shows that for NPs with D . 20 nm,
the degree of wrapping increases continuously with increasing
the adhesion strength. The theoretical results for D . 20 nm
are in excellent qualitative agreement with the simulation re-
sults presented in Fig. 4. This includes the decrease in the slope
of z vs. E with decreasing the NP diameter.

Fig. 9 shows that for larger NPs with D = 40, 200, and
2000 nm, the degree of wrapping exhibits a discontinuity,
signaling a first-order transition from a phase where the NP
is weakly wrapped by the bilayer for small values of E and
a phase where the NP is strongly wrapped by the bilayer for
large values of E. The size of the gap between weakly wrapped
and strongly wrapped states decreases with decreasing the NP
diameter. This implies that in the limit D ≫ ω, the NPs are
either unbound or completely wrapped by the tensionless
bilayer, in agreement with Deserno’s theory.20 It is worth
noting that even for the case of D = 200 nm, the free energy
of the weakly wrapped phase is at most 2.8kBT less than that
of the unbound state, which means that thermal fluctuations
will easily unbind the NP from the bilayer. We are currently

FIG. 8. Geometry of a partially wrapped NP showing the portion of a
spherical shell (shaded green) of thickness δr and of volume δV within the
NP located of radius r that interacts with a point A on the top leaflet of the
bilayer. The element of volume dV is given in Eq. (16). Note that due to the
short range of the interaction between the NP and the bilayer, the NP can only
interact with a portion of the top leaflet that is close to it.

FIG. 9. The degree of wrapping, z = (1−cos θ)/2, vs adhesion strength in
the case of λ = rm and κ = 50kBT for NPs with D = 4 nm (black), 10 nm
(red), 20 nm (blue), 40 nm (green), 200 nm (indigo), and 2000 nm (violet).

extending our approach to allow for simulating NPs with large
diameters in order to compare with our theoretical results.

B. Effect of range of interaction

We now turn our attention to the effect of the range of
interaction between the NP and the bilayer, λ, on the extent
of wrapping. Fig. 10, which depicts the degree of wrapping
for NPs with diameter D = 20 for different values of λ, shows
that for this NP diameter, the wrapping degree increases
continuously for λ & rm. However, for smaller values of λ,
z exhibits a discontinuity, with the size of the discontinuity
gap increasing with decreasing λ. Theoretical bilayer profiles
for the case of λ = 1.0 at z = 0.5 and at the lower and
upper bounds of the gap in z for λ = 0.75, 0.25, and 0.01rm
are shown in Fig. 11. The dashed and solid lines show the

FIG. 10. The degree of wrapping vs. adhesion strength in the case of
D = 20 nm and κ = 50kBT for values of λ corresponding to 0.01, 0.25, 0.5,
0.75, 1.0, and 1.5rm.
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FIG. 11. (a) Geometry of the bilayer partially wrapping a NP with D = 20 nm
at the inflection point of the graph of the degree of wrapping, z, vs E (violet
data in Fig. 10) for the case of interaction range λ = 1.0rm. In (b)–(d), the
dotted lines correspond to the configuration of the bilayer at the top of the
branch of weakly wrapped states and the solid lines correspond to the config-
uration of the bilayer at the bottom of the branch of strongly wrapped states.
(b)–(d) correspond to the case of λ = 0.75, 0.25, and 0.01rm, respectively.
The graph on the left shows z for the case of λ = 1.0rm and λ = 0.25rm.

bilayer’s profiles at the lower and upper bounds of the gap,
respectively. In the case of λ = 0.75rm, the bilayer degree of
wrapping is substantial even at the lower bound of the gap. At
λ = 0.25rm and 0.01rm, one notices a clear decrease/increase
in the degree of wrapping at the lower/upper bound of the
gap. In the case of λ = 0.01rm, the free energy of the upper
bound of the weakly wrapped state is 0.65kBT less than that
of the unbound state, which implies that for small values of
λ, even small NPs are either unbound or strongly wrapped
by the tensionless bilayer. The partial wrapping of the NPs
in our simulations can therefore be explained by the fact that
the range of the interaction in our simulations is finite instead
of being infinitesimally small as in the previous theoretical
calculations.20,21

V. ADHESION OF NANOPARTICLES LEAD TO AN
INCREASED CHAIN ORDER OF THE LIPID BILAYER

The transbilayer lipid distribution of the bilayer wrapping
the NP is non-symmetric, as demonstrated by the density
profiles of the lipid head and tail beads in Fig. 12 for the
case of D = 8.7 nm and for E = 0.4 and 0.6ϵ . At these values
of E, the NP is endocytosed by the bilayer. For comparison,
the density profiles of lipids for the case of an empty vesicle
with the same diameter are also shown in Fig. 12. This
figure shows that the density of lipids in the leaflet in contact
with the NP is significantly higher than that of the outer
leaflet and that the density profile of the hydrophobic tails
exhibits substantial oscillations which increase in amplitude
with increasing the adhesion strength. This is indicative
of an increased chain order of the lipids next to the NP.
Similar results were reported by Xing and Faller39 from their
simulations of lipid bilayer supported by planar substrates.
We note that we did not find any indication of a positional
order of the lipids in contact with the NP. This is due to the
fact that positional order (crystallinity) requires faceting of the
vesicle31 which is prevented by the strong interaction between
the spherical NP and the lipids which favors a spherical
shape.

Since the portion of the leaflet that is in contact with
the NP has a higher density of lipids than that of the bare
bilayer, the conformational entropy of the lipid molecules in
contact with the NP is decreased, and as a result, the bending
modulus of the region of the bilayer in contact with the NP
must be higher than that of the bare bilayer. The calculations
in Sec. IV are then extended to account for the fact that the
bending modulus of the bilayer is heterogeneous. Let κ and
κ′ be the bending moduli of the bare region of the bilayer and
the region of the bilayer in contact with the NP, respectively.
Furthermore, since the boundaries of the two regions of the
bilayer depend on the degree of wrapping, the Gauss-Bonnet
theorem does not apply,41 and the Gaussian bending terms in
the free energy have to be taken into account. Eq. (12) is then
generalized to

Fcurv(θ, ρ) = F (contact)
curv (θ) + F (rim)

curv (θ, ρ)

=

 Acontact

da


κ′

2

(
2

R + rm + ω/2

)2

+ κ̄′
(

1
R + rm + ω/2

)2

+

 Arim

da


κ

2

(
1
ρ
− sin α

δ − ρ sin α

)2

− κ̄
sin α

ρ (δ − ρ sin α)


= 4π
(
κ′ +

κ̄′

2

)
(1 − cos θ) + πρ

 θ

0
dα (δ − ρ sin α)


κ

(
1
ρ
− sin α

δ − ρ sin α

)2

− 2κ̄
sin α

ρ (δ − ρ sin α)

, (21)

where κ̄ and κ̄′ are the Gaussian bending moduli for the
bare bilayer and the region of the bilayer in direct contact
with the NP. To continue our calculations, we will assume

that κ̄ = −κ and κ̄′ = −κ′.42 The free energy, composed of
the curvature energy, given by Eqs. (21) and (13), is then
minimized with respect to the wrapping angle θ and the radius
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FIG. 12. Radial number density profiles of the head and tail beads of lipids
belonging to the bilayer that is in contact with the NP, within z = (1−cos θ)
≤ 0.067. The solid and dashed curves correspond to the profiles of the lipid
head and tail beads, respectively. The density profiles are measured from the
center of mass of the NP. The blue and red lines correspond to a NP with
D = 8.7 nm at E = 0.4 and 0.6ϵ, respectively. The green curves correspond
to an empty vesicle with the same diameter.

ρ. The wrapping angle for the case where κ′ = κ = 50kBT
and the case of κ′ = 5κ = 250kBT is shown in Fig. 13 for NPs
with D = 20 and 200 nm. We note that the value of κ′ = 5κ
is arbitrary. The goal here is to show the effect of a stiffer
region of the bilayer that is in contact with the NP. This figure
shows that the increased bending modulus of the region of the
bilayer in direct contact with the NP leads to a reduction in the
discontinuity of the wrapping angle at intermediate values of
adhesion strength. The effect of an increased bending modulus
of the contact region therefore further enhances the effect of
the finite range of interaction between the NP and the bilayer,
stabilizing partially wrapped NPs.

FIG. 13. The wrapping parameter z = 1−cos θ vs adhesion strength at
λ = 1.0 nm. Solid symbols correspond to κ = κ′= 50kBT and the open
symbols correspond to κ = 50kBT and κ′= 250kBT . Blue and red symbols
correspond to D = 20 and 200 nm, respectively.

VI. SUMMARY AND CONCLUSIONS

The interaction of small spherical NPs with tensionless
membranes is investigated numerically through molecular
dynamics simulations of an implicit solvent model for self-
assembled lipid membranes.29 We particularly focussed on
NPs with diameters comparable to the thickness of the lipid
bilayer. We found that NPs are unbound for low values of the
adhesion strength, they are partially wrapped for intermediate
values of the adhesion strength with a degree of wrapping
that increases with increasing the adhesion strength, and they
are endocytosed for large values of the adhesion strength. The
transition adhesion strengths from the unbound to the wrapped
states and from the wrapped to the endocytosed states decrease
with increasing the NP size.

The partially wrapped states are shown to be thermo-
dynamically equilibrium states using annealing simulations.
These results, which are different from those of the theory of
Deserno et al.,19,20 were explained in terms of a generalized
elastic theory based on the Helfrich Hamiltonian. In this
theory, the interaction between the NP and the lipid bilayer
is short ranged, accounting for interaction between the NP
and part of the neck of the lipid bilayer. We found that
this lead to partial wrapping of the NP by the bilayer. An
explanation of this effect is that in the case of a tensionless
bilayer that interacts with a NP only when both are in contact,
while the adhesion energy is proportional to the contact
area the curvature energy is constant. The free energy is
then minimized when the contact area is maximized, which
corresponds to a fully wrapped NP. However, in our case,
the adhesion energy is no longer proportional to the contact
area due to the additional interaction with a portion of the
neck region of the bilayer. The extent of partial wrapping is
amplified with decreasing the size of the NP and/or the range
of the interaction, λ. For a given range of the interaction of the
NP with the bilayer, and for small NPs, the degree of wrapping
increases continuously until full wrapping. However, there
exist a threshold NP size D∗(λ), beyond which there exist a
discontinuity in the degree of wrapping. Namely, NPs with
D > D∗(λ) are either weakly wrapped for small adhesion
strength or strongly wrapped for large adhesion strength. The
gap in the degree of wrapping increases with increasing the
NP diameter. Furthermore, we found that the threshold D∗(λ)
decreases with decreasing λ, implying that in the limit of
contact interaction, i.e., for λ = 0, the NP is either unbound or
fully bound, in agreement with the predictions of Deserno et al.
For D ≫ D∗(λ), the free energy of the weakly wrapped states
is about kBT or smaller, implying that thermal fluctuations
should easily unbind the NP.

In order to see why partially wrapped states are expected
when non-contact interactions between the NP and the lipids
are accounted for, we consider a partially wrapped NP with
a contact area A. The excess free energy of the system can
approximatively be written as δF = −wA + 8κA/D2 − w̃ ′a,
where w is the contact adhesion energy density, w̃ is an
effective adhesion energy density of the non-contact region,
and a is the area of the non-contact region of the bilayer
that interacts with the NP. Note that in principle w ′ depends
on the shape of the non-contact region of the bilayer. In the
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absence of non-contact interaction, wrapping does not occur if
w < 8κ/D2. However, the presence of −w̃a in the free energy
can overcome the increase in free energy due to curvature
of the contact region and lead to stable partially wrapped
states.

The model used in the simulations accounts for the
solvent implicitly. The use of an implicit solvent in the
present numerical study is motivated by the fact that using a
model with explicit solvent to systematically study interactions
between a NP and lipid bilayers is computationally too costly
at the moment. While the present model cannot properly
describe the kinetics of wrapping and endocytosis due to the
absence of explicit solvent, it should capture the equilibrium
phase behavior of NPs wrapping and endocytosis by lipid
membranes.

The simulations showed that the adhesion of the NP leads
to an increased conformational order of the lipids in contact
with the NP. This implies that the bending rigidity of the
bilayer in contact with the NP is higher than that of the bare
bilayer. The extension of the elastic theory accounting for non-
uniformity of both the bending modulus and the saddle-splay
modulus predicts further enhancement of partially wrapped
states, as demonstrated by the decrease in the gap between
weakly and strongly wrapped states. We note the fact that
interactions between the NPs and the lipids are not merely
contact interaction, the area compressibility modulus should
become wave-vector-dependent. This could lead to a wave-
vector-dependent tension and therefore a residual tension
even if the tension of the bilayer is set to zero. We also
note interactions up to few nanometers in range between
negatively charged NPs and zwitterionic lipid bilayers, such
as dipalmitoylphosphatidylcholine bilayers, in solutions with
biologically relevant counter-ion concentrations justify the use
of the relatively long-range interactions.43

The Helfrich Hamiltonian should be valid for low
curvatures, while the theoretical calculations in the present
article were performed for curvatures about the thickness of
the bilayer. It is clear that at such high curvatures, higher order
expansion in curvature of the bending energy may be required.
The results at high curvatures obtained here should therefore
be only qualitatively correct. The fact that the width of the
gap between the weakly wrapped states and strongly wrapped
states decreases with decreasing the NP diameter implies that
at some small NP diameter, the gap is expected to disappear
at some small NP diameter.

Since the NPs in our simulations are comparable in size
to the thickness of the lipid bilayer, we did not observe a
gap in the degree of wrapping. Clearly, further simulations on
larger NPs and therefore larger bilayers are needed to verify
whether a gap in the degree of wrapping emerges beyond a
certain diameter. Such simulations are planned in the near
future.

In the present study, we only considered the case of a
single nanoparticle and therefore neglected any cooperative
effects. Saric and Cacciuto44 showed numerically different
types of nanoparticles’ aggregation depending on the bending
modulus and the adhesion strength. In particular, they found
that the nanoparticles aggregate into linear chains for moderate
values of the bending modulus or adhesion strength. However,

for high bending modulus and adhesion strength or low
bending modulus and adhesion strength, the nanoparticles
aggregate into a triangular lattice. For very high adhesion
strength, the nanoparticles remain isolated. Whether the
nanoparticles can be internalized by the bilayer in the form of
isolated particles or aggregates remains unclear.
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