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     Since the central nervous system was first
demonstrated to be involved in regulation of gastric
function by Pavlov[1], and Selye[2] established the
stress theory that physicopsychiatric stress altered
physiological functions[3], electrical stimulation or
lesion of specific brain nuclei identified specific sites
in the hypothalamus, limbic system, and medulla
that influence gastrointestinal functions. A plethora
of peptides have been characterized in the brain by
immunohistochemical and molecular biological
techniques[4]. The development of retrograde
t r a c i n g  t e c h n i q u e s  c o m b i n e d  w i t h
immunohistochemistry reveals that these peptides
are localized in the nerve fibers or cell bodies of the
hypothalamus and medulla which are important sites
f o r  a u t o n o m i c  n e r v o u s  o u t f l o w  t o  t h e
gastrointestinal tract[5,6]. Based on these studies,
Taché f i rs t  repor ted the  effect  of  centra l
neuropeptides in regulation of gastric functions[7,8].
Since then, more than 40 peptides have been
examined and it is well established that many
neuropeptides, such as thyrotropin releasing
hormone (TRH), corticotropin releasing factor
(CRF), neuropeptide Y (NPY), bombesin and
somatostatin, mediate a central nervous system
induced stimulation or inhibition of gastrointestinal
function[9,10]. On the other hand, the liver is also
richly innervated[11,12] and retrograde tracing

technique has revealed hepatic innervation through
the vagus originating in the medulla[13], where
abundant neuropeptides exist .  This review
introduces the current knowledge of central nervous
system regulation of hepatic functions by various
neuropeptides.

THYROTROPIN RELEASING HORMONE (TRH)
TRH exists in the central nervous system and
abundant TRH immunoreactive nerve terminals and
TRH receptors are localized in the dorsal vagal
complex including the vagal motor nucleus and the
nucleus   of      the    solitary     truct [14,15].
Neuropharmachological studies demonstrated that
TRH displayed a vast array of central nervous
sys tem-media ted  ac t ions  unre la ted  to  i t s
physiological roel in the regulation of the pituitary
thyroid axis[16]. TRH injected into the cerebrospinal
fluid or into specific brain nuclei exerted a variety
of behavioral effects. Accumulated evidence also
demonstrated that TRH had potent central nervous
sys t em med ia t ed  s t imu la to ry  e f f ec t s  on
gastrointestinal secretion, motility and transit, as
well as on the development of gastric ulceration in
rats and other animals[7,8,17,18] Mapping studies using
microinjection of TRH or TRH analogs into
selective nuclei have identified brain sites important
for stimulation of gastric secretion and motility.
The gastric secretory response has been elicited by
microinjection of TRH into the lateral and the
ventromedial hypothalamus[19]. More sensitive sites
have been identified in the brainstem including the
dorsal vagal complex, the nucleus ambiguus and the
raphe pallidus[20-22].
          Hepatic blood flow is composed of hepatic
arterial and hepatic portal blood supplies. In rats
portal blood flow constitutes 80% of hepatic
circulation. Portal blood flow was altered by
electrical stimulation of autonomic nerves and
specific brain nuclei which are important sites for
autonomic nervous regulation[23]. Stimulation of
sympathetic nerves caused constriction of hepatic
arterial and portal vessels, resulting in a decrease of
liver blood volume and flow in hepatic artery, and
an increase in portal  pressure[24].Electrical
stimulation of the hypothalamus produced changes
in intestinal blood flow and, consequently, in portal
vein and in intrahepatic arterial and portal beds[25].
Moreover, stimulation of the medial and posterior
hypothalamus has been reported to increase hepatic
arterial resistance and decrease portal blood flow
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through sympathetic nerves[26]. On the other hand,
using an in vivo microscopic technique in rats,
dilatation of the liver sinusoid following electrical vagal
stimulation and acetylcholine application has
been observed[27,28].
       We studied the effect of central TRH analog on
hepatic microcirculation in anesthetized rats[29]. We
used the stable TRH analog, RX 77368, which has
the same receptor affinity and about the times the
potency of natural TRH. In rats under urethan
anesthesia, hepatic microcirculation was assessed by
the hydrogengas clearance method. Intracisternal
injection (the injection into the cisternal magna of
the brain) of TRH analog induced stimulation of
hepatic blood f low by 17%-74% in a dose
dependent manner ranging from 5ng to 100ng.
This stimulatory response of hepatic blood flow to
central TRH analog occurred during the first 15-
minute observation period, reached a plateau at 30
minutes and returned to basal value at 60 minutes.
On the other hand, intravenous injection of the
TRH analog did not modify hepatic blood flow,
confirming the central but not peripheral action of
the TRH analog. Although this increased hepatic
blood flow by central TRH analog was not modified by
spinal cord transection, i t  was reversed by
atropine, vagotomy, and N-G-nitro-L-arginine
methyl ester, an inhibitor of nitric oxide and
indomethacin, indicating that TRH acted in the
brain to stimulate hepatic blood flow through vagal,
muscarinic,  prostaglandin and nitric oxide
pathways. Mapping studies by microinjection of
TRH analog into the medullary nuclei revealed that
the left but not right dorsal vagal complex was a
responsive site for TRH on modulation of hepatic
blood flow[30]. This finding agreed well with
anatomical evidence that hepatic vagal nerve is
originated in the left, but not right, dorsal vagal
complex[13].
           Although in adult animals the liver is normally
in a state of growth arrest, once the liver is
damaged or impaired because of hepatic injury or
liver resection, hepatic regeneration or proliferation
is immediately started. Seventy percent partial
hepatectomy[31] performed in rats initiated a very
striking response in the liver remnant through
hypertrophy and hyperplasia, and returned to its
original size in 7-10 days[31]. Hepatocytes in the
non stimulated liver were essentially arrested in the
G0 state. After partial hepatectomy, growth related events
started almost instantly as the cells underwent the
transition from G0 to G1 state(prereplicative phase), which
lasted about 12 hours, at which point DNA synthesis
(S state) began and peaked at about 24 hours. Mitosis a
similar course 6-8 hours later[32]. Many factors, such as
hormones, peptides and cytokines, were thought to
be involved and may interact synergistically to initiate
and maintain hepatic proliferation. The autonomic

nervous system was also suggested to play a role in
the liver regeneration and regulation of hormones
and growth factors related to hepatic proliferation.
Partial hepatectomy suppressed the sympathetic
nerve activity[33] and plasma adrenaline and
noradrenaline increased immediately after partial
hepatectomy and α -blockade reversed DNA
synthesis induced by hepatectomy[34,35], indicating
the involvement of an adrenergic effect on hepatic
regeneration. The parasympathetic nervous system
was also suggested to play an important role in
hepatic proliferation. Subdiaphragmatic vagotomy
more strongly suppressed DNA synthesis after
par t ia l  hepatectomyas  compared wi th  the
splanchnicectomy[36], and selective hepatic branch
vagotomy suppressed or delayed liver regeneration
in partially hepatectomized rats [37]. Moreover,
lesion of the ventromedial hypothalamus has
recently induced hepatic DNA synthesis through the
vagal nerve[38].
         The effect of central administration of TRH
analog, RX 77368, on hepatic proliferation has recently
been studied in conscious adult rats[39], because
central TRH was known to activate vagal efferent
fibers[40,41]. Rats was injected with TRH analog
intracisternally and hepatic DNA synthesis was
assessed by thymidine incorporation into the hepatic
DNA fraction and BrdU accumulation 6-72 hours
later. Hepatic proliferation was stimulated by
intracisternal TRH analog (10ng) with a peak response
at 48 hours after peptide injection and returned to basal
at 72 hours. This stimulatory effect by central TRH
on hepatic proliferation was dose related, ranging from
5ng to 100ng assessed at 24 hours. Intravenous TRH
analog did not influence hepatic proliferation,
confirming a central but not peripheral action of TRH.
Stimulation of hepatic proliferation by central TRH
was abolished by hepatic branch vagotomy, atropine
and indomethacin, suggesting that TRH acts in the
brain to stimulate hepatic proliferation through vagal,
muscarinic and prostaglandin pathways. However, N-
G-nitro-L-arginine methyl ester did not reverse central
TRH induced stimulation of hepatic proliferation as it
did central TRH induced hepatic circulation, indicating
that stimulation of hepatic proliferation is not
secondary to the change in hepatic circulation. These
data suggest that TRH in the central nervous system
may be involved in the vagal regulation of hepatic
proliferation.
        These findings led us to speculate that central
TRH might also protect against experimental liver damage,
so effect of central injection of TRH on CCl4 induced
liver injury has been investigated£Û42£Ý. Rats were
coadministered CCl4 (2ml/kg, ip) with TRH analog injected
intracisternally and liver damage was assessed by serum
alanine aminotransferase (ALT) levels. Intracisternal, bnt
not intravenous, injection of TRH analog dose-
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dependently protected against CCl4 induced liver
damage and this protective effect of central TRH was
also block by hepatic vagotomy.

CORTICOTROPIN RELEASING FACTOR (CRF)
CRF is one of the brain neuropeptides, and effect of
central CRF on physiological, pharmacological, and
pathophysiological regulations of the gastrointestinal tract
have been reported. Injection of CRF into the
cerebrospinal fluid or the brain nuclei, such as
paraventricular nucleus or loecus ceruleus inhibited
gastric motility and secretion[43-46], and enhanced colonic
motility through the autonomic nervous system[47,48]. Since
CRF is known to act in the hypothalamus and stimulate
the sympathetic nervous outflow, the opposite effect to
TRH on hepatic function was expected when injected
in the central nervous system.
         We studied the effect of central CRF on hepatic
microcirculation in anesthetized rats[49]. In rats under
urethan anesthesia, hepatic microcirculation was
assessed by the hydrogen gas clearance method and
laser Doppler. Intracisternal injection of CRF induced
inhibition of hepatic blood flow by 18%-36% in a dose
dependent manner, ranging from 1µg to 5µg . This
inhibitory response of hepatic blood flow to central CRF
was noted during the first 15 minute observation period,
reached a plateau at 30-60 minutes and maintained for
more than 120 minutes. On the other hand, intravenous
injection of the CRF did not modify hepatic blood flow,
confirming the central but not peripheral action of the
TRH analog. Although this deceased hepatic blood flow
by central CRF was not modified by atropine and
vagotomy, it was reversed by hepatic sympathectomy
and 6-hydroxydopamine, which depleted noradrenergic
fibers, indicating that CRF acted in the brain to inhibit
hepatic blood flow through sympathetic and
noradrenergic pathways. The effect of central injection
of CRF on CCl4 induced liver injury has also been
investigated[50]. Rats were injected with CCl4 (2ml/kg,
sc) and CRF was injected just before and 6 hours after
CCl4 administration. Liver damage was assessed by
serum ALT levels. Intracisternal, injection of CRF dose
dependently aggravated CCl4 induced liver damage and
this aggravating effect of central CRF was block by 6-
hydroxydopamine and chemical sympathectomy.

NEUROPEPTIDE Y (NPY)
NPY, a 36 amino acid peptide of the pancreatic
polypeptide family, was first isolated from porcine
brain[51,52]. NPY was localized mainly in the
peripheral nervous system[53], where it contributed
to the innervation of the digestive organs, including
the biliary tree[54]. In the brain, NPY nerve fibers
and terminals, and NPY receptors were localized in
the paraventricular nucleus of the hypothalamus and
the dorsal vagal complex[55-57] which are important
sites for the autonomic nervous system[58]. Central

administration of NPY affected feeding behavior and
visceral function[57]. The bile duct was richly
innervated by autonomic nerves[59] and electrical
stimulation of sympathetic and parasympathetic nerves
and stimulation or lesion of certain hypothalamic
regions[60] altered bile secretion[61,62]. With respect to
the gastrointestinal tract, injection of NPY into the
cerebrospinal fluid stimulates gastric acid and pepsin
secretion, and pancreatic exocrine and endocrine
secretion in rats and dogs[63-65]. Farouk et al[66] and
we[67] have found an effect of central NPY on bile
secretion in dogs and rats. The effect of intracisternal
injection of NPY on bile secretion in urethan
anesthetized rats was investigated[67]. Rats were
anesthetized with urethan (1.5g/kg , ip) and the
common bile duct was cannulated to collect bile
samples. Sodium taurocholic acid (30µmol·kg·h) was
infused intravenously to compensate for bile acid loss
due to biliary drainage. Intracisternal NPY (0.02nmol-
0.12nmol)dose-dependently stimulated bile secretion
by 9%-20%. The secretory response occurred within
the first 20-40 minutes after injection and lasted 120
minutes. On the other hand, intravenous injection of
NPY (0.12nmol) did not modify bile secretion,
confirming that NPY did not leak from the
cerebrospinal fluid to the peripheral circulation. Thus,
central NPY stimulated bile secretion in a bile acid
independent and bicarbonate dependent bile flow
because central NPY increased only biliary
bicarbonate secretion but not biliary bile acid,
phospholipid or cholesterol secretion. In other words,
central NPY stimulated ductal bile secretion. Although
cervical cord transection, bilateral adrenalectomy or
pretreatment with N-G-nitro-L-arginine methyl ester
did not alter intracisternal NPY induced stimulation
of bile secretion, atropine and bilateral cervical
vagotomy completely abolished the stimulatory effect
of intracisternal NPY on bile secretion, indicating that
NPY acted in the brain to stimulate bile acid
independent bile secretion through vagal and
muscarinic pathways.  Mapping studies by
microinjection of NPY into the medullary nuclei have
shown that the left dorsal vagal complex is a
responsive site, like TRH on hepatic circulation, for
NPY on stimulation of bile secretion[68].

OTHER NEUROPEPTIDES
Besides TRH, CRF and NPY, a few peptides were
suggested to act in the central nervous system to
modulate hepatobiliary function. β-endorphin has
produced 70% inhibition in liver DNA synthesis in
six day old rats[69]. Intracerebroventricular injection
of bombesin with a dose of 10µg induces bicarbonate
dependent inhibition of bile secretion in rats[70].
Moreover, intracisternal injection of opioid peptide,
DAla-Met enkephalinamide decreased bile secretion
in urethan anesthetized rats[71].
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SUMMARY AND CONCLUSIONS
Several peptides have been established to act
in  the  bra in  to  inf luence  hepa t ic  func t ion
(Figure  1)  .  Bi le  secre t ion  i s  modif ied  by
central  administrat ion of  bombesin,  opioid
p e p t i d e  a n d  N P Y ,  h e p a t i c  b l o o d  f l o w  i s
a l t e red  by  cen t ra l  CRF and  TRH,  hepa t ic
p r o l i f e r a t i o n  i s  r e g u l a t e d  b y  c e n t r a l  β -
endorphin  and  TRH,  and  cent ra l  CRF and
TRH in te r f e re  expe r imen ta l  l i ve r  i n ju ry .
Among these  pep t ides  cen t ra l  TRH is  the
strongest candidate for playing an important
r o l e  i n  h e p a t i c  p h y s i o l o g i c a l  f u n c t i o n .
Through their use, new knowledge on central
and peripheral mechanisms underlying brain
r e g u l a t i o n  o f  h e p a t i c  f u n c t i o n  w i l l  b e
revea led .  Fur ther  s tud ies  in  regard  to  the
physiological relevance of the central action
of neuropeptides on specific brain sites should
be performed for unraveling the underlying
pathways mediating brain liver interaction.
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