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e Background and Aims Ecological differentiation is recognized as an important factor for polyploid speciation,
but little is known regarding whether the ecological niches of cytotypes differ between areas of sympatry and areas
where single cytotypes occur (i.e. niche displacement).

e Methods Ecological niches of four groups of Senecio carniolicus sensu lato (s.l.) (western and eastern diploid lin-
eages, tetraploids and hexaploids) were characterized via Landolt indicator values of the accompanying vascular
plant species and tested using multivariate and univariate statistics.

o Key Results The four groups of S. carniolicus s.I. were ecologically differentiated mainly with respect to temper-
ature, light and soil (humus content, nutrients, moisture variability). Niche breadths did not differ significantly. In
areas of sympatry hexaploids shifted towards sites with higher temperature, less light and higher soil humus content
as compared with homoploid sites, whereas diploids and tetraploids shifted in the opposite direction. In heteroploid
sites of tetraploids and the western diploid lineage the latter shifted towards sites with lower humus content but
higher aeration.

e Conclusions Niche displacement can facilitate the formation of stable contact zones upon secondary contact of
polyploids and their lower-ploid ancestors and/or lead to convergence of the cytotypes’ niches after they have at-
tained non-overlapping ranges. Niche displacement is essential for understanding ecological consequences of
polyploidy.
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INTRODUCTION

Polyploidy is a major force in plant diversification and specia-
tion (Wood et al., 2009; Weiss-Schneeweiss et al., 2013).
Polyploidization can confer instantaneous reproductive isola-
tion and is therefore regarded as the most frequent mode of
sympatric speciation (Otto and Whitton, 2000). However, re-
productive isolation is rarely complete, hampering independent
evolution of the polyploid. It is well recognized, especially
from modelling results, that dispersal limitation (Baack, 2005),
high levels of selfing (Levin, 1983) and particularly ecological
differentiation (Fowler and Levin, 1984; Levin, 2002; Johnson
et al., 2003; Oswald and Nuismer, 2011; Ramsey and Ramsey,
2014) are important factors allowing polyploids to persistently
survive in sympatry with their lower-ploid ancestors, thus con-
tributing to polyploid speciation.

Although habitat segregation is recognized as a major factor
allowing different cytotypes to coexist (e.g. Lumaret et al.,
1987; Thompson and Lumaret, 1992; Felber-Girard et al.,
1996; Stihlberg and Hedrén, 2009; Duchoslav et al., 2010),
little is known regarding whether the ecological niches of cyto-
types differ between areas of sympatry and areas where single
cytotypes occur. Habitat requirements of ecologically similar
taxa might differ more pronouncedly when occurring in sym-
patry than in allopatry (Grace and Wetzel, 1981; Peers et al.,
2013), as is well known for phenotypic characters (i.e. character
displacement: Dayan and Simberloff, 2005; Pfennig and
Pfennig, 2009). In fact, the resulting niche displacement (Peers
et al., 2013) is expected to reflect a complex pattern of dis-
placement in morphological, ecophysiological and/or behaviou-
ral characters. There is limited evidence suggesting niche
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displacement in polyploid complexes (Felber-Girard et al.,
1996; Stahlberg and Hedrén, 2009) but these studies were based
on geographically restricted sampling with a low number of
populations harbouring diploids and polyploids. Range-wide
tests of niche displacement in polyploid complexes are lacking
so far.

An excellent system to study ecological differentiation on a
range-wide scale is Senecio carniolicus sensu lato (s.l.) (syn.
Jacobaea c.; Asteraceae), a common plant in various alpine to
nival habitats on siliceous bedrock in the eastern European
Alps. This alpine polyploid complex consists of two geographi-
cally non-overlapping diploid lineages (Escobar Garcia et al.,
2012) as well as one tetraploid and one hexaploid cytotype
(Sonnleitner et al., 2010; Fig. 1) that originated from the eastern
diploid lineage (Sonnleitner et al., 2013). Although recently de-
scribed as four separate species (Flatscher ez al., 2015), we here
refer to them as lineages or cytotypes to facilitate comparisons
with previous studies (Schonswetter et al., 2007; Sonnleitner
et al., 2010, 2013; Hiilber et al., 2015). Based on coarse esti-
mates of site conditions, cytotypes are ecologically segregated,
but overlap broadly (Sonnleitner ez al., 2010). The degree of
separation and the discriminative ecological gradients, how-
ever, remain unknown. Throughout the distribution range of
S. carniolicus s.l. in the eastern Alps, sites inhabited by a single
cytotype (hereafter ‘homoploid sites’) as well as sites harbour-
ing two or three cytotypes in sympatry (hereafter ‘heteroploid
sites’) occur frequently (Suda et al., 2007; Sonnleitner et al.,
2010; Fig. 1). The widespread co-occurrence of cytotypes
might be facilitated by niche displacement, but this has not yet
been tested. Here, we aim (1) to identify the ecological factors
responsible for the previously identified cytotype differentiation
(Sonnleitner et al., 2010) and (2) to test whether realized niches
in heteroploid sites differ from those in homoploid sites as ex-
pected under a model of niche displacement. To this end, we
used Landolt indicator values for vascular plant species sur-
rounding target individuals of S. carniolicus to characterize the
ecological niches of the four S. carniolicus groups (two diploid
lineages, tetraploids, hexaploids) on the microhabitat level.
Although originally developed for the Swiss flora (Landolt,
1977), Landolt indicator values have subsequently been ex-
tended to the entire Alps (Landolt et al., 2010). They represent
qualitative assessments of ecological variables and hence are
appropriate to characterize environmental conditions when their
explicit measurement is not feasible because of, for instance,
the remoteness and/or high number of sampling sites.
Furthermore, they are less prone to between-year fluctuations
in environmental conditions that may yield biased measure-
ments, especially in cases of long-lived perennial plants of al-
pine regions (Diekmann, 2003).

MATERIALS AND METHODS
Fieldwork

Ecological niches of western and eastern diploid lineages and
of the polyploids (tetraploids and hexaploids) were analysed
based on samples from 99 sites (i.e. mountains) across the en-
tire distribution area in the European Alps (Fig. 1) as described
previously (Sonnleitner et al., 2010). Individuals were selected
to represent the entire local altitudinal range and all occupied
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habitat types. As at the time of the fieldwork recognition of
cytotypes based on morphological characters was not possible,
cytotypes are expected to be included without bias. Cytotype
assignment of each sampled individual was taken from
Sonnleitner et al. (2010). Individuals showing secondary ploidy
levels (triploid, pentaploid, heptaploid, octoploid and ennea-
ploid, together comprising 1-07 % of analysed individuals)
were not considered in this study, resulting in a total data set of
2826 individuals (i.e. on average 29 individuals per site;
Supplementary Information Table S1).

Statistical analyses

Environmental conditions were characterized by mean
Landolt indicator values of accompanying vascular plant spe-
cies (Landolt et al., 2010) calculated for circular plots of 0-2m
radius around each target individual. Landolt indicator values
describe ecological requirements of species in terms of climate
parameters (temperature, T; continentality, K; light, L) and of
soil parameters (moisture, F; reaction, R; nutrients, N; humus
content, H; aeration, D; moisture variability, W), all ranging
from 1 (low) to 5 (high). For species indifferent to particular in-
dicator values, we used the mean of the concerned indicator
values at the respective sites; S. carniolicus was omitted from
the calculation.

Multivariate analyses

Canonical correspondence analysis (CCA; ter Braak, 1986)
was used to test for shifts of niche optima and differences in
niche breadth among groups of S. carniolicus. CCA allows for
non-linear and even non-monotonic (unimodal) relationships
between species occurrences and environmental gradients, and
performs well with skewed species distributions, with situations
where not all environmental factors determining species com-
position are known, and even with highly correlated variables
(Palmer, 1993). We constrained a matrix of Landolt indicator
values, which were scaled to zero mean and unit variance prior
to the ordination, by one of two design matrices. These design
matrices, where columns represent the membership of a given
individual to one of the groups without and with differentiation
into homoploid and heteroploid sites, were used to test for over-
all niche differences among western diploids, eastern diploids,
tetraploids and hexaploids, and for niche differences between
homoploid and heteroploid sites of the same group (western
diploids, eastern diploids, tetraploids and hexaploids), respec-
tively. Because of only two sites inhabited exclusively by east-
ern diploids — one of which was only represented by six
individuals — no comparisons between homoploid and hetero-
ploid sites of this lineage were made.

Additionally, we identified effects of co-occurring cytotypes
(the two diploid lineages do not co-occur: Escobar Garcia
et al., 2012) by using design-matrices representing the pres-
ences/absences of cytotypes within sites. The target cytotype
and each potentially co-occurring cytotype were represented by
one column each in the design matrix. The target cytotype was
defined as present only in homoploid sites (i.e. the target cyto-
type co-occurs only with itself). This analysis was performed
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Fic. 1. Distribution of western diploids, eastern diploids, tetraploids and hexaploids of Senecio carniolicus in the eastern European Alps. Numbers correspond to site
codes in Table S1 (Supplementary Information).

separately for individuals of each target cytotype except for
eastern diploids.

Following Treier et al. (2009) we defined niche shifts as dif-
ferences in niche optima among western diploids, eastern dip-
loids, tetraploids and hexaploids, and niche breadth as the area
of an ellipse representing a graphical summary of the cloud of
individuals of each group (western diploids, eastern diploids,
tetraploids and hexaploids). Niche shifts were calculated as the
Euclidean distance between the centroids of the cloud of indi-
viduals of each group weighted by the Eigenvalues of ordina-
tion axes. Differences in niche breadth were calculated as
differences in the area of ellipses defined by the niche
optimum and the standard deviation of the projections of points
on the ellipse axis, which were drawn orthogonally with maxi-
mal dispersion (Treier et al., 2009). CCAs were computed with
the maximum number of axes, but only the first and second
axes were considered for the calculation of niche shift and
breadth. Ten thousand Monte Carlo randomizations were ap-
plied by randomly assigning individuals to environmental con-
ditions (i.e. by randomizing the rows in the design matrix). The
significance of niche shifts and differences in niche breadth
were evaluated by comparing the observed values with the
distribution of simulated values in one-sided (observed >
simulated) and two-sided tests (observed <> simulated),
respectively.

To avoid the inflation of Type I errors due to multiple com-
parisons we adjusted the threshold for P values to be interpreted
as sizgnificant according to the Dunn—Sidak correction: P =1 —
0-95 1/"), where 7 is the number of comparisons. Thus, for six
pairwise comparisons among eastern diploids, western diploids,
tetraploids and hexaploids, and three comparisons between
homoploid and heteroploid sites for western diploids,

tetraploids and hexaploids the threshold was set to 0-008 and
0-017, respectively.

Univariate analyses

To test for significant differences among western diploids,
eastern diploids, tetraploids and hexaploids, linear mixed-
effects models optimizing the restricted maximum-likelihood
(following Laird and Ware, 1982) were applied separately to
each Landolt indicator value. We used each indicator value as
response, the groups as categorical predictor and the site as
grouping variable to calculate random intercepts. With this ap-
proach we accounted for potential spatial clustering among in-
dividuals from the same site (Bolker ez al., 2009; Dullinger and
Hiilber, 2011). For all models we assumed a Gaussian error dis-
tribution. Degrees of freedom of the models were defined as the
number of observations minus the number of estimated parame-
ters (i.e. 4) minus 1, assuming that the grouping variable con-
sumed only one degree of freedom.

To identify ecological gradients along which niches are dis-
placed between homoploid and heteroploid sites a randomiza-
tion procedure was applied. In pairwise comparisons of
cytotypes (western diploids, tetraploids, hexaploids), for each
cytotype 500 individuals from homoploid sites and 500 individ-
uals from heteroploid sites, where the two compared cytotypes
co-occur, were randomly chosen (with replacement) and differ-
ences in Landolt indicator values between individuals from
homoploid and heteroploid sites were calculated. Statistical sig-
nificance was assessed using two-sided z-tests adjusting for
multiple comparisons by using Dunn—Sidék correction.

All analyses were performed with R 2.13.0 (http://www.R-
project.org/). Mixed-effects models were calculated using the
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function Imer included in the package lme4 (http://cran.r-proj
ect.org/web/packages/lmed/lme4.pdf). Niche shifts and niche
breadth were evaluated using the ade4 package (Dray and
Dufour, 2007).

RESULTS
Ecological differentiation among groups

The four groups of S. carniolicus (western diploids, eastern dip-
loids, tetraploids and hexaploids) were ecologically differenti-
ated. Linear mixed-effects models revealed significantly
different positions of western diploids, eastern diploids, tetra-
ploids and hexaploids along the temperature (T) gradient, with
eastern diploids occupying the coldest sites, followed by tetra-
ploids and western diploids at intermediate sites, and hexa-
ploids at the warmest sites (Fig. 2). The same order of these
four groups — eastern diploids and hexaploids occupying oppo-
site ends of a gradient with western diploids and tetraploids in
intermediate positions — was found for humus content (H), soil
nutrients (N) and soil moisture variability (W), with differences
among groups being stronger for humus content (H) than for
soil nutrients (N) and soil moisture variability (W). A similar
differentiation but in reverse order was found along the light
(L) gradient, with tetraploids and western diploids occupying
the same range along the gradient. For soil aeration (D) hexa-
ploids showed the lowest values, followed by tetraploids and
both diploids at equally high values. The four groups showed
similar requirements for soil moisture (F) except western dip-
loids, which inhabited drier micro-habitats. This is in line with
high continentality (K) values for western diploids. No clear
differentiation of groups was found for soil reaction (R) except
between western diploids and hexaploids.

The Monte Carlo approach based on CCA revealed signifi-
cant differences in niche optima of the four groups except for
western diploids compared with tetraploids (Table 1). Groups
were separated along an environmental gradient combining
light (L), soil aeration (D), soil nutrients (N), humus content
(H), temperature (T) and soil moisture variability (W;
Supplementary Information Figs S1 and S2). Eastern diploids
and hexaploids were located at the extreme ends of this gradi-
ent, while western diploids and tetraploids occupied intermedi-
ate positions. The latter two were separated, albeit not
significantly, along a moisture (F) and continentality (K) gradi-
ent. In contrast to niche optima, no significant differences were
found for niche breadth (Table 1).

Ecological differentiation between homoploid and heteroploid
sites

Ecological niches of cytotypes in heteroploid sites were dis-
placed compared with homoploid sites. In a CCA (Fig. 3;
Supplementary Information Fig. S3) niche optima of cytotypes
in homoploid and heteroploid sites were significantly different
for western diploids (P = 0-005) and for tetraploids (P =0-019)
but not for hexaploids (P =0-168; significance assessed via
randomizations). However, compared with homoploid sites,
niches of hexaploids in heteroploid sites tended towards higher
temperature (T) and lower soil moisture (F), while tetraploids
were displaced roughly in the opposite direction along the
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gradient. Western diploid individuals occurred at sites with
higher light (L) and soil aeration (D) in heteroploid compared
with homoploid sites. These shifts resulted in stronger niche
separation in the presence of other cytotypes, i.e. the pattern
predicted by niche displacement. When looking at mutual ef-
fects of two cytotypes, the niches of hexaploids were displaced
in response to the presence of tetraploids as well as of western
diploids (Table 2), both of which responded to the presence of
hexaploids. In contrast, tetraploids and western diploids did not
interfere with each other, but tetraploids showed a stronger dif-
ferentiation if co-occurring with eastern diploids. No changes
in niche breadth were detected among homoploid and hetero-
ploid sites (western diploids: P = 0-169; tetraploids: P = 0-036;
hexaploids: P = 0-682).

Significant differences in the direction of niche displacement
were detected for single indicator values (Supplementary
Information Fig. S4). In the presence of western diploid or tet-
raploid cytotypes, hexaploids shifted towards sites with higher
temperature (T), less light (L) and higher humus content (H),
whereas western diploids and tetraploids shifted towards lower
temperature (T), more intensive light (L) and lower soil humus
content (H). In heteroploid sites with tetraploids, western dip-
loids shifted towards sites with lower humus content (H) but
higher aeration (A).

DISCUSSION
Ecological differentiation among cytotypes

Niche differentiation is considered an important prezygotic iso-
lation mechanism fostering polyploid establishment (Levin,
1983; Fowler and Levin, 1984; Thompson and Lumaret, 1992;
Levin, 2003). Although climatic niches are often shared on a
broad scale (Glennon et al., 2014; but see Thompson et al.,
2014), ecological differentiation is amply documented on vari-
ous scales (e.g. Johnson et al., 2003; Duchoslav et al., 2010;
Mclntyre, 2012). Using Landolt indicator values (Landolt et al.,
2010) as a surrogate for fine-scale environmental parameters,
we show that the four groups — corresponding to three cytotypes
— constituting S. carniolicus s.l. are indeed differentiated along
a complex ecological gradient (Fig. 2, Supplementary
Information Figs S1, S2; Table 1). Eastern diploids are found in
open, wind-exposed, cold habitats with well-drained substrates,
whereas hexaploids occupy habitats with deeper, more humus-
and nutrient-rich soils and higher temperatures; habitats of tet-
raploids show intermediate ecological characteristics. Western
diploids occur in drier conditions than these three groups
(Supplementary Information Fig. S1).

The ecological differentiation of eastern diploids and their
polyploid derivatives exhibits a clear directionality, reflecting
the order of polyploidization events, i.e. tetraploids are auto-
polyploid derivatives of eastern diploids and hexaploids origi-
nated from tetraploids (western diploids were not involved in
the ancestry of polyploids; Escobar Garcia ef al., 2012;
Sonnleitner et al., 2013). Directional niche shift is probably the
result of directional phenotypic change (e.g. taller growth of
polyploids: Bennett, 1971), even though the relationship be-
tween phenotype and genome size (which correlates with
ploidy level in S. carniolicus: Sonnleitner et al., 2010) is not al-
ways monotonic (Balao er al., 2011). The phenotypic traits
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FiG. 2. Niche differentiation among western diploids (n = 612), eastern diploids (n =305), tetraploids (n =499) and hexaploids (n = 1410) of Senecio carniolicus

derived from regression analyses of mean Landolt indicator values (Landolt et al., 2010) for temperature (T), continentality (K), light (L), soil moisture (F), soil

reaction (R), soil nutrients (N), humus content (H), soil aeration (D) and soil moisture variability (W). Bars show fixed-effects coefficients (*=SE) of linear mixed-

effects models representing differences in mean indicator values between two groups and point towards the group with the higher value; asterisks indicate significant
differences.

TaBLE 1. Comparison of niche optima (niche shift) and ecological
tolerance (niche breadth) among groups of Senecio carniolicus in
the Alps derived from canonical correspondence analysis

Shift* Breadth
Western diploids — eastern diploids 0-001 0-480
Western diploids — tetraploids 0-394 0-534
Western diploids — hexaploids 0-003 0-866
Eastern diploids — tetraploids 0-006 0-514
Eastern diploids — hexaploids <0-001 0-147
Tetraploids — hexaploids <0-001 0-508

*# P values of significant differences among groups after Dunn—Sidak cor-
rection for multiple comparisons are given in bold.

underlying the directional ecological differentiation of poly-
ploid S. carniolicus are unknown, but probably include stouter
habit (Flatscher et al., 2015) conferring higher competitive abil-
ity (Levin, 2002; Parisod et al., 2010) in habitats with denser
vegetation cover (Sonnleitner et al., 2010). In addition, poly-
ploid S. carniolicus may have higher nutritional demands,
which would be more easily met in habitats with deeper and
more nutrient-rich soil (Supplementary Information Fig. S1). In

polyploid S. carniolicus these same traits may be (co-)responsi-
ble for the lack of increased niche breadth, presumed to be
common in polyploids (Parisod ef al., 2010).

Displacement, but no narrowing of niches in sympatry

Although character displacement is recognized as an impor-
tant mechanism for enabling closely related species to coexist
(Dayan and Simberloff, 2005; Pfennig and Pfennig, 2009;
Beans, 2014), it has rarely been invoked in the context of cyto-
type co-occurrence (Van Dijk et al., 1992; Van Dijk and
Bijlsma, 1994). We show that the niches of cytotypes in a het-
eroploid species are affected by the presence/absence of other
cytotypes, i.e. that niche displacement (Peers et al., 2013) oc-
curs. Specifically, niche optima between homoploid and hetero-
ploid sites were shifted roughly along the same environmental
gradients that determine the cytotypes’ niches, leading to stron-
ger ecological differentiation of co-occurring cytotypes (Fig. 3,
Supplementary Information Fig. S3). Previously, patterns con-
sistent with niche displacement have been found in the grass
Anthoxanthum alpinum in a narrow contact zone of ecologically
non-differentiated diploids and autotetraploids (Felber-Girard
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FiG. 3. Niche displacement between homoploid (solid outline) and heteroploid
sites (dashed outline) of western diploids (7homoploia = 337, Mheieroploid = 275),
eastern diploids (heteroploia = 270),  tetraploids  (Mhomoploid = 294, Mheteroploid =
205) and hexaploids (1homoploid = 856, Mheieroploid = 334) of Senecio carniolicus
derived from canonical correspondence analysis. Homoploid sites of eastern dip-
loids were not included due to their low number. Differentiation of niche optima
was defined as the Euclidean distance among centroids of ellipses weighted by
axis inertia. The correlation circle (r=1) shows the environmental variables
used as constraints in the ordination, i.e. the Landolt indicator values for temper-
ature (T), continentality (K), light (L), soil moisture (F), soil reaction (R), soil
nutrient (N), humus content (H), soil aeration (D) and soil moisture variability
(W) averaged for all vascular plant species surrounding S. carniolicus individ-
uals. Axes inertias (i.e. eigenvalues of constrained axes) are given in parenthe-
ses. Arrows indicate the direction of shifts in niche optima from homoploid to
heteroploid sites.

TaBLE 2. Comparison of niche optima (niche shift) and ecological
tolerance (niche breadth) between homoploid and heteroploid
sites for groups of Senecio carniolicus

Shift* Breadth

Western diploids:

with tetraploids 0-105 0-053

with hexaploids <0-001 0-581
Tetraploids:

with western diploids 0-493 0-594

with eastern diploids 0-001 0-765

with hexaploids <0-001 0-750
Hexaploids:

with western diploids 0-001 0-471

with eastern diploids 0-042 0-447

with tetraploids <0-001 0-601

# P values of significant differences after Dunn—Sidak correction for multi-
ple comparisons are given in bold.

et al., 1996) as well as in contact zones of the diploid and auto-
tetraploid orchid Dactylorrhiza maculata s.I. with evidence for
wider ecological amplitudes in homoploid compared with het-
eroploid populations (Stdhlberg and Hedrén, 2009). However,
both studies cover only one or two local contact zones.
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Patterns consistent with niche displacement can also result
from variation in resource availability between homo- and het-
eroploid populations, ecological sorting or chance (Grant,
1975; Arthur, 1982). In S. carniolicus, homoploid and hetero-
ploid sites are found over large parts of the distribution range
and are not geographically separated (Fig. 1), rendering varia-
tion in resource availability or processes of ecological sorting
as the sole causes for the observed divergence unlikely. Using a
randomization procedure (i.e. comparing the actual shift against
a null distribution), we confirmed that niche shifts are stronger
than expected by chance.

The occurrence of niche displacement in S. carniolicus de-
pended on the cytotypes involved, but always was symmetrical,
making competitive superiority of either partner (Cooley, 2007)
as the underlying cause unlikely. Hexaploids showed signifi-
cant displacement in sympatry with western diploids and tetra-
ploids, but not with eastern diploids (Table 2; this may be
responsible for the lack of statistical significance in the CCA)
despite their frequent co-occurrence (Schonswetter et al., 2007,
Hiilber et al., 2009; Sonnleitner et al., 2010). As hexaploids
and eastern diploids are reproductively isolated via strongly re-
duced seed set and seed viability (Sonnleitner et al., 2013) and
showed well-differentiated niches (Fig. 2, Table 1), selective
pressure for stronger niche differentiation may be Ilow.
Tetraploids showed significant displacement with hexaploids
and eastern diploids, but not with western diploids (Table 2),
despite having similar ecological requirements (Fig. 2), which
might be due to their rare co-occurrence (Sonnleitner et al.,
2010).

In contrast to previously studied plants (Felber-Girard et al.,
1996; Stéhlberg and Hedrén, 2009), niche displacement in
S. carniolicus includes shifts in niche optima but no significant
change in niche breadth (Table 2). Niche breadths may remain
constant if resource use expands into or increases in portions of
the fundamental niche that are not or are only rarely realized in
homoploid populations (e.g. Peers et al., 2013). Due to our
sampling design (on average 29 S. carniolicus individuals per
location) it cannot be ruled out that rarely occupied habitats
have remained under-sampled and that our estimates of niche
breadth are therefore conservative.

A consequence of niche displacement is that upon secondary
contact polyploids and their lower-ploid ancestors can form sta-
ble contact zones more easily than expected from the cytotypes’
ecological niches, especially if cytotypes still compete for re-
sources or are prone to fitness loss due to the formation of infe-
rior hybrids in heteroploid crosses, as probably is the case for
S. carniolicus, where pollination barriers are lacking and poly-
ploid cytotypes are interfertile (Sonnleitner et al., 2013).
Hence, niche displacement may be (co-)responsible for second-
ary contact zones being common (Petit et al., 1999). An alterna-
tive yet not mutually exclusive consequence of niche
displacement can be that overall ecological niches of polyploids
and their lower-ploid ancestors converge after cytotypes have
attained largely or completely non-overlapping distributions.
This may contribute to the observed similarity of climatic
niches of diploid plants and their polyploid derivatives
(Glennon et al., 2014), or the perceived niche expansion of in-
vasive polyploids in their non-native ranges (te Beest et al.,
2011). Testing any of these hypotheses is currently not possible
because studies on ecological differentiation among cytotypes
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usually do not discriminate between homoploid and heteroploid
populations. As is evident from the present study, taking niche
displacement into account will be essential for understanding
ecological consequences of polyploidy, a major force generat-
ing biodiversity.

SUPPLEMENTARY INFORMATION

Supplementary data are available online at www.aob.oxfordjour
nals.org and consist of the following. Table S1: an overview of
the sample sites and DNA ploidy level of sampled individuals.
Figures S1-S4: detailed information concerning niche differen-
tiation of the four groups of S. carniolicus and niche displace-
ment within groups between homoploid and heteroploid sites.
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