Annals of Botany 117: 217-235, 2016

doi:10.1093/aob/mcv 180, available online at www.aob.oxfordjournals.org

ANNALS OF

REVIEW

Selenium accumulation by plants
Philip J. White">*

Scientist Fellowship Program, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
* For correspondence. E-mail philip.white@hutton.ac.uk

e Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely
from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not
an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology
of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate
<100mg Se kg™ dry matter and cannot tolerate greater tissue Se concentrations. However, some ]l)lant species
have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100mg Se kg dry matter.
These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of
1000-15 000 mg Se kg dry matter and are called Se hyperaccumulators.

e Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the
possible genetic basis of differences in these between and within plant species. The review focuses initially on adap-
tations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that
hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm spe-
cies and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and
chromosomal loci that might enable the development of crops with greater Se concentrations in their edible
portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the
rhizosphere and in their tissues.

e Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The
ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the
accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins,
through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concen-
trations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.

Key words: Arabidopsis, Astragalus, ecology, evolution, genetic variation, hyperaccumulation, metabolism,
quantitative trait locus (QTL), selenium, Stanleya, sulphur.
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INTRODUCTION: SELENIUM IN SOILS, PLANTS
AND ANIMALS

Selenium (Se) is an essential mineral element for both human
and animal nutrition (White and Brown, 2010). In humans, Se
deficiency is associated with hypothyroidism, cardiovascular
disease, a weakened immune system, male infertility, cognitive
decline and increased incidence of various cancers
(Fairweather-Tait et al., 2011; Rayman, 2012; Fordyce, 2013).
The Institute of Medicine (USA) has proposed a recommended
dietary allowance of 55 ug Se d™' for adult humans (Institute of
Medicine, 2000). Unfortunately, it is estimated that the diets of
as many as 1 billion people might lack sufficient Se for their
well-being (Combs, 2001; Fairweather-Tait et al., 2011;
Joy et al., 2014; Stoffaneller and Morse, 2015). Since much of
the Se in human diets is derived, either directly or
indirectly, from edible plants, the lack of Se in human diets is
generally attributed to crop production on soils with low
Se content or Se phytoavailability (Broadley et al., 2006;
White and Broadley, 2009; Chilimba et al., 2011; Fairweather-
Tait et al., 2011; Rayman, 2012; Fordyce, 2013; Joy et al.,
2015).

Excessive dietary Se intakes can also be harmful to humans
and animals (Fairweather-Tait er al., 2011; Rayman, 2012;
Fordyce, 2013). The symptoms of mild selenosis in humans in-
clude dermatitis, cracking of nails, hair loss and garlicky breath
(due to exhalation of dimethylselenide), while severe selenosis
can cause acute respiratory distress, myocardial infarction and
renal failure. The Institute of Medicine (USA) has suggested a
tolerable upper intake of 400 ug Se d™' for adults (Institute of
Medicine, 2000). The symptoms of selenosis in animals, which
occur when they consume feed with >1-5mg Se kg™' dry mat-
ter (DM), include garlicky breath, hair loss, hoof deformation
(in cattle), abnormal posture, lack of vitality, slow growth, an-
orexia, diarrhoea, reduced reproductive performance, fetal de-
formities and respiratory failure (Dhillon and Dhillon, 2003;
Fordyce, 2013). Plants growing on seleniferous soils have tissue
Se concentrations sufficient to cause selenosis in animals
(Rosenfeld and Beath, 1964; Brown and Shrift, 1982; Dhillon
and Dhillon, 2003; Fordyce, 2013).

Selenium concentrations in plants are directly related to Se
phytoavailability in the soil, as witnessed by the larger Se con-
centrations in (1) plants growing in natural soils with greater Se
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phytoavailability (Rosenfeld and Beath, 1964; Brown and
Shrift, 1982; Ihnat, 1989); (2) plants growing in soils anthropo-
genically contaminated with Se (Fang and Wu, 2004; Wu,
2004); (3) produce grown on agricultural soils with greater Se
phytoavailability (Thnat, 1989; Broadley et al., 2006; Williams
et al., 2009; Lee et al., 2011; Garrett et al., 2013; Joy et al.,
2015); and (4) produce to which soil or foliar Se fertilizers have
been applied (Broadley et al., 2006; White and Broadley, 2009;
Chilimba er al., 2012; Fordyce, 2013; Alfthan ez al., 2015).
Indeed, the application of inorganic Se fertilizers has been par-
ticularly effective in increasing Se concentrations in edible
crops, increasing the Se content of diets and improving the Se
status, and health, of both animals and humans (White and
Broadley, 2009; Alfthan et al., 2015).

The concentration and chemical forms of Se in natural soils
are determined primarily by geology (Dhillon and Dhillon,
2003; Broadley et al., 2006; White et al., 2007bh; Fordyce,
2013; Pilbeam et al., 2015). Selenium concentrations in most
soils lie in the range 0-01-2-0mg Se kg™', but soils associated
with particular geological features can reach concentrations of
1200 mg Se kg_1 (Dhillon and Dhillon, 2003; Fordyce, 2013;
Pilbeam et al., 2015). The Se concentrations in the latter soils
are toxic to many plants and they support a unique flora
(Rosenfield and Beath, 1964; Brown and Shrift, 1982).
Seleniferous soils are widespread in the Great Plains of the
USA, Canada, South America, Australia, India, China and
Russia (Dhillon and Dhillon, 2003; Fordyce, 2013; Pilbeam
et al.,2015).

Selenate (Se0427) is the main water-soluble form of Se in
oxic soils (pH + pe > 15), which include most cultivated soils,
whereas selenite (SeO32_) predominates in anaerobic soils with
a neutral to acidic pH (pH + pe = 7-5-15), such as paddy soils
(Mikkelsen et al., 1989; White et al., 2007b; Fordyce, 2013;
Pilbeam et al., 2015). Selenide (Se*) species are stable only
under low redox conditions (pH + pe < 7-5) and are rarely pre-
sent in cultivated soils. Selenate is relatively mobile in the soil
solution, but selenite is strongly absorbed by iron and alumin-
ium oxides/hydroxides and, to a lesser extent, by clays and or-
ganic matter (Fordyce, 2013; Pilbeam et al., 2015). Thus, the
addition of selenate to soils facilitates immediate Se accumula-
tion by plants, while selenite provides a longer lasting Se fertil-
izer (Broadley et al., 2006; Fordyce, 2013; Pilbeam et al.,
2015).

Selenium is not considered to be an essential element for
flowering plants (angiosperms), although it is considered to be
a beneficial element since it can stimulate growth, confer toler-
ance to environmental factors inducing oxidative stress, and
provide resistance to pathogens and herbivory (Quinn et al.,
2007; Pilon-Smits et al., 2009; White and Brown, 2010; El
Mehdawi and Pilon-Smits, 2012; Feng et al., 2013).
Angiosperm species have been divided into three ecological
types according to their ability to accumulate Se in their tissues
(Rosenfeld and Beath, 1964; Brown and Shrift, 1982; White
et al., 2007a). These types are designated non-accumulator, Se-
indicator and Se-accumulator species. Most angiosperm species
are non-accumulator species. These species cannot tolerate tis-
sue Se concentrations >10-100 ug Se g~' DM and cannot colo-
nize seleniferous soils (Rosenfeld and Beath, 1964; White
et al., 2004; Dhillon and Dhillon, 2009; Fordyce, 2013). In con-
trast, Se-indicator species are able to tolerate tissue Se
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concentrations approaching 1 mg Se g~' DM and colonize both
non-seleniferous and seleniferous soils (Rosenfeld and Beath,
1964; Moreno Rodriguez et al., 2005). Tissue Se concentration
in Se-indicator plants is directly related to Se phytoavailability
in the soil and, therefore ‘indicates’ soil Se phytoavailability
(cf. Baker, 1981). The distribution of Se-accumulator species is
generally restricted to seleniferous soils, where their leaf Se
concentrations can exceed 1 mg Se g DM (Table 1; Rosenfeld
and Beath, 1964; Brown and Shrift, 1982). These species in-
clude several members of the Asteraceae, Brassicaceae and
Fabaceae, which accommodate large Se concentrations in leaf
trichomes and epidermal cells (Freeman et al., 2006, 2010; El
Mehdawi and Pilon-Smits, 2012). Several members of the
Lecythidaceae family [e.g. Brazil nut (Bertholletia excelsa
Humb. and Bonpl.), paradise nut (Lecythis zabucajo Aubl.),
coco de mono (Lecythis ollaria Loefl.) and monkeypot nut
(Lecythis minor Jacq., syn. Lecythis elliptica Kunth.)] are also
renowned for accumulating large Se concentrations in their fruit
and seed (Chang et al., 1995; Hammel et al., 1996; Dernovics
et al., 2007). Selenium concentrations can reach 512 g g™ f.
wt, which is equivalent to about 530 pg g~' DM, in Brazil nuts
(Chang ef al., 1995), 5-12mg g~' DM in seeds of coco de
mono (Hammel et al., 1996; Ferri et al., 2004) and 4—-6 mg g*1
in monkeypot nuts (Dernovics et al., 2007, Németh et al.,
2013). It is thought that the ability to accumulate Se arose by
convergent evolution of appropriate Se transport and biochemi-
cal pathways in disparate angiosperm clades during geological
periods when seleniferous soils were more widespread than
they are today (Brown and Shrift, 1982; White et al., 2007a;
Cappa and Pilon-Smits, 2014). Species are defined as ‘Se-
hyperaccumulators’ if their leaves contain >1mg Se g~' DM
when sampled from the natural environment (Reeves and
Baker, 2000; Terry et al., 2000), although there is debate as to
whether this threshold should be lowered to 100 ug Se g' DM
(Reeves and Baker, 2000; van der Ent et al., 2013). Thus,
species that hyperaccumulate Se are an extreme sub-set of Se-
accumulator species.

SELENIUM UPTAKE, TRANSLOCATION AND
METABOLISM IN PLANTS

Plant roots can take up Se as selenate (SeO42’), selenite
(SeO32_; HSeO3; H,SeOs) or organoselenium compounds,
such as selenocysteine (SeCys) and selenomethionine (SeMet),
but are unable to take up colloidal elemental Se or metal sele-
nides (White and Broadley, 2009). Selenate uptake by root cells
from the rhizosphere is catalysed by high-affinity sulphate
transporters (HASTs) homologous to the arabidopsis
(Arabidopsis  thaliana [L.] Heynh.) AtSULTRI1;1 and
AtSULTRI1;2 transporters (Terry et al., 2000; White et al.,
2004, 2007b; Sors et al., 2005b; Shinmachi et al., 2010;
Gigolashvili and Kopriva, 2014). In arabidopsis, AtSULTR1;1
contributes little to selenate uptake in S-replete plants, but its
relative contribution is increased greatly when plants have in-
sufficient S for growth (El Kassis et al., 2007; White et al.,
2007b). Phosphate transporters, such as rice OsPT2, catalyse
the uptake of HSeO5;™ (Zhang e al., 2014), and homologues of
the rice aquaporin channel OsNIP2;1 catalyse the uptake of
H,SeO3 (Zhao et al., 2010; Pommerrenig et al., 2015).
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Transporters that catalyse the uptake and movement of cysteine
and methionine within the plant might transport SeCys and
SeMet (Tegeder, 2012).

The arabidopsis genome contains at least 12 genes encoding
sulphate transporters, which are divided into four distinct
groups that encode proteins with contrasting physiological
functions (Gigolashvili and Kopriva, 2014). An equivalent
number of genes encoding sulphate transporters are likely to be
present in the genomes of other angiosperms, including species
that hyperaccumulate Se (Buchner et al., 2004, 2010;
Shinmachi et al., 2010; Cabannes et al., 2011; Takahashi et al.,
2012; Gigolashvili and Kopriva, 2014). The expression of genes
encoding SULTRI1;1 and SULTRI;2 generally increases in
roots of non-accumulator and Se-indicator species when their
growth is restricted by S supply (El Kassis er al., 2007;
Rouached et al., 2008; Shinmachi et al., 2010; Schiavon et al.,
2015), or when tissue Se concentrations rise (Takahashi et al.,
2000; Van Hoewyk et al., 2005; Zhang et al., 2006a; Rouached
et al., 2008; Hsu et al., 2011; Inostroza-Blancheteau et al.,
2013). Roots of Se-hyperaccumulator species have constitu-
tively high expression of these genes, which might account for
their large selenate uptake capacity (Freeman et al., 2010;
Cabannes et al., 2011; Schiavon et al., 2015). The increased ex-
pression of genes encoding HASTSs, particularly SULTRI;1, re-
sults in greater uptake capacity for both sulphate and selenate,
and accounts for the greater tissue Se concentrations in
S-starved plants compared with S-replete plants (Terry ef al.,
2000; White et al., 2004, 2007b; Hsu et al., 2011). Sulphur-
replete arabidopsis mutants lacking SULTR1;2, but not those
lacking other sulphate transporters, take up less selenate and
exibit greater tolerance to Se in the rhizosphere than wild-type
plants (Shibagaki et al., 2002; El Kassis et al., 2007; Barberon
et al., 2008). Similarly, the expression of OsPT2 increases in
roots of plants lacking sufficient phosphorus and results in a
greater capacity for selenite uptake (Zhang et al., 2014), and
rice mutants lacking OsPT2 take up significantly less selenite
than wild-type plants (Zhang et al., 2014).

To account for the characteristically greater Se/S quotient in
shoots of Se-hyperaccumulator plants than in shoots of other
plants growing under the same conditions (Rosenfeld and
Beath, 1964; Bell et al., 1992; Feist and Parker, 2001; Galeas
et al., 2007; White et al., 2007b; Freeman et al., 2010; Cappa
et al., 2014; Harris et al., 2014; DeTar et al., 2015; Schiavon
et al., 2015), it has been proposed that the complement of
HASTS s present in the plasma membranes of root cells differs in
its selenate/sulphate selectivity between Se-hyperaccumulator
and non-accumulator plants (White et al., 2004, 2007a).
Specifically, it is hypothesized that the dominant HASTSs in the
plasma membrane of roots of Se-hyperaccumulator plants are
selective for selenate, whereas those in other angiosperms are
selective for sulphate. Interestingly, Cabannes er al. (2011)
reported that the amino acid sequence of the SULTRI1 transpor-
ters cloned from all the Astragalus species they studied (the
Se-hyperaccumulator species A. bisulcatus [Hook.] A. Gray,
A. crotalariae A. Gray and A. racemosus Pursh., and the non-
Se-hyperaccumulator  species A. glycyphyllos L. and
A. drummondii Hook.) differed from that of other angiosperms.
In particular, they identified an alanine residue in the SULTR1
cloned from the Astragalus species that corresponded to a con-
served glycine residue in all other transporters of the eukaryotic
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sulphate permease (SulP) family in a position that might deter-
mine the selectivity of this transporter. Harris ef al. (2014) ob-
served that increasing sulphate concentration in the rhizosphere
reduced leaf molybdenum (Mo) concentration in the Se-
hyperaccumulator species Stanleya pinnata (Pursh) Britton but
not in the Se-indicator plant Indian mustard [Brassica juncea
(L.) Czern.] which, they suggested, might reflect different spe-
cificities of the complement of selenate/sulphate/molybdate
transporters in Se-hyperaccumulator species and those of other
angiosperms. Conversely, increasing the molybdate concentra-
tion in the rhizosphere had no effect on shoot S concentration
in the Se-hyperaccumulator species Astragalus bisulcatus and
A. racemosus, but reduced shoot S concentration in congeneric
non-hyperaccumulator species (DeTar et al., 2015).

Selenite is rapidly converted to organoselenium compounds
in the root, whereas selenate is delivered immediately to the xy-
lem (White et al., 2004; Ximénez-Embun et al., 2004; Li et al.,
2008). Sulphate transporters homologous to arabidopsis
AtSULTR2;1, AtSULTR2;2 and AtSULTR3;5 have been im-
plicated in the long-distance transport of selenate in the xylem
(Takahashi er al., 2000; Gigolashvili and Kopriva, 2014).
Selenium is also transported, to a very limited extent, as SeMet
and selenomethionine Se-oxide (SeOMet) in the xylem (Li
et al., 2008). In arabidopsis, the low-affinity sulphate transpor-
ters AtSULTR2;1 and AtSULTR2;2 are thought to catalyse sel-
enate uptake into cells within the stele, whereas AtSULTR3;5
appears to modulate the activity of AtSULTR?2;1, but does not
catalyse transport itself (Kataoka et al., 2004a). The expression
of AtSULTR2;1, AtSULTR2;2 and their homologues in other
plants is induced both by S starvation and by increasing Se
availability (Takahashi et al., 2000; Buchner et al., 2004, 2010;
Van Hoewyk et al., 2005; Gigolashvili and Kopriva, 2014).
Interestingly, the expression of SULTR2 genes in roots of
S-replete plants of Se-hyperaccumulating Astragalus species is
greater than in S-replete plants of non-Se-hyperaccumulator
Astragalus species and S-starved plants of other non-Se-hyper-
accumulator species (Cabannes et al., 2011). This might ac-
count for the constitutively large Se fluxes from the root to the
shoot in Astragalus species that hyperaccumulate Se. In addi-
tion, the amino acid sequences of SULTR2 and SULTR3;4
from the Se-hyperaccumulator species A. racemosus and
A. bisulcatus differ from those of the congeneric non-Se-hyper-
accumulator species A. drummondii (Cabannes et al., 2011).
Stanleya pinnata also exhibits a high constitutive expression of
SpSULTR2;1 (Schiavon et al., 2015).

Selenate is assimilated into organoselenium compounds in
plastids (White et al., 2007b; Pilon-Smits and LeDuc, 2009;
Pilon-Smits, 2012). The sulphate transporter AtSULTR3;1 is
localized in the chloroplast membrane (Cao et al., 2013) and
might catalyse selenate transport into plastids. Selenate is first
activated by adenosine triphosphate sulphurylase (ATPS) to
form adenosine 5’-phosphoselenate (APSe), which is then re-
duced to selenite by adenosine 5’-phosphosulphate reductase
(APR) using reduced glutathione (GSH) as the electron donor.
There are four genes encoding ATPS and three genes encoding
APR in the arabidopsis genome, and equivalent numbers in the
genomes of other plant species (Schiavon ez al., 2015). In non-
accumulator and Se-indicator species, the expression of genes
encoding ATPS (APS) decreases as S supply is reduced,
whereas in Se-hyperaccumulator species, such as S. pinnata,
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they appear to be constitutively expressed (Freeman et al.,
2010; Schiavon et al., 2015). Intriguingly, the expression of
APS and several SULTR genes appears to be co-regulated
through the expression of micro RNA (miRNA), such as
miRNA395 (Paul et al., 2015). The conversion of selenate to
selenite appears to be the rate-limiting step in the assimilation
of Se into organic compounds (Pilon-Smits et al., 2009).
Overexpressing genes encoding ATPS or APR in transgenic
plants leads to the accumulation of organic Se in their
leaves (Pilon-Smits et al., 1999b; Van Huysen et al., 2004;
Banuelos et al., 2005b; Sors et al., 2005a). Selenite is reduced
to selenide enzymatically by sulphite reductase (Pilon-Smits,
2012) or non-enzymatically by reduced glutathione (Terry
et al., 2000).

The synthesis of SeCys from serine and selenide is catalysed
by cysteine synthase, an enzyme complex containing both ser-
ine acetyl transferase (SAT) and O-acetylserine (thiol) lyase
(OAS-TL) subunits (Birringer et al., 2002; Sors et al., 2005b;
White et al., 2007b; Ogra and Anan, 2012; Pilon-Smits, 2012).
Many genes encoding enzymes in the primary S/Se assimilation
pathway are upregulated when plant Se supply is increased, and
often exhibit constitutively high expression in Se-hyperaccumu-
lator species (Van Hoewyk et al., 2005, 2008b; Freeman et al.,
2010). Selenomethionine is synthesized from SeCys and
O-phosphohomoserine (OPHS) through the sequential actions
of cystathionine y-synthase (CyS), which produces selenocysta-
thionine (SeCysta), cystathionine B-lyase (CBL), which produ-
ces selenohomocysteine (SeHCys), and methionine synthase
(MTR). Selenocysteine is the most abundant form of Se in
unselenized garlic (Allium sativum L.; Cai et al., 1995), and
SeMet is often the most abundant form of Se in edible seeds
and cereal grains (Smrkolj et al., 2005, 2006, 2007; Broadley
et al., 2006; Kapolna et al., 2007, Rayman et al., 2008,
Thavarajah et al., 2008; Zhu et al., 2009; Seppinen et al., 2010;
Hart et al., 2011; Fairweather-Tait et al., 2011; Shao et al.,
2014), in seeds of Lecythidaceae (Vonderheide et al., 2002;
Dumont et al., 2006; Ferri et al., 2004; Németh et al., 2013; da
Silva et al., 2013) and in potato (Solanum tuberosum L.) tubers
(Gionfriddo et al., 2012). Selenocystathionine appears to be the
most abundant form of Se in the non-Se-hyperaccumulator spe-
cies Stanleya albescens M.E. Jones, and is also present at high
concentrations in tissues of several Se-hyperaccumulator spe-
cies (Birringer et al., 2002; Ferri et al., 2004; Freeman et al.,
2006, 2010; Németh et al., 2013). It is also the main Se com-
pound in cladodes and fruit of selenized prickly pear (Opuntia
ficus-indica [L.] Mill.; Bafiuelos er al., 2011). Interestingly,
most of the Se in roots and shoots of the Se-hyperaccumulator
species Cardamine hupingshanensis KM Liu et al. is found as
selenocystine (SeCys,; Yuan et al., 2013), which is also abun-
dant in fruits of Lecythidaceae (Dumont ef al., 2006; da Silva
et al., 2013), and Se biofortification of some plants, such as
Japanese pungent radish (Raphanus sativus L.), results in the
formation of selenohomolanthionine from SeHCys (Ogra et al.,
2007). Selenized brassicas, such as broccoli, cauliflower
(Brassica oleracea L.) and black mustard (Brassica nigra [L.]
K.Koch), can also contain large concentrations of seleno-gluco-
sinolates and their Se-aglycons (Matich et al., 2012, 2015;
Ouerdane et al., 2013), and selenosugars, possibly of cell wall
origin, have also been reported in appreciable concentrations in
selenized plants (Aureli ez al., 2012).
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Selenium toxicity has been attributed to the non-specific re-
placement of cysteine and methionine in proteins by SeCys and
SeMet (Brown and Shrift, 1982; Van Hoewyk, 2013). The mag-
nitude of this appears to be related to the tissue Se/S quotient,
rather than the Se content alone (White er al., 2004; El Kassis
et al., 2007). In particular, the replacement of cysteine with
SeCys prevents the formation of disulphide bridges, which are
essential for protein structure and function, and the replacement
of cysteine with SeCys in the active site of enzymes impairs
catalytic activity (Brown and Shrift, 1982; Van Hoewyk, 2013).
Thus, the conversion of SeCys and SeMet to non-toxic or vola-
tile Se metabolites can increase plant Se tolerance (Sors et al.,
2005b; White et al., 2007b; Pilon-Smits and LeDuc, 2009; Van
Hoewyk, 2013). Selenocysteine methyltransferase (SMT) catal-
yses the methylation of SeCys to Se-methylselenocysteine
(SeMSeCys), and S-adenosyl-methionine:methionine methyl
transferase (MMT) catalyses the methylation of SeMet to Se-
methylselenomethionine (SeMSeMet; Sors et al., 2005h; White
et al., 2007b; Pilon-Smits and LeDuc, 2009; Van Hoewyk,
2013). Genes encoding functional SMT are not thought to exist
in plants with little Se tolerance, such as arabidopsis (Lyi et al.,
2005; Van Hoewyk, 2013; Zhao et al., 2015), and there is only
a single gene encoding MMT in the arabidopsis genome
(Tagmount et al., 2002). The expression of BoSMT increases
upon exposure of broccoli to selenate and correlates with the
accumulation of SeMSeClys (Lyi et al., 2005), while differences
among Astragalus and Stanleya species in their ability to accu-
mulate Se appear to be directly correlated with SMT activity
(Sors et al., 2005a, 2009; Freeman et al., 2010). The AbSMT
gene appears to be expressed constitutively in Astragalus bisul-
catus (Pickering et al., 2003). SeMSeClys is the most abundant
form of Se in roots and shoots of Se-hyperaccumulator species,
such as A. bisulcatus and Stanleya pinnata (Birringer et al.,
2002; Pickering et al., 2003; Sors et al., 2005a; Freeman et al.,
2006, 2010; Lindblom et al., 2013; Alford et al., 2014), in al-
lium (chive, garlic, leek, onion) and brassica (broccoli, Brussels
sprouts, cabbage, cauliflower, Chinese cabbage, kale) crops fer-
tilized with either selenate or selenite (Birringer et al., 2002;
Sugihara et al., 2004; Rayman et al., 2008; Zhu et al., 2009;
Fairweather-Tait et al., 2011; Kéapolna et al., 2012; Avila et al.,
2014; Thosaikham et al., 2014), and in leaves of other vegeta-
ble crops fertilized with selenite (Sugihara et al., 2004; Mazej
et al., 2008). It is also present in large concentrations in tubers
of selenized potato (Gionfriddo ef al., 2012) and seeds of sele-
nized legumes (Smrkolj et al., 2007; Shao et al., 2014).
Selenocysteine can also be converted to alanine and elemental
Se by a SeCyslyase (cpNifS) located in the chloroplast (van
Hoewyk et al., 2008a; Pilon-Smits and Leduc, 2009). Although
elemental Se is not commonly observed in leaves, significant
amouts of elemental Se have been found in stems, nodules and
roots of Se-hyperaccumulator plants grown in the presence of
appropriate endosymbiotic bacteria and fungi (Valdez Barillas
et al., 2012; Lindblom et al., 2013; Sura-de Jong et al., 2015).
It is also noteworthy that plant genomes contain genes encoding
putative Se-binding proteins (SBPs) that might contribute to Se
tolerance in plant tissues (Agalou et al., 2005; Dutilleul et al.,
2008). In the arabidopsis genome, there are three genes encod-
ing SBPs. The expression of AzSBPI, and its homologues in
other plants, is upregulated in response to S starvation
(Hugouvieux et al., 2009; Byrne et al., 2010).
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Both SeMSeCys and SeMSeMet can be conjugated with
glutamate to form y-glutamyl-SeMSeClys (y-Glu-SeMSeClys) or
v-glutamyl-SeMSeMet (y-Glu-SeMSeMet), or converted to
dimethyldiselenide (DMSe) or dimethylselenide (DMDSe) and
volatilized (Sors et al., 2005b; White et al., 2007b; Pilon-Smits
and LeDuc, 2009; Ogra and Anan, 2012; Van Hoewyk, 2013).
SeMSeMet can also be converted to dimethylselenonium
propionate and thence to DMSe (Grant et al., 2004). Many Se-
hyperaccumulator species, such as A. bisulcatus (Freeman et al.,
2006; Alford et al., 2014), and allium crops (garlic, leek, onion)
grown on Se-rich soils accumulate significant concentrations of
v-glutamyl-SeMeSeCys (Sugihara et al., 2004; Ogra et al.,
2005; Broadley et al., 2006; White et al., 2007b; Rayman et al.,
2008; Fairweather-Tait et al., 2011; Kapolna et al., 2012). In
A. bisulcatus, the formation of y-glutamyl-SeMeSeCys appears
to be promoted by rhizobial symbiosis, which has been attrib-
uted to a greater supply of glutamate in nodulated plants (Alford
et al., 2014). The Se compound 7-glutamyl-Secystathionine has
also been reported in some Se-hyperaccumulator plants (e.g.
monkeypot nuts; Dernovics et al., 2007). In general, Se is vola-
tilized as DMSe in non-hyperaccumulator species and as
DMDSe in Se-hyperaccumulator species (Pilon-Smits and
LeDuc, 2009). There is considerable variation among angio-
sperms in their ability to volatilize Se (Terry et al., 1992; Pilon-
Smits et al., 1999a; de Souza et al., 2000), and the production of
these volatiles appears to be determined by the conversion of
SeCys to SeMet, and transgenic plants overexpressing CyS vola-
tilize more Se than untransformed plants (Pilon-Smits and
LeDuc, 2009).

Selenium concentrations tend to be greatest in the younger
leaves of plants and generally increase to a maximum during
seedling growth, then decline before, or upon, flowering, when
Se is translocated from leaves to reproductive organs
(Rosenfeld and Beath, 1964; Turakainen et al., 2004; Galeas
et al., 2007, White et al., 2007b; Cappa et al., 2014; Harris
et al., 2014). This is consistent with transcriptional analyses
suggesting that Se/S assimilation occurs predominantly in
younger leaves and especially the first leaves a plant produces
(White et al., 2007b). Selenium is readily redistributed in the
phloem as both selenate and the organoselenium compounds
SeMet and SeMSeCys (Carey et al., 2012). In arabidopsis, the
HAST AtSULTRI1;3 is thought to catalyse selenate uptake into
the phloem and the expression of AzSULTRI;3 is increased in
S-deficient plants (Yoshimoto et al., 2003).

Most plant cells can accumulate selenate in their vacuoles.
When non-accumulator plants are fertilized with selenate, much
of this is translocated to the shoot and sequestered in the vacuoles
of cells within the vasculature and leaf meophyll (Ximénez-
Embun et al., 2004; Mazej et al., 2008). Sulphate transporters ho-
mologous to AtSULTR4;1 and AtSULTR4;2 are present in the
tonoplast of plant cells and are thought to catalyse the efflux of
selenate from the vacuole (Kataoka et al., 2004b; Gigolashvili
and Kopriva, 2014). The expression of AtSULTR4;] and
AtSULTRA4,2 increases both upon S starvation and when plants
are exposed to Se (Van Hoewyk et al., 2005; Gigolashvili and
Kopriva, 2014). The expression of both SULTR4;I and
SULTRA4,2 is greater in shoots of the Se-hyperaccumulator species
Stanleya pinnata than in the congeneric Se-indicator species
S. albescens when grown in the presence of selenite (Freeman
et al., 2010). Increased expression of TaSULTR4;l has been
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linked to greater grain Se concentrations in S-starved wheat than
in S-replete wheat (Shinmachi et al., 2010). The expression of a
number of genes encoding ABC transporters is increased in roots
and leaves of perennial ryegrass (Lolium perenne L.) upon expo-
sure to Se, and it has been suggested that some of these might be
involved in the transport of Se compounds within the plant
(Byrne et al., 2010), although there is presently no direct evidence
to support this hypothesis.

THE EVOLUTION OF SELENIUM
HYPERACCUMULATION

There can be considerable variation in shoot Se concentration
among angiosperm species growing in the same environment
(Rosenfeld and Beath, 1964; Brown and Shrift, 1982; Ihnat,
1989; White et al., 2004, 2007a; Bitterli et al., 2010). However,
little of this variation can be attributed to systematic differences
between angiosperm orders, and it is thought to reflect species-
specific adaptations (White et al., 2004; Watanabe et al., 2007).
In general, Se concentration in leaf tissues declines in the order
Se-accumulator > Se-indicator > non-accumulator species.
Differences in Se accumulation between species are most
pronounced within genera containing Se-accumulator or Se-
indicator plants, such as Astragalus and Stanleya (White et al.,
2004).

When grown in the same environment, Se concentrations in
leaves of Se-hyperaccumulating species are significantly
greater than those of other angiosperms (Rosenfeld and Beath,
1964; Brown and Shrift, 1982; White et al., 2007b), suggesting
that these species might have distinct physiological adaptations
enabling this trait. Since Se-hyperaccumulating species occur in
several unrelated families (Table 1; Fig. 1A), it is thought that
the traits of Se tolerance and accumulation arose by convergent
evolution of appropriate biochemical pathways in several an-
giosperm clades (Brown and Shrift, 1982; White et al., 2004;
Cappa and Pilon-Smits, 2014). The ability to accumulate Se ap-
pears to have evolved independently in the core eudicot fami-
lies Amaranthaceae (Caryophyllales), Asteraceae (Asterales),
Brassicaceae (Brassicales), Fabaceae (Fabales), Orobanchaceae
(Lamiales) and Rubiaceae (Gentianales). The Fabaceae con-
tains the greatest number of species known to hyperaccumulate
Se. The ability to hyperaccumulate Se appears to have evolved
several times within the Asteraceae, Brassicaceae and Fabaceae
(Table 1). Indeed, it even appears to have evolved several times
among North American Astragalus (Fabaceae): in the
Homaloboid Phalanx within the seleniferous Homalobi, for
which it can be used as a taxonomic character (Barneby, 1964),
and the Preussiani (Fig. 1B), and also within the Piptoloboid
and Ceridothrix Phalanxes. The evolution of Se hyperaccumu-
lation in Stanleya (Brassicaceae) has also been studied in some
detail (Fig. 1C; Cappa et al., 2014, 2015). Cappa et al. (2015)
have observed that Se hyperaccumulation is restricted to the S.
bipinnatafpinnata clade and is likely to have evolved once and
then been lost in various ecotypes, such as those described as S.
pinnata var. inyoensis and S. pinnata var. texana. Cappa et al.
(2014) reported that S. pinnata ecotypes differed markedly in
their ability to hyperaccumulate Se and observed that the trait
was restricted to populations on the east side of the continental
divide. They suggested that Se hyperaccumulation could have
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FiG. 1. (A) Distribution of proposed Se-hyperaccumulating species among angiosperm orders. Phylogenetic relationships between the angiosperm orders are repro-

duced from the Angiosperm Phylogeny Group (2009). The number of Se-hyperaccumulating genera and Se-hyperaccumulating species in each order are given in pa-

rentheses based on data presented in Table 1. (B) Distribution of proposed Se-hyperaccumulating taxa among sections of the Homaloboid astragali of North

America. Taxonomic relationships are derived from Barneby (1964). The number of Se-hyperaccumulating taxa and Se-hyperaccumulating species in each section

are given in parentheses based on data presented in Table 1. (C) Distribution of proposed Se-hyperaccumulating taxa among Brassicaceae indicating a single origin
of Se hyperaccumulation (filled circles) in the Stanleya pinnata/bipinnata clade (Cappa et al., 2015).

evolved in eastern USA and either (¢) the Rocky Mountains
formed a geographical barrier for gene flow to the west; (b) a
reproductive barrier prevented gene flow because of ploidy dif-
ferences among populations in the east and west; or (c) there is
a greater cost to Se hyperaccumulation in the west. Evidence
suggests that the ability to tolerate large tissue Se concentra-
tions evolved earlier than the trait of Se hyperaccumulation in
Stanleya and might have been a necessary predisposition en-
abling Se hyperaccumulation (Cappa et al., 2015).

Several hypotheses have been proposed for the evolution of
Se hyperaccumulation in plants. First, there is a clear evolution-
ary advantage in being one of a few stress-tolerant plant species
able to colonize seleniferous soils (Brown and Shrift, 1982).
This character might have occurred through the evolution of
mechanisms for Se exclusion by roots, tissue Se tolerance or Se
volatilization. However, although Se exclusion by roots allows
non-accumulator plants to survive greater rhizosphere Se

concentrations, it does not confer the ability to colonize selenif-
erous soils (Rosenfeld and Beath, 1964; Brown and Shrift,
1982). In contrast, the ability to accumulate Se in non-toxic
forms, and to remove Se by volatilization, are characteristics
shared by many Se-indicator and Se-accumulator plants that
colonize seleniferous soils, and there is considerable variation
in the expression of these between and among plant species
(Terry et al., 2000; Bafiuelos et al., 2005a; White et al. 2007b;
Pilon-Smits and LeDuc, 2009). Since the colonization of sele-
niferous soils by angiosperm species appears to require the abil-
ity to tolerate Se in their tissues, it is unsurprising that
biochemical pathways that restrict the incorporation of selenoa-
mino acids into proteins through the production of non-toxic Se
metabolites appear to have evolved before those of Se hyperac-
cumation (Cappa et al., 2015). The accumulation of Se in plant
tissues protects them against pathogens and herbivores (Quinn
et al., 2007; Pilon-Smits et al., 2009; El Mehdawi and
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Pilon-Smits, 2012), and it has been proposed that this might be
the primary ecological driver for the evolution of Se hyperaccu-
mulation (Quinn et al., 2007; El Mehdawi and Pilon-Smits,
2012). It is also possible that the deposition of leaf litter with
large Se concentrations around Se-hyperaccumulator plants
could prevent competition by species with less tolerance of Se
in the rhizosphere (E1 Mehdawi et al., 2011).

In addition to their exceptional ability to accumulate Se, Se-
hyperaccumulator species have several other characteristics
that appear to distinguish them from Se-indicator and non-
accumulator species. When compared with other angiosperms,
Se-hyperaccumulator species (1) constitutively express genes
encoding sulphate transporters (Cabannes er al., 2011;
Schiavon er al. 2015); (2) have significantly greater leaf Se/S
quotients (Bell et al., 1992; Feist and Parker, 2001; Galeas
et al., 2007; White et al., 2007a; Freeman et al., 2010; Cappa
et al., 2014; Harris et al., 2014; DeTar et al., 2015); (3) exhibit
reduced Mo accumulation with increasing rhizosphere sulphate
or selenate concentrations (Harris et al., 2014); (4) restrict the
incorporation of selenoamino acids into proteins through
greater expression of appropriate genes (see ‘Selenium Uptake,
Translocation and Metabolism in Plants’); and (5) accumulate
Se in leaf trichomes and epidermal cells (Freeman ez al., 2006,
2010; El Mehdawi and Pilon-Smits, 2012). These traits have
been proposed as additional diagnostic characteristics for spe-
cies that hyperaccumulate Se (White et al., 2007a; E1 Mehdawi
and Pilon-Smits, 2012; Harris et al., 2014).

VARIATION IN SELENIUM ACCUMULATION
WITHIN PLANT SPECIES

In addition to the considerable variation between species in
their ability to accumulate Se in their tissues, there is often sig-
nificant variation among genotypes of a particular species in
this character. It has been observed, for example, that ecotypes
of the Se-hyperaccumulator species Stanleya pinnata (Feist and
Parker, 2001; Cappa et al., 2014) and Symphyotrichum eri-
coides (L.) G.L.Nesom (El Mehdawi et al., 2015) differ signifi-
cantly in their leaf Se concentrations when grown in the same
environment. Ecotypes collected from seleniferous soils gener-
ally have greater leaf Se concentrations and leaf Se/S quotients
than ecotypes collected from soils with less Se in common gar-
den experiments (Feist and Parker, 2001; Cappa et al., 2014; El
Mehdawi et al., 2015). Significant genetic variation in shoot Se
concentration has also been reported among tall fescue
(Festuca arundinacea Schreb.) genotypes (McQuinn et al.,
1991; Wu, 1998), and it would appear that there is a negative
correlation between shoot Se concentration and shoot yield in
this plant species (Wu, 1998).

Arabidopsis accessions differ both in their tolerance of Se in
the rhizosphere and in their shoot Se concentration when grown
in the same environment (Zhang et al., 2006a, b, 2007,
Tamaoki et al., 2008; Chao et al., 2014). However, there ap-
pears to be no correlation between tolerance of Se in the rhizo-
sphere and relative shoot Se concentration among arabidopsis
accessions (Zhang et al., 2007). Analyses of crosses between
arabidopsis accessions suggest that a single major gene controls
selenite tolerance in this species, but that at least three chromo-
somal quantitative trait loci (QTLs) control selenate tolerance
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(Zhang et al., 2006a, b, 2007). Selenite tolerance in arabidopsis
has been correlated with concentrations of non-protein thiols
(e.g. cysteine, glutathione, phytochelatins) in roots, and toler-
ance to both selenate and selenite has been correlated with
shoot SeCys and SeCys, concentrations (Zhang et al., 2006a).
In addition, it has been noted that the shoot S concentration of a
selenite-tolerant accession of arabidopsis (Col-0) was greater
than that of a selenite-sensitive accession (Ws-2) when they
were exposed to selenite (Tamaoki ef al., 2008). This has been
attributed to greater expression of genes encoding SULTR2;2,
SURTR3;1 and SULTR3;5, together with several genes in-
volved in S assimilation, in the selenite-tolerant accession than
in the selenite-sensitive accession, which is consistent with the
hypothesis that upregulation of the S transport and assimilation
pathways is one mechanism to increase selenite tolerance
(Tamaoki et al., 2008). Chao et al. (2014) failed to identify any
QTLs affecting leaf Se concentration in arabidopsis when they
applied genome-wide association mapping techniques to a di-
verse set of 349 accessions, despite most of the variation in leaf
Se concentration being accounted for by genotype (heritability
0-68) in their experiments. However, AtAPR2 was inferred to
influence leaf Se accumulation in a population of arabidopsis
derived from an accession with a large leaf Se concentration
(Hodonin) and the Col-0 accession using extreme array map-
ping (Chao et al., 2014). The influence of AtAPR2 on leaf Se
accumulation was further confirmed by phenotyping mutants
lacking AtAPR2 and accessions with contrasting AtAPR2 ac-
tivities (Chao er al., 2014). A single amino acid substitution ap-
parently led to the loss of function of AtAPR2 and Se
accumulation in leaves in the Hodonin accession (Chao et al.,
2014).

There also appears to be sufficient genetic variation to breed
for crops that can accumulate more Se in their edible tissues
(White and Broadley, 2009). Genetic variation in grain Se con-
centration has been reported for a number of cereals (Table 1).
Although several studies have suggested little genetic variation
in grain Se concentration among bread wheat (Triticum aestivum
L.) genotypes (Table 2; Lyons et al., 2005a; Zhao et al., 2009;
Lee et al., 2011; Nelson et al., 2011), other studies have reported
significant genetic variation in this trait (Garvin et al., 2006;
Murphy et al., 2008; Rodriguez et al., 2011; Pu et al., 2014). It
is evident that the expression of this trait in bread wheat is
strongly dependent upon weather conditions, crop husbandry
and Se fertilization (Lyons et al., 2005a; Garvin et al., 2006;
Zhao et al., 2009; Lee et al., 2011; Nelson et al., 2011). In addi-
tion, there appears to be a negative relationship between grain
Se concentration and grain yield among genotypes of bread
wheat (Zhao et al., 2007; Fan et al., 2008; Murphy et al., 2008),
although this is not always observed (Lyons et al., 2005a; Zhao
et al., 2009). No genetic variation has been observed to date in
the distribution of Se within wheat grain (Lyons et al., 2005b).
Significant genetic variation in grain Se concentration has been
observed in other cereals including durum wheat (Triticum tur-
gidum L.; Rodriguez et al., 2011), barley (Hordeum vulgare L.;
Ilbas et al., 2012; Mangan et al., 2015), wild barley (Hordeum
spontaneum K.Koch; Yan et al., 2011), oat (Avena sativa L.,
Eurola et al., 2004) and rice (Orzya sativa L.; Zhang et al.,
2006¢; Norton et al., 2010, 2012).

Chromosomal loci (QTLs) influencing grain Se concentra-
tion have been identified in wheat (Yang et al., 2013; Pu et al.,
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TaBLE 2. Continued

Genotypes Reference

Details Selenium (mg Se kg ' DM)

Trial

Tissue

Plant species

Crop

Farnham ez al. (2007)
Farnham et al. (2007)
Ramos et al. (2011b)

20
15
38

n=

0-068 (0-053-0-085)**

Three field trials, SC, USA

=
°
2
S
53

Brassica oleracea L. (Italica Group)

Brassica oleracea L.

Broccoli (hybrid)
Broccoli (inbreds)

Broccoli
Onion

n=

0-063 (0-049-0-080) ns
1100 (801-1798)

Three field trials, SC, USA

Hydropon

=
3]
=
2
&3

n=

20 M Na,SeO,

CS

Leaves
Bulb

Brassica oleracea L. (Italica Group)

Allium cepa L.

2mg L' Na,SeOy4
15 uM Na,SeOy4

Kopsell and Randle (1997)

Ramos et al. (2011a)
Ramos et al. (2011a)
Mazej et al. (2008)
Guil-Guerrero and

16

n=

0-085 (0-060-0-113)%**

5-28 (2:76-7-20)
2-87 (1-67-5-33)
391 (167-480)*

[

Hydropon

30
30

n=
n

CS

Hydropon

Leaves

Lactuca sativa L.

Lettuce

15 uM Na,SeO5

CS
S

Hydroponi
Aeroponi

Leaves

Lactuca sativa L.

Lettuce

7mg Se L™! (as NapSeO,)

Il
=

Ci

Leaves
Fruit

Cichorium intybus L.

Chicory
Tomato

I
=

0-188 (0-015-0-363)*

Five glasshouses, Almeria, Spain

Solanum lycopersicum L.

Rebolloso-Fuentes (2009)
Guil-Guerrero et al. (2006)

Perla et al. (2012)

10
8

0-110 (0-047-0-200)*

Five glasshouses, Almeria, Spain

Field, CO, USA

Capsicum annuum L. Fruit

Pepper
Potato

n

1.551 (0-014-5-816)*

Tubers

Solanum tuberosum L.
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Data show the mean and, in parentheses, the minimum and maximum Se concentrations for n genotypes

Significant differences are indicated as *P < 0-05, **P < 0-01 and ***P < 0-001.

2014). Pu et al. (2014) identified four QTLs affecting grain Se
concentration on chromosomes 3D at 218 cM, 4A at 91 cM, 5B
at 169 cM and 7D at 215 cM in a cross between a synthetic
wheat (SHW-L1) and Chuanmei 32, and a single QTL on chro-
mosome 4D at 100 cM in a cross between Chuanmai 42 and
Chuannong 16. Yang et al. (2013) identified four QTLs affect-
ing grain Se concentration in a genetic mapping population de-
rived from a cross between wild emmer wheat (Triticum
dicoccoides [Korn. ex Asch. and Graebn.] Schweinf.) and a tet-
raploid durum wheat. These occurred on chromosomes 5B, 6A
and 6B. Chromosomal loci affecting Se concentrations of
leaves and grain of paddy rice have also been reported in a gen-
etc mapping population derived from an indica (Bala) and a ja-
ponica (Azucena) variety (Norton et al., 2010, 2012). Several
QTLs were found to affect grain Se concentration in this popu-
lation, although the magnitude of their effects differed between
environments. Chromosomal loci affecting grain Se concentra-
tion in rice were located on chromosome 1 (27-4 and 246-4
cM), chromosome 3 (80-6 cM), chromosome 6 (12-0, 20-3 and
103-5 cM), chromosome 7 (149-8 c¢cM), chromosome 8 (16-9
c¢M), chromosome 9 (61-5 cM), chromosome 10 (66-1 cM) and
chromosome 11 (105-9 ¢cM). Two of these QTLs (on C3 and
C7) also influenced leaf Se concentration, suggesting that Se
accumulation in leaves, and its subsequent remobilization to de-
veloping grain, could be important in determining grain Se con-
centrations (Norton et al., 2010). None of the causal genes
underpinning QTLs affecting Se accumulation in gain of wheat
or rice is currently known.

Genetic variation in seed Se concentration has been reported
among genotypes of several legume species (Table 2), although
data from field trials indicate that genetic effects on seed Se
concentration are generally small when compared with environ-
mental effects (Thavarajah et al., 2010; Garrett et al., 2013;
Ray et al., 2014). When grown at several sites in Saskatchewan
(Canada), genetic effects on seed Se concentration of common
bean (Phaseolus vulgaris L.) or field pea (Pisum sativum L.)
were not significant (P> 0-1), although genotype X environ-
ment interactions did affect seed Se concentrations in common
bean (Thavarajah er al., 2010; Garrett et al., 2013; Ray et al.,
2014). This is consistent with studies performed in the glass-
house on common bean (Smrkolj et al., 2007). Similarly, no
single nucleotide polymorphism (SNP) markers could be asso-
ciated with variation in seed Se concentration among 94 pea ge-
notypes grown in the field in Saskatchewan (Diapari et al.,
2015). In contrast, genotypic variation was found to affect seed
Se concentrations in both chickpea (Cicer arietinum L.) and
lentil (Lens culinaris Medik.) grown in Saskatchewan
(Thavarajah et al., 2008; Thavarajah and Thavarajah, 2012;
Ray et al., 2014; Rahman et al., 2015). Significant genetic vari-
ation in seed Se concentration of lentil has also been observed
in field trials conducted in other countries including Morocco,
Turkey, Syria, Nepal, Australia and the USA (Thavarajah et al.,
2011). Significant genetic variation in seed Se concentration
has also been observed among genotypes of mung bean (Vigna
radiata [L.] R.-Wilczek; Nair et al., 2015) and soybean (Glycine
max [L.] Merr.; Yang et al., 2003), and two QTLs have been
identified, one on chromosome 8 and another on chromosome
18, that explain about 21 % of the variation in seed Se concen-
tration in a recombinant inbred population of soybean derived
from a cross between Williams82 and DSR-173 (Ramamurthy
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et al., 2014). Interestingly, the QTL on chromosome 8 includes
GmSULTR2;1 (Ramamurthy et al., 2014).

Despite large environmental effects, significant genetic ef-
fects on Se concentration have been observed for onion bulbs
(Allium cepa L.; Kopsell and Randle, 1997), leaves of rapid-
cycling Brassica oleracea (Kopsell and Randle, 2001), broccoli
florets (B. oleracea L. Italica Group; Bafuelos et al., 2003;
Farnham et al., 2007; Ramos et al., 2011b), sprouts of cauli-
flower (B. oleracea L. Botrytis Group), kale (B. oleracea L.
Acephala Group) and Chinese cabbage (Brassica rapa L.;
Avila et al., 2014), shoots of Indian mustard (Bafuelos et al.,
1997), leaves of chicory (Cichorium intybus L.; Mazej et al.,
2007) and leaves of lettuce (Lactuca sativa L.; Ramos et al.,
2011a). In lettuce, the ability of genotypes to accumulate Se
supplied as selenate was positively correlated with the expres-
sion of LsSULTRI;I, LsAPSI and LsAPRI (Ramos et al.,
2011a). Significant genetic variation has also been observed in
tomato (Solanum lycopersicum L.) fruit (Guil-Guerrero and
Rebolloso-Fuentes, 2009), pepper (Capsicum annuum L.) fruit
(Guil-Guerrero et al., 2006) and potato tubers (Perla et al.,
2012).

TRANSGENIC APPROACHES TO INCREASE
SELENIUM ACCUMULATION

Transgenic plants have been generated with greater Se toler-
ance, Se accumulation or Se volatilization than their non-trans-
genic counterparts (Table 3; Terry et al., 2000; Pilon-Smits and
LeDuc, 2009; Pilon-Smits, 2012). These have been created for
a variety of purposes. They have been used to provide funda-
mental knowledge of the transport proteins involved in the up-
take and movement of Se in plants and to gain insight into the
biochemical pathways and, in particular, the rate-limiting steps
and control of Se metabolism in plants. The manipulation of Se
transport and biochemistry can benefit crop production either
directly, by allowing the development of crops with greater Se
tolerance that can grow on soils with high soil Se concentra-
tions, or indirectly, through the remediation of agricultural land
with high soil Se concentrations using plants that can remove
more Se from soils either by accumulating more Se in harvested
tissues or by volatilizing more Se to the atmosphere. It can also
benefit crop quality through Se biofortification of produce, not
only by enabling greater Se concentrations to be accumulated
in edible produce but also by synthesizing the most beneficial
Se compounds for human and animal health.

Much of the research using transgenic plants has been di-
rected towards the remediation of land with high soil Se con-
centrations (Terry et al., 2000; Pilon-Smits and LeDuc, 2009;
Zhu et al., 2009; Pilon-Smits, 2012). This research has focused
on (a) increasing plant tolerance of high soil Se concentrations;
(b) increasing Se transport to the shoot; (c) increasing Se accu-
mulation in shoot tissues; and (d) increasing Se volatilization.
Overexpressing genes encoding transporters for selenate, sele-
nite or selenoamino acids in the plasma membrane of particular
cells can increase the capacity for Se uptake and transport
within the plant. However, unless this is accompanied by an
ability to tolerate greater tissue Se concentrations or volatilize
more Se, it is unlikely to allow greater tolerance of Se in the
rhizosphere or phytoremediation potential.

White — Selenium accumulation by plants

In non-accumulator plants, the conversion of selenate to sele-
nite within plastids appears to be the rate-limiting step in the as-
similation of Se into organic compounds (Pilon-Smits et al.,
2009). Overexpression of AtATPSI, PaAPR or both AtATPSI
and PaAPR in arabidopsis results in greater concentrations of
organic Se in leaves, but a decrease in total leaf Se concentra-
tion (Table 3; Sors et al., 2005a) and, although overexpression
of PaAPR results in greater tolerance of selenate in the rhizo-
sphere in arabidopsis, the overexpression of AtATPS! does not
(Sors et al., 2005a). In contrast, the overexpression of AtTATPS1
in Indian mustard, a Se-indicator plant, results in greater con-
centrations of Se and organic Se in leaves and greater tolerance
of selenate in the rhizosphere (Pilon-Smits et al., 1999b; Van
Huysen et al., 2004; Bafuelos et al., 2005b). The overexpres-
sion of genes involved in glutathione synthesis, such as gluta-
thione synthase and y-glutamyl-cysteine synthase, also appears
to increase Se concentrations in leaves and Se tolerance of
Indian mustard grown on seleniferous soils (Bafiuelos et al.,
2005b), whereas overexpression of cystathione-y-synthase re-
sults in greater tolerance of selenite in the rhizosphere, reduced
leaf Se concentrations and greater Se volatilization (Van
Huysen et al., 2003, 2004).

The ability to tolerate Se in plant tissues and, thereby, to ac-
cumulate greater Se concentrations can be increased by the
overexpression of genes encoding SMT, particularly if com-
bined with overexpressing ATPS (Table 3). The overexpression
of SMT, with or without the overexpression of ATPS, results in
greater tolerance of selenite, and sometimes also selenate, in
the rhizosphere, greater total Se, SeMSeCys and y-glutamyl-
SeMSeCys concentrations in leaves, and greater Se volatiliza-
tion in transgenic plants compared with untransformed controls
(Ellis et al., 2004; LeDuc et al., 2004, 2006; Bafuelos et al.,
2007; Kubachka et al., 2007; Matich et al., 2009; McKenzie
et al, 2009). The overexpression of genes encoding
SeCyslyases has had variable effects on the tolerance of trans-
genic plants to selenate and selenite in the rhizosphere, but has
consistently resulted in greater leaf Se concentrations and less
Se incorporation into proteins in transgenic plants exposed to
selenite or selenite than in untransformed plants (Garifullina
et al., 2003; Pilon et al., 2003; Van Hoewyk et al., 2005;
Bafuelos et al., 2007). Finally, the overexpression of AzSBPI
has been shown to increase selenite tolerance in transgenic ara-
bidopsis (Agalou et al., 2005).

CONCLUSIONS AND PERSPECTIVES

Selenium is an essential mineral element for the well-being of
animals and a beneficial element for plants. However, excess
Se can be toxic to both animals and plants. There is consider-
able interest in understanding how plants acquire and accumu-
late Se, not only to facilitate appropriate dietary Se intakes for
animal and humans, which often requires Se biofortification of
edible crops, but also to remediate land contaminated anthropo-
genically by excess Se and to appreciate the ecology of native
plants inhabiting seleniferous soils. Recently, researchers have
begun to identify the genetic factors influencing Se acquisition
and accumulation by plants. Initially, this work focused on elu-
cidating the genes encoding enzymes involved in Se uptake,
metabolism and distribution within the plant. Application of
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this knowledge has allowed the genetic manipulation of Se me-
tabolism to increase Se accumulation in harvested tissues and
Se volatilization to the atmosphere, benefitting both biofortifi-
cation and phytoremediation strategies. It has also informed our
appreciation of the possible mechanisms driving the evolution
of species that hyperaccumulate Se in their tissues. Appreciable
variation in Se concentrations in analogous tissues has been at-
tributed to genetic factors both between and within plant spe-
cies. Considerable effort is currently being invested in
identifying chromosomal loci (QTLs) underlying these differ-
ences, which will enable the selection and breeding of crops
with greater ability to acquire and accumulate Se in appropriate
chemical forms in their edible tissues. Although our knowledge
of the genetics of Se accumulation in plants appears rudimen-
tary at present, it will increase rapidly as the modern toolbox of
molecular techniques are applied. It is laudable that this effort
will be built on the solid foundations of plant physiology and
biochemistry.
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