
Practice of Epidemiology

Tests for Gene-Environment Interactions and Joint Effects With Exposure

Misclassification

Philip S. Boonstra, Bhramar Mukherjee*, Stephen B. Gruber, Jaeil Ahn, Stephanie L. Schmit, and

Nilanjan Chatterjee

* Correspondence to Dr. Bhramar Mukherjee, Department of Biostatistics, School of Public Health, University of Michigan, 1415Washington Heights,

Ann Arbor, MI 48109-2029 (e-mail: bhramar@umich.edu).

Initially submitted November 26, 2014; accepted for publication July 15, 2015.

The number of methods for genome-wide testing of gene-environment (G-E ) interactions continues to increase,

with the aim of discovering new genetic risk factors and obtaining insight into the disease-gene-environment rela-

tionship. The relative performance of these methods, assessed on the basis of family-wise type I error rate and

power, depends on underlying disease-gene-environment associations, estimates of which may be biased in the

presence of exposure misclassification. This simulation study expands on a previously published simulation study

of methods for detecting G-E interactions by evaluating the impact of exposure misclassification. We consider 7

single-step and modular screening methods for identifying G-E interaction at a genome-wide level and 7 joint

tests for genetic association and G-E interaction, for which the goal is to discover new genetic susceptibility loci

by leveraging G-E interaction when present. In terms of statistical power, modular methods that screen on the

basis of the marginal disease-gene relationship are more robust to exposure misclassification. Joint tests that in-

clude main/marginal effects of a gene display a similar robustness, which confirms results from earlier studies. Our

results offer an increased understanding of the strengths and limitations of methods for genome-wide searches for

G-E interaction and joint tests in the presence of exposure misclassification.

case-control; gene discovery; gene-environment independence; genome-wide association; modular methods;

multiple testing; screening test; weighted hypothesis test

Abbreviations: CC, case-control; CC(EXP), CC in the exposed subgroup; CO, case-only; CT, cocktail; DF, degree of freedom; D,

disease; E, environment; EB, empirical Bayes; EB(EXP), EB in the exposed subgroup; EDG×E, joint marginal/association

screening; FWER, family-wise error rate; G, gene; GEWIS, gene-environment-wide interaction study; H2, hybrid 2-step; MA,

marginal; TS, 2-step G-E screening.

Many complex diseases (D) have a multifactorial etiology
resulting from the interplay of genetic factors (G) and environ-
mental exposures (E). Numerous statistical and epidemiologic
papers have considered the discovery and characterization
of G-E interaction (1–16), including discussions about effi-
ciently testing G-E interactions (17) and conducting gene-
environment-wide interaction studies (GEWIS) (18, 19). These
have examined the effect of violations toG-E independence in
great detail.

In this paper, we build upon the work of Mukherjee et al.
(12), who compared via simulation study the false positive
rate and empirical power of several G-E interaction search

methods. We extend the simulation study in 2 ways. First, we
augment the catalog of G-E interaction search strategies with
recently introduced methods. Our catalog contains single-
step and modular G-E interaction search strategies, the latter
of which screen for G-E and/or marginal D-G association be-
fore subsequentG-E interaction testing.Beyond these,we also
evaluate “gene-discovery” tests for the joint effect of G and
G-E interaction (20–22). These 2-degrees-of-freedom (DF)
methods are less powerful than a pure marginal D-G test when
there is no multiplicative G-E interaction and are empirically
noted to be more powerful given modest-to-strong G-E inter-
action. Power for testing the G-E interaction component may
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be further increased relative to the standard 2-DF likelihood
ratio test (20) through data-adaptive use of the G-E indepen-
dence assumption (2, 21). In all, we evaluate 14 G-E interac-
tion and gene-discovery methods.
The second extension of this paper relative to Mukherjee

et al. (12) is an evaluation of the effects of exposure misclas-
sification on all methods. Previous studies have investigated
exposure misclassification (20, 23–26), but no systematic
published comparison under uniform simulation settings is
available. Exposure misclassification / measurement error
may arise in case-control studies because of recall bias, with
the extent of misclassification possibly differing between
cases and controls (25–27). This can be particularly challeng-
ing in meta-analyses of G-E interaction, in which the degree
of measurement error in exposure data may differ across stud-
ies, leading to spurious null and non-null findings.
Misclassification in E introduces bias in the estimation of

main effects andG-E interactions (28–30), and nondifferential
misclassification typically reduces power (31, 32). Lindström
et al. (24) studied the effects of nondifferential misclassifica-
tion on 4 tests for G or G-E interaction and found that tests
with a marginalD-G association component were more robust
to exposure misclassification. In recent workshops initiated by
the National Institutes of Health, the detrimental effects of
exposure misclassification, both in increased type I error and
decreased power, were discussed (33, 34). Zhang et al. (23)
corrected the maximum likelihood estimate of odds ratios
under misclassification, using an estimate of the misclassifica-
tion error rate from separate validation data. In many GEWIS,
no validation data are available to implement regression cali-
bration or other methods of adjustment from the measurement
error literature (35, 36). Stenzel et al. (37) compared several
single-step procedures for G-E interaction under the dual sce-
nario of exposure-biased sampling and exposure misclassifi-
cation. Others have studied the effect of model violations on
estimation of G-E interaction, including misspecification of
the main effects in characterizing the outcome-exposure rela-
tionship (38) and the impact of unmeasured exposure con-
founders on G-E interaction (22). However, limited literature
is available on studyingG-E correlation and exposure misclas-
sification simultaneously.
The present report is organized as follows. In “Methods,”

we describe the testing procedures evaluated, divided into
single-step or modular G-E interaction methods and gene-

discovery methods. In “Simulation Settings,” we describe
our simulation design to evaluate each method, including
our approach for generating misclassified exposure data.
We present operating characteristics of the methods under
correctly classified and misclassified exposure scenarios in
the “Results” section, and we conclude the paper with the
“Discussion” section.

METHODS

We consider a case-control study with n1 cases and n0 con-
trols evaluating a set of M binary genetic markers, G, and
a single environmental exposure, E. Let E = 1 (E = 0) denote
an exposed (unexposed) individual and, for each genetic
marker, G = 1 (G = 0) denote whether an individual is a
carrier (noncarrier). Let D denote disease status, where D = 1
(D = 0) indicates an affected (unaffected) individual. The
population parameters for a given marker are pdge≡ Pr(G = g,
E = ejD = d), d, g, e ∈ {0, 1}. Because of the sampling mech-
anism,

P
g;e p0ge ¼

P
g;e p1ge ¼ 1; and thus the correspond-

ing frequencies follow a multinomial distribution. Table 1
defines 7 log-odds ratios pertaining to these probabilities.
The quantities θGE and γGE give G-E association in the con-
trol and case populations, respectively; αG and αE give mar-
ginal D-G and D-E association, respectively; and βG and βE
give the respective main effects of G and E (D-G association
in the subgroup E = 0 and D-E association in the subgroup
G = 0). A nonzero value of βGE, in the final row of Table 1,
defines a multiplicative G-E interaction. In its simplest form,
a GEWIS testsM potential G-E interactions, namely βGE = 0
corresponding to each marker.

Single-step exhaustive methods

The methods herein test allMmarkers for G-E interaction,
with no initial screening or prioritizing. A common ad-
justment to the significance threshold αtest is the Bonferroni
correction. Each marker is tested at significance threshold
αtest/M, controlling the family-wise error rate (FWER) at
level αtest.

Case-control. The standard approach, case-control (CC)
calculates β̂GE; the maximum likelihood estimate of βGE, and
testsH0:βGE = 0 via Wald or likelihood ratio tests using logis-
tic regression for P(D = 1jG, E).

Table 1. Seven Key Log-Odds Ratios Defined by the Case-Control Probabilities, pdge, d, g, e ∈ {0,1}, for a Given

Markera

Log-Odds Ratio Value Description

θGE log(p011p000/p001p010) G-E given D = 0

γGE log(p111p100/p101p110) G-E given D = 1

αG log([p111 + p110][p001 + p000]/[p101 + p100][p011 + p010]) D-G (marginal)

αE log([p111 + p101][p010 + p000]/[p110 + p100][p011 + p001]) D-E (marginal)

βG log(p000p110/p010p100) D-G given E = 0 (main)

βE log(p000p101/p001p100) D-E given G = 0 (main)

βGE log(p001p010p100p111/p000p011p101p110) Multiplicative G-E interaction

a pdge ≡ Pr(G = g, E = ejD = d ).
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Case-only. Proposed by Piegorsch et al. (1), case-only
(CO) tests for G-E association among cases (D = 1)—namely,
H0:γGE = 0. This can be achieved through modeling P(G =
1jE, D = 1) via logistic regression. If a rare disease approxi-
mation is made and G-E independence is assumed in the
entire population, the likelihood ratio test for H0:γGE = 0 is
also a valid test for H0:βGE = 0. This does not estimate main
effects of G or E (βG or βE).

Empirical Bayes. To trade off between the more efficient
but potentially biased CO analysis and the always unbiased
but less efficient CC analysis, Mukherjee and Chatterjee
(2) proposed a shrinkage estimator based on the retrospective
likelihood framework of Chatterjee and Carroll (39). The es-
timator is given by ðŵÞγ̂GE þ ð1� ŵÞβ̂GE; where the weight
ŵ ¼ dVarðβ̂GEÞ=½dVarðβ̂GEÞ þ ðβ̂GE � γ̂GEÞ2� adaptively contr-
ols the contribution from γ̂GE: The delta method approxi-
mates the variance of this shrinkage estimator, and Wald
tests based on asymptotic normality allow for inference. Re-
gression versions of CO and empirical Bayes (EB) using the
retrospective likelihood framework (39) based on case-control
data that provide estimates of all model parameters—not just
βGE—are implemented in the R package CGEN (40, 41).

Modular methods

These methods introduce a screening or prioritizing step
based onG-E or marginalD-G association before proceeding
to the final G-E interaction test. In contrast to single-step ex-
haustive methods, these either test only a subset of markers or
vary the significance threshold for each marker on the basis of
the screening results. Statistical independence of the screen-
ing step and the final G-E interaction test underlies these
modular methods, thereby maintaining overall type I error.

Two-stepG-E screening. Murcray et al. (4) proposed this
2-step procedure to leverage the efficiency of COwhile main-
taining robustness to G-E association:

1. Screening step: Conduct a likelihood ratio test of G-E as-
sociation in the combined sample of cases and controls.
The subset of m markers exceeding a screening signifi-
cance threshold with marker-level error rate αscr proceeds
to the next testing step.

2. Testing step: For these m markers, conduct a CC analysis
of H0:βGE = 0 using significance threshold αtest/m.

Under G-E independence in the underlying population, G-E
correlation in the case-enriched case-control sample indicates
the presence of G-E interaction. Screening based on γGE
alone (i.e., CO) would not be asymptotically independent
of the second-step test statistic given by CC. The power of
2-stepG-E screening (TS) is increased whenmany null mark-
ers are screened out—i.e.,m ≪ M;with the magnitude of in-
crease depending on the choice of αscr. Murcray et al. (4) used
αscr = 0.05, but follow-up empirical studies showed that the
power increase is maximized when αscr is chosen on the
basis of the case-control ratio, number of markers, and dis-
ease prevalence (11, 18). A more recent approach from
Wason and Dudbridge (13) screens on the basis of a linear
combination of the observed G-E associations resembling
EB: γ̂GE þ ðk̂Þθ̂GE; where k̂ ¼ dVarðγ̂GEÞ=dVarðθ̂GEÞ ensures

asymptotic independence with the subsequent testing step.
Like Wason and Dudbridge, we find this method to have
very similar performance to TS and thus refrain from present-
ing the results.

Hybrid 2-step screening. Murcray et al. (11) later ex-
tended TS to 2 screening steps, one for G-E association, as
in TS, and the other for marginal D-G association using
αG—the rationale being that the presence of G-E interactions
will lead to G-E or D-G association in the case-control sam-
ple. Given a significance threshold αscr, massc and mmarg

markers, respectively, will pass each screening step, and only
these are eligible for the final-step G-E interaction test. As
with TS, many markers will fail both screenings, and so a
less restrictive Bonferroni correction is needed at the second-
step CC test for G-E interaction. The desired FWER, αtest,
is spent between the markers from each screening step on
the basis of a preselected weight ρ ∈ (0,1). For those markers
that pass both screening steps, the significance threshold
is max{ραtest/mmarg, (1 − ρ)αtest/massc}. For the D-G–only
markers, the significance level is ραtest/mmarg, and for the
G-E–only markers, it is (1 − ρ)αtest/massc. Using ρ = 0 makes
hybrid 2-step screening (H2) and TS equivalent. TheG-E and
D-G screening components are asymptotically independent
of the testing step (4, 42), implying that the hybrid screening
and G-E interaction testing steps are independent. Thus, a
FWER of αtest is maintained.

Cocktail. Hsu et al. (14) characterized TS and H2 as spe-
cial cases of a class of modular methods for GEWIS testing,
consisting of separate choices of 1) screening, 2) G-E inter-
action test, and 3) type I error control modules, and proposed
the comprehensive class of “cocktail” (CT) procedures. In the
screening step (the first module), CT adaptively tests for G-E
association or marginal D-G association, as in H2. In the sec-
ond module, if marginal D-G association is declared statisti-
cally significant, then EB, which is independent of the D-G
test, is used to test forG-E interaction. Otherwise, CC is used,
being independent of a test for G-E association in the com-
bined case-control sample. In the third module, and in con-
trast to TS and H2, no markers “fail” the screening step in
CT. Rather, following the weighted hypothesis testing ap-
proach of Ionita-Laza et al. (43), αtest is spent differentially
between all markers: Those that are more significant at the
screening step are given a lower significance threshold to
pass at the final interaction test, as explained below.

For each marker, pGE and pDG denote, respectively, the p
values corresponding to the G-E and D-G screening steps.
The screening module p value is pCTscr ¼ pDGIð pDG� tÞþ
pGEIð pDG > tÞ; where t is a prespecified threshold, e.g.,
t = 0.001, and I(·) is the indicator function. The G-E interac-
tion test p value is pCTtest ¼ pEBIð pDG � tÞ þ pCCIð pDG > tÞ;
where pEB and pCC are the p values from EB and CC, respec-
tively. To combine these modules, CT spends αtest between
markers, comparing each pCTtest to a potentially different signif-
icance threshold. The 5 markers with the smallest values of
pCTscr have the most liberal significance threshold for testing
for interaction: αtest/(2 × 5). The next 10 markers have a
stricter threshold, αtest/(2

2 × 10), and so forth. Each time,
the size of the group doubles (5, 10, 20, . . .), and half of the
remaining significance level (αtest/2, αtest/2

2, αtest/2
3, . . .) is
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equally distributed to all markers in the group. The p values
pCTscr and p

CT
test are independent (14) but depend on a subjective

threshold t. Hsu et al. (14) proposed a modified version not
requiring a threshold but for which the screening and test p
values may be correlated. Because the modified CT did not
appreciably differ from CT in our simulation studies, we do
not consider it further.

Joint marginal/association screening. Gauderman et al.
(16) proposed adding the asymptotically independent likeli-
hood ratio test statistics from the G-E and D-G screening
steps and comparing to a χ22 distribution as a single screening
statistic. This screening step can remove markers from the
G-E interaction step, as in TS or H2, or preferentially rank
markers, as in CT. We consider the latter, which had better
performance in Gauderman et al. Ege and Strachan (15) pro-
posed a similar extension: G-E andD-G associations are sep-
arately estimated for each exposure group, and the likelihood
ratio statistics are averaged between exposure groups. Be-
cause of its similarity, we do not evaluate this approach.

Joint tests for discovering new loci by leveraging G-E
interaction

Even though some previously described methods leverage
information on G-E or marginal D-G association to screen
markers, the final underlying null hypothesis tested isH0:βGE =
0, and the search is one for pure G-E interactions. In contrast,
the proceeding 4 strategies expand this null hypothesis and rep-
resent an agnostic search for discovery of loci, identifying those
for which αG ≠ 0, βG ≠ 0, or βGE ≠ 0. This modifies the def-
inition of type I error and power relative to the standard G-E
interaction null hypothesis and results in increased rejection
rates.

Marginal association. This is the standard genome-wide
association study test of H0:αG = 0, the marginal D-G associ-
ation test H2, CT, and joint marginal/association screening
(EDG×E) use for screening/prioritizing candidate markers.
Although counterintuitive, it is possible that αG ≠ 0 and
βG = βGE = 0—i.e., there is a marginal effect of G but no ef-
fect in either of the exposure subgroups. This will hold if βE≠
0 and θGE ≠ 0 (Equation W1, Web Appendix 1, available at
http://aje.oxfordjournals.org/). Thus, because of nonlinearity
of the odds ratio measures, marginal association (MA) may
identify markers that are not associated withD in either expo-
sure subgroup.

Two-DF joint tests: JOINT(CC) and JOINT(EB). Kraft
et al. (20) suggested a joint test of H0:βG = βGE = 0, which
tests for an effect of G in either exposure subgroup by using
standard prospective logistic regression and case-control data.
We call this test JOINT(CC). A likelihood ratio test statistic is
compared with a χ22 distribution. Rejection of H0 does not in-
dicate in which subgroup D-G association holds. In contrast,
CC tests for a difference in association between exposure
groups: H0:βGE = (βG + βGE)− βG = 0. When estimates of βG
and βGE are negatively correlated, JOINT(CC) may have a
larger rejection rate than CC, even when βG = 0 (cf. page 114,
(20)). We may also use the retrospective likelihood frame-
work (39) to derive 2-DF tests for H0:βG = βGE = 0. When
based on the constrained maximum likelihood, it is sus-
ceptible to bias and type I error inflation, like CO. Thus,

we consider the EB version of this joint test that adaptively
leverages G-E independence. Implemented in CGEN, this
is denoted by JOINT(EB).

Two-DF marginal +G-E interaction tests: MA+CC and

MA+EB. Dai et al. (42) proved that the maximum likelihood
estimate of αG is asymptotically independent of that of both
βGE (CC) and γGE (CO), and, consequently, of any weighted
average of the two (EB). On the basis of this, in a contempo-
raneous paper by the same authors, Dai et al. (21) proposed a
simultaneous test of H0:αG = βGE = 0. The marginal effect,
αG, is estimated via maximum likelihood, and CC, CO, or
EB can estimate βGE. Denoted MA+CC or MA+EB, this
leverages the G-E independence assumption, leading to a
more powerful test for the G-E interaction component βGE
than JOINT. As with MA, these 2-DF tests may have larger
rejection rates than either CC or JOINT, because αG may be
nonzero, even if βG = βGE = 0.
The difference between JOINT(CC)/JOINT(EB) and

MA+CC/MA+EB is whether one is testing the main or mar-
ginal effect ofG (βG or αG, respectively). In the case of cross-
over interactions with opposite effects of G in each exposure
subgroup, JOINT(CC) and JOINT(EB) are likely to be more
powerful than MA+CC and MA+EB.

Subgroup tests in the exposed group: CC(EXP) and

EB(EXP). We propose a novel test ofD-G association in the
exposed group (E = 1) alone—namely, H0:βG + βGE = 0.
This is equivalently a test of H0 : β

�
GE ¼ 0 from the con-

strained prospective model logitðPðD jG;EÞÞ ¼ β0 þ βEEþ
β�GEG × E; which assumes βG = 0. The resultant χ2 test statistic
will have 1 DF and be more powerful for testing pure inter-
actions in which the genetic effect is present only in the ex-
posed group. Asymptotically, CC(EXP) is more powerful
than CC if βG = 0 (44) (i.e., if the constraint is satisfied) but
will lead to type I error when βG ≠ 0. We also use the general
retrospective likelihood framework to derive a Wald test for
the above hypothesis, H0:βG + βGE = 0. We consider the EB
version of this subgroup test in the exposed group, again
using CGEN. This test, denoted by EB(EXP), adaptively le-
verages the G-E independence assumption.

SIMULATION SETTINGS

To quantitatively evaluate these G-E interaction methods,
we modified the simulation study of Mukherjee et al. (12),
focusing on modest but plausible effect sizes for βGE and
αG, on the basis of recent published analysis findings (45–
47). We simulatedM = 100,000 genetic markers with n0 = n1 =
20,000 cases and controls. Given the control prevalence of a
marker G and the environmental factor E (respectively PG and
PE) and θGE, the control probability vector p0 = {p000, p001, p010,
p011} is obtained by solving the following system of equations:

expfθGEg ¼ p000ð p000 � ð1� PG � PEÞÞ
ð1� PG � p000Þð1� PE � p000Þ ;

p001 ¼ 1� PG � p000; p010 ¼ 1� PE � p000:

We set PG = f 2 + 2f(1− f ), where the minor allele frequency f
is 0.2 for the causal marker and f ∼ Unif[0.1, 0.3] for null
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markers, and PE = 0.3. For the causal marker, we used θGE ∈
{log(0.8), log(1), log(1.1)}, and, for the null markers, we
sampled θGE from a mixture of Normal(0, log(1.5)/2), and
point-mass, δ0(0), distributions, with the proportion of zeros
given by pind ∈ {0.95, 0.995, 1}. This is a key parameter con-
trolling the fraction of markers correlated with E.

Choices of βE, βG, and βGE, together with p0, define the case
probability vector p1 = {p100, p101, p110, p111} (48): p100 ∝
p000, p101 ∝ exp{βE}p001, p110 ∝ exp{βG}p010, and p111 ∝
exp{βE + βG + βGE}p011. Equation W1 in Web Appendix 1
expresses the marginal log-odds ratios αG and αE as functions
of p0, βG, βE, and βGE, demonstrating that, given p0, there are
3 free parameters between αG, αE, βG, βE, and βGE. By defi-
nition, αE is constant across all genetic markers (i.e., for any
given set of p0, βG, βE, and βGE). However, when θGE and PG

randomly vary across markers, the strategy used byMukherjee
et al. (12) and others, which specifies βE, βG, and βGE, will
not satisfy this invariance of αE across all markers. This
incoherence is avoided by fixing αE = 1.35, βG, and βGE, the
latter 2 of which are specific to each marker, and then solving
for each marker-specific βE. For the causal marker, we used
βG ∈ {log(1), log(1.2)} and βGE < log(1.35). For all other
markers, we set βG = log(1). Fixing αE, βG, and βGE induces
a value of αG, the marginal genetic log-odds ratio.

For each marker, we generated the case and control data in-
dependently from multinomial distributions by using p0 and
p1, respectively. To simulate exposure misclassification, we
varied the sensitivity and specificity parameters. For a given
marker, let r1 = {r100, r101, r110, r111} be the cell frequency
vector for the cases. Each subject in r111 or r101, corresponding
to those for whom E = 1 in truth, was independently moved to
r110 or r100, respectively, with probability of 1− sensitivity.
Simultaneously, each subject in r110 or r100, corresponding to
E = 0,wasmoved to r111 or r101, respectively,with probabilityof
1− specificity. An analogous strategy was used for the control
vector, r0. Perfect classification corresponds to sensitivity =
specificity = 1. We also considered nondifferential misclassifi-
cation (sensitivity = specificity = 0.8) and differential misclassi-
fication (sensitivity = 1.0 and specificity = 0.8 for cases, and
sensitivity = specificity = 0.8 for controls).

Web Table 1 describes additional settings: different effect
or sample sizes, a rare exposure with more severe misclassi-
fication, or some null markers having non-null genetic main
effects, with the results plotted in Web Figures 1–9. We gen-
erated 5,000 case-control data sets for each setting, calculat-
ing FWER (nominally 0.05), expected number of false
positives, and power. We used αscr = 5 × 10−4 (TS and H2),
ρ = 0.5 (H2), and t = 10−3 (CT).

RESULTS

Methods for G-E interaction search

Table 2 presents FWER and expected number of false pos-
itives for all G-E interaction methods. Because of differences
in the null hypotheses, no such table can be meaningfully ex-
tracted for the gene-discovery methods. All methods have in-
flated error rates under differential misclassification when
pind = 0.95 (i.e., when 5% of markers are associated with ex-
posure), including the robust CC, identifying 3 null markers

per data set. In contrast, when all markers are independent of
E (pind = 1), FWER is generally controlled. Under nondiffer-
ential misclassification, FWER is less inflated, with the ex-
ception of CO: When pind = 0.995, FWER is 0.06–0.08 for
EB, TS, and H2 and 0.13 for EDG×E and CT. Under perfect
classification, the expected number of false positives is 2,234
for CO when pind = 0.95. However, misclassification attenu-
ates both G-E association and the observed G-E interaction,
and the expected number of false positives correspondingly
decreases (e.g., to 1,039). For EB, the adaptive linear combi-
nation of CC and CO, FWER is as large as 0.49 under differ-
ential misclassification and pind = 0.95.

Figure 1 plots power for the G-E interaction methods and,
for comparison, MA, against exp{βGE} for βG = log(1.2), PE =
0.3 and pind = 0.995. Web Figures 1–6 plot power under
additional settings. The gene-discovery method MA is con-
siderably more powerful than the G-E interaction methods
because αG is typically much larger than βGE in this parameter-
ization (Equation W1 in Web Appendix 1). Screening for D-G
association confers robustness to misclassification, which is
most evident when θGE = log(0.8) (left column of Figure 1), but
no single method dominates in all settings. Most robust to mis-
classification are CT and EDG×E, which use aweighted p value
screening step; H2, for which screening is a dichotomous step,
also has high power but is more susceptible to misclassification.
WhenθGE = log(1) (middle columnof Figure 1) and exp{βGE} =
1.25, the relative power loss of CT, EDG×E, and H2 between
correct classification and nondifferential misclassification is
20%, 42%, and 64%, respectively. Finally, the rejection rate
of CO, which is nonmonotonic with βGE when θGE = log(0.8),
is explained by noting that γGE = βGE + θGE (Table 1).

Joint tests for discovery of new loci

Figure 2 presents the empirical rejection rates of the
gene-discovery methods and, for comparison, CC, against
exp{βGE} for βG = log(1), andWeb Figures 7–9 plot rejection
rates under several additional settings. The rejection rate of
MA is smaller than others but invariant to misclassification,
as it does not depend on E; this robustness translates in part to
the joint tests MA+CC and MA+EB. The data-adaptive EB
methods, JOINT(EB), MA+EB, and EB(EXP), are more
powerful than those maximizing the prospective likelihood
alone, JOINT(CC), MA+CC, and CC(EXP) when θGE = 0
or, on occasion, when misclassification attenuates the empiri-
cal θGE sufficiently to zero (bottom right panel, Figure 2). Fi-
nally, we note that if βG ≠ log(1), CC(EXP) and EB(EXP),
which assume this equality constraint, would be less powerful.
In general, the expanded null hypothesis of the gene-discovery
methods is more robust to exposure misclassification, as ex-
pected. A large marginal D-G association will increase the re-
jection rate substantially (Web Figure 8, which differs from
Figure 2 by βG = log(1.2)). Conversely, a small marginal D-G
association, in conjunction with misclassification, will decrease
the rejection rate substantially (Web Figure 9).

DISCUSSION

Nondifferential misclassification may reduce power to de-
tect true interactions in a GEWIS setting; however, differential

G-E Interactions With Exposure Misclassification 241

Am J Epidemiol. 2016;183(3):237–247

http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwv198/-/DC1
http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwv198/-/DC1
http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwv198/-/DC1
http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwv198/-/DC1
http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwv198/-/DC1
http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwv198/-/DC1
http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwv198/-/DC1
http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwv198/-/DC1


Table 2. Family-Wise Error Rate (Expected Number of False Positives) for the G-E Interaction Testing Procedures as PE, pind, and Misclassification of the Exposure E in the Cases

and Controls Varya

Cases
{SE, SP}

Controls
{SE, SP}

pind PE
Method

CC MA CO EB TS H2 EDG×E CT

{1,1} {1,1} 0.950 0.3 0.05 (0.05) 0.55 (0.80) 1.00 (2234) 0.23 (0.26) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05)

{1,1} {1,1} 0.995 0.3 0.05 (0.05) 0.12 (0.12) 1.00 (223) 0.04 (0.04) 0.04 (0.05) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05)

{1,1} {1,1} 1.000 0.3 0.05 (0.05) 0.06 (0.06) 0.05 (0.05) 0.02 (0.02) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.03 (0.03)

{0.8,0.8} {0.8,0.8} 0.950 0.3 0.06 (0.06) 0.54 (0.78) 1.00 (1039) 0.39 (0.49) 0.09 (0.10) 0.09 (0.10) 0.19 (0.21) 0.18 (0.19)

{0.8,0.8} {0.8,0.8} 0.995 0.3 0.04 (0.05) 0.12 (0.13) 1.00 (104) 0.06 (0.07) 0.08 (0.08) 0.06 (0.06) 0.13 (0.14) 0.13 (0.13)

{0.8,0.8} {0.8,0.8} 1.000 0.3 0.04 (0.05) 0.05 (0.05) 0.05 (0.05) 0.02 (0.02) 0.05 (0.05) 0.05 (0.05) 0.05 (0.06) 0.04 (0.04)

{1,0.8} {0.8,0.8} 0.950 0.3 0.95 (3) 0.55 (0.80) 1.00 (1670) 1.00 (7) 1.00 (17) 1.00 (16) 1.00 (24) 1.00 (21)

{1,0.8} {0.8,0.8} 0.995 0.3 0.30 (0.35) 0.11 (0.12) 1.00 (167) 0.53 (0.75) 0.99 (5) 0.97 (4) 1.00 (7) 1.00 (7)

{1,0.8} {0.8,0.8} 1.000 0.3 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.02 (0.02) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.04 (0.04)

{1,1} {1,1} 0.950 0.1 0.05 (0.05) 0.13 (0.14) 1.00 (1591) 0.49 (0.68) 0.05 (0.05) 0.05 (0.05) 0.04 (0.05) 0.04 (0.05)

{1,1} {1,1} 0.995 0.1 0.05 (0.05) 0.06 (0.06) 1.00 (159) 0.08 (0.08) 0.04 (0.04) 0.05 (0.05) 0.04 (0.04) 0.05 (0.05)

{1,1} {1,1} 1.000 0.1 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.02 (0.02) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.04 (0.04)

{0.6,0.6} {0.6,0.6} 0.950 0.1 0.05 (0.05) 0.12 (0.13) 0.27 (0.32) 0.06 (0.06) 0.07 (0.07) 0.06 (0.06) 0.09 (0.10) 0.13 (0.13)

{0.6,0.6} {0.6,0.6} 0.995 0.1 0.05 (0.05) 0.06 (0.06) 0.07 (0.08) 0.03 (0.03) 0.05 (0.05) 0.05 (0.06) 0.05 (0.06) 0.05 (0.05)

{0.6,0.6} {0.6,0.6} 1.000 0.1 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.02 (0.02) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.04 (0.04)

Abbreviations: CC, case-control; CO, case-only; CT, cocktail; EB, empirical Bayes; EDG×E, joint marginal/association screening; H2, hybrid 2-step; pind, proportion of markers in which the

genetic marker (G) and exposure (E ) are independent; PE, probability that E = 1; SE, sensitivity, or the probability that E is correctly classified when E = 1 in truth; SP, specificity, or the probability

that E is correctly classified when E = 0 in truth; TS, 2-step G-E screening.
a We simulated 5,000 data sets with n = 20,000 each of cases and controls and M = 100,000 genetic markers, with exactly 1 having multiplicative G-E interaction (βGE ≠ 0). The family-wise

error rate is the proportion of simulated data sets with at least 1 significant (null) finding, with nominal value 0.05 and standard deviation due to simulation variability of 0.003, and the expected

number of false positives is the average number of significant findings per simulated data set. The marginal exposure log-odds ratio was αE = log(1.5) (PE = 0.3) or log(1.75) (PE = 0.1). For each

null marker, the main genetic log-odds ratio was βG = 0 and the carrier prevalence was PG = f 2 + 2f(1 − f ), where f ∼Unif[0.1, 0.3] is the minor allele frequency. The extent of exposure

misclassification increases as either sensitivity or specificity decreases.
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Figure 1. Empirical power to detect gene-environment (G-E ) interaction in 1 marker for 7 G-E interaction methods (CC, case-control; CO, case-
only; CT, cocktail; EB, empirical Bayes; EDG×E, joint marginal/association screening; H2, hybrid 2-step; TS, 2-step G-E screening) and the mar-
ginal (MA) method from 5,000 data sets with n = 20,000 each of cases and controls andM = 100,000− 1 null genetic markers. From top to bottom,
each row corresponds to perfect classification, nondifferential misclassification (sensitivity and specificity of 0.8), and differential misclassification
(sensitivity of 1 and specificity of 0.8 for cases, and sensitivity and specificity of 0.8 for controls) of the exposure variable. From left to right, each
column corresponds to θGE = log(0.8), θGE = 0, and θGE = log(1.1). The exposure prevalencewas PE = 0.3, and themarginal exposure log-odds ratio
was αE = log(1.5). For the non-null marker, themain genetic log-odds ratio was βG = log(1.2), and the carrier prevalencewasPG = 0.36. For each null
marker, βG = 0 and PG = f 2 + 2f(1− f ), where f∼Unif[0.1, 0.3] is the minor allele frequency.
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Figure 2. Empirical power for discovery of 1 marker for the case-control method (CC) and 7 gene-discovery methods (CC(EXP), CC applied to
exposed subgroup; EB(EXP), empirical Bayes applied to exposed subgroup; JOINT(CC), 2-DF joint test; JOINT(EB), empirical Bayes 2-DF joint
test; MA, marginal; MA+CC, marginal + case-control; MA+EB, marginal + empirical Bayes) from 5,000 data sets with n = 20,000 each of cases and
controls. From top to bottom, each row corresponds to perfect classification, nondifferential misclassification (sensitivity and specificity of 0.8), and
differential misclassification (sensitivity of 1 and specificity of 0.8 for cases, and sensitivity and specificity of 0.8 for controls) of the exposure variable.
From left to right, each column corresponds to θGE = log(0.8), θGE = 0, and θGE = log(1.1). The exposure prevalence was PE = 0.3, and the marginal
exposure log-odds ratio was αE = log(1.5). The main genetic log-odds ratio was βG = 0, and the carrier prevalence was PG = 0.36.
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misclassification may increase or decrease type I error and
power. Relative to testing all markers, modular procedures
that leverage empirical G-E and/or D-G associations to first
screen or prioritize markers may have more power to detect
G-E interactions. In the first such 2-stage procedure, which
uses only G-E association (4), the power gain depends on
choosing the optimal value of screening significance level,
which in turn depends on the case-control ratio, number of
markers, anddiseaseprevalence (11, 18).A suboptimal choice
may result in an empirical power curve that is nonmonotonic
with βGE, seen here and previously (12). Later 2-step proce-
dures that also account for D-G association (H2, EDG×E,
CT) do not exhibit this undesirable property.

Because D-G association is unaffected by exposure mis-
classification, modular methods for G-E interaction that use
D-G association for screening or prioritization were found to
be more robust to exposure misclassification. That joint tests
making use of D-G association are more robust to misclassi-
fied exposure has been noted previously (24), but we docu-
ment and quantify this for modern modular methods for
G-E interaction. However, even for these methods, FWER in-
flation under the dual challenge of differential misclassifica-
tion and G-E association still remains. A limitation of all
modular methods is a dependence on the choice of multiple
tuning parameters: αscr (TS, H2), size of weighted p value
groups (CT, EDG×E), ρ (H2), and t (CT).

Gene-discovery methods using joint tests for genetic asso-
ciation andG-E interaction fundamentally differ andmay iden-
tify genetic markers with marginal effects (αG ≠ 0) or joint
effects (βG ≠ 0, βGE ≠ 0). An implication of this expanded
null hypothesis is that, in realistic scenarios in which more ge-
netic markers will have detectable non-null effects for a given
sample size, the number of markers identified will be consid-
erably larger than those obtained from G-E interaction meth-
ods. One must then investigate which markers are implicated
in G-E interaction. Any metric to evaluate gene-discovery
methods must take into account the context of the study—
specifically, what types of markers are of greater importance
to identify. If discovery of new loci by leveraging G-E inter-
action is the goal andmarginalD-G association is anticipated,
then the joint tests, particularly MA+EB and JOINT(EB), are
robust to modest levels of misclassification (which confirms
and expands on the results of Lindström et al. (24)) and are
able to leverageG-E independence for even greater power for
testing the G-E interaction component of a joint test.

Several limitations and possible extensions of this study
exist. First, we do not consider nonparametric tree-based (49)
or Boolean combinatorial methods (50) or tests for additive
interaction (51). Second, we examine the impact of exposure
misclassification but do not propose any remedy. Regression
calibration and imputation methods accounting for measure-
ment error are possible solutions (35). Most require estimation
of the misclassification probabilities or existence of validation
data. One might incorporate exposure quality into the con-
struction of weights in meta-analyses of multiple studies.
Third, there are many possible reasons beyond exposure mis-
classification that GEWIS studies lack power to detect G-E
interactions, including small sample size (52), misclassifica-
tion of the genetic markers (53), or more complex multimarker
interactions (9). A key challenge for this and previous similar

simulation studies is to realistically generate the underlying
genetic architecture of a trait and magnitude and number of
non-null G-E interactions. Some specific limitations include
between-marker independence, the generation ofG-E associa-
tions from a mixture distribution, a lack of null markers having
only main genetic effects, and consideration of just one causal
marker for empirical power estimation (in the case of G-E
interaction). Using readily available single-nucleotide poly-
morphism simulation routines that generate realistic linkage
disequilibrium structure (54, 55) and simulating effect size
parameters randomly from published estimates of genetic
effect size distributions (56, 57) would make our simulation
study more realistic, moving away from a fixed single-
parameter null/causal scenario toward a continuum of plau-
sible genetic effect sizes. This would present challenges in
terms of defining alternative metrics of average performance
rather than simple type I error and power. Incorporating these
into simulation studies remains an important extension of our
work.
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