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Abstract

It has long been recognized that certain sites within a protein, such as sites in the protein core or 

catalytic residues in enzymes, are more conserved than are other sites. However, our 

understanding of rate variation among sites remains surprisingly limited. Recent progress to 

address this includes the development of a wide array of reliable methods to estimate site-specific 

substitution rates from sequence alignments. In addition, several molecular traits have been 

identified that correlate with site-specific rates, and novel mechanistic, biophysical models have 

been proposed to explain the observed correlations. Nonetheless, at best, current models explain 

approximately 60% of the observed variance, highlighting the limitations of current methods and 

models, and the need for new research directions.

Introduction

Different protein-coding genes within the same species vary widely in their rates of 

evolution. For example, proteins that are highly expressed or that perform critical functions 

tend to evolve more slowly than will other proteins1. In addition to this gene-wide variation, 

and perhaps more interestingly, evolutionary rates vary among residues within a given 

protein. Although some of this variation is attributable to positive, diversifying selection, 

e.g. selection pressure triggering adaptation to environmental or other changes, there exists 

substantial rate heterogeneity even at sites not subject to such selection pressure. This 

heterogeneity likely emerges from the differing functional and/or biophysical constraints 

affecting different sites. Accurately modeling this among-site heterogeneity is critically 

important in evolutionary studies, particularly in phylogenetic inference2-8. Phylogenetic 

models which allow for among-site rate heterogeneity universally provide better fits to data 

than do models which assume constant rates across sites3;9-13. However, such models are 

largely phenomenological in nature and contain no information about the mechanistic source 

of among-site rate heterogeneity14. Although it is clear that substantial rate variation exists, 

the underlying mechanisms which generate the observed rate heterogeneity remain elusive.

Over the years, it has become apparent that site-specific evolutionary rates are influenced by 

a dynamic interplay between structural and functional constraints (Figure 1). In the 1960's, 
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Perutz et al.15 investigated site-specific sequence variability in globin proteins and found 

that “internal sites” were generally more conserved than were “superficial sites.” They 

further reasoned that “special functions” had to be influencing sites which did not conform 

to this pattern15. Later, Kimura and Ohta built upon these observations by proposing the 

governing principle that “[f]unctionally less important molecules or parts of a molecule 

evolve (in terms of mutant substitutions) faster than more important ones”16. Kimura and 

Ohta additionally recognized that surface protein residues “are usually not very critical to 

maintaining the function or tertiary structure, and the evolutionary rates in these parts are 

expected to be much higher”16.

Following these early studies, most work on the sequence-structure-function relationship has 

been done from the perspective of structural biology. In general, such studies have not 

considered evolutionary rates, but have considered conservation only qualitatively or 

through conservation scores that do not take into account the nature of the evolutionary 

processes or the phylogenetic relationships. Therefore, our current understanding of how 

functional and structural constraints interact to shape evolutionary rate heterogeneity 

remains limited. To develop a complete picture of protein evolution, we need to identify the 

precise structural and functional properties which ultimately govern protein evolutionary 

rates, and we need to develop mechanistic explanatory models thereof.

In recent years, there has been significant progress on this front. Advances in computational 

evolutionary modeling have provided a variety of robust methods for estimating site-specific 

rates both from amino-acid sequences and from protein-coding DNA sequences. Further, 

numerous studies have discovered functional, structural, and dynamical molecular features 

that correlate with rates17-23, and biophysical models have been proposed that predict site-

specific rates from protein thermodynamics24;25. Studies on the relationship between rate 

and structure have yielded consistent findings, suggesting that current data and methods 

provide a solid foundation upon which further knowledge can be built. Therefore, the time is 

ripe to review and synthesize our current understanding of site-specific evolutionary rates 

and the identified structural and functional aspects which influence them.

We focus here as much as possible on works that study site-specific rates estimated using 

state-of-the-art molecular evolution methods. To provide context or where we lack rate-

based studies, we also discuss relevant work based on other measures of sequence 

conservation. In the following, we first describe current methods to estimate rates from 

sequence data. We then consider molecular traits related to site-specific conservation. Next, 

we discuss two recent mechanistic biophysical models that have been used to explain site-

specific rates. We conclude with a discussion of challenges and future directions.

Estimation of site-specific rates

Computing site-specific evolutionary rates requires two pieces of data: a multiple sequence 

alignment, with either codon or amino-acid data, and a corresponding phylogeny. Estimating 

the substitution rate at each individual site in a protein can be a computationally burdensome 

endeavor, much more so than estimating a mean rate for an entire protein sequence. Indeed, 

individual sites contain far less information than do entire protein alignments, and thus large 
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and diverse datasets are needed for reliable inference. In particular, most alignment sites 

must have experienced several substitution events for a reasonably accurate rate estimate to 

be made26.

Broadly speaking, site-specific inference methods follow one of two paradigms27-31: i) 

directly counting observed substitutions along a phylogeny, and ii) employing a Markov 

model of sequence evolution to infer evolutionary rate parameters, typically in a maximum-

likelihood (ML) framework. Other methods, which compute sequence entropy or 

conservation scores32-34, are useful for assessing the tolerance of a given residue to 

mutation. However, they cannot be substituted for true measures of evolutionary rate, as 

they do not typically account for phylogeny, which represents the evolutionary relationships 

among sequences. Indeed, it is possible for a given site to have high entropy and a low 

evolutionary rate or vice versa.

Inferring rates from codon data

In the context of protein-coding sequences, evolutionary rates are typically estimated with 

the ratio ω=dN/dS, where dN is the rate of non-synonymous substitutions and dS is the rate 

of synonymous substitutions. To make dN and dS directly comparable, they are normalized 

to account for the approximately 3-fold higher likelihood that a random mutation is non-

synonymous rather than synonymous35. The ratio ω has been developed primarily to detect 

sites under adaptive evolution (for which ω>1), but it can also be used to estimate site-

specific rates30;36.

Counting-based methods, the oldest class of dN/dS inference methods, calculate dN/dS 

simply by enumerating the observed changes either between pairs of sequences or along a 

phylogenetic tree5;29;37-39. While relatively fast, these methods do not adequately account 

for multiple substitutions, variation in branch lengths, and other biases, and therefore they 

tend to produce biased dN/dS estimates5;29;35.

Most modern-day inference approaches, on the other hand, estimate rates in a ML 

framework with an explicit Markov model of sequence evolution. By implicitly accounting 

for any hidden substitutions along branches, ML-based methods are more robust and less 

biased than are counting methods. Site-specific rates are obtained either by fitting a rate 

parameter individually to each site in the coding sequence (known as a “fixed-effects 

likelihood” or FEL approach)28;29;40 or by considering the rate to be a random variable 

drawn from a distribution governing the entire protein (known as a “random-effects 

likelihood” or REL approach)9;28;29;41. In the REL approach, site-specific rates are 

calculated using a Bayes Empirical Bayes framework42. FEL lacks power for small datasets, 

and thus it is most appropriate for use on large datasets (at least 200 sequences in which 

most sites have experienced recurrent changes)29. On the other hand, REL is best suited for 

datasets of intermediate size (50–200 sequences), as its estimates on either very small or 

very large datasets are usually quite biased29. Importantly, while smaller datasets (e.g. 16–

50 sequences) may suffice when detecting episodic and/or diversifying selection43, 

obtaining reliable site-specific dN/dS point estimates requires larger datasets. We note that 

FEL methods are primarily implemented in HyPhy44 and its corresponding web-server 

DataMonkey45, whereas REL methods are implemented in both HyPhy44 and PAML46.
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There are two possible strategies for parameterizing dN/dS during rate inference. One can 

either fix dS across sites and simply estimate site-specific dN values, or one can estimate a 

separate dN and dS parameter for each site. Importantly, in the context of protein evolution, 

dN is the primary parameter of interest, and dS serves only as a normalization factor to 

determine into which selection regime (e.g. purifying, neutral, positive selection) a given 

residue falls. Given that site-specific rate estimates are inherently noisy, normalizing each 

site's inferred dN with a corresponding site-specific dS likely introduces substantial, and 

potentially confounding, error. Models which either fix dS to 19;41;47, or similarly infer 

gene-wide dS estimates for normalization, therefore, may represent a more robust strategy 

for obtaining reliable rates of protein sequence evolution.

Although the inference approaches described above are generally implemented in a ML 

framework, several evolutionary rate inference approaches have recently emerged that use 

Bayesian, rather than frequentist, statistics. For example, a novel method known as 

renaissance counting30, implemented in the software package BEAST48, combines a 

counting-based approach with empirical Bayes regularization, thus leveraging the power of 

large datasets to produce site-specific estimates of accuracy comparable to FEL and REL. In 

addition, the inference method FUBAR (a Fast, Unconstrained Bayesian AppRoximation for 

inferring selection) adapts the REL framework to rapidly fit a large, pre-specified grid of 

evolutionary rates to the data in a hierarchical Bayesian framework49. This approach is 

exceptionally fast yet yields reliable rate estimates for data with sufficient divergence. 

Finally, an approach for estimating gene-wide dN/dS values using a Bayesian statistical 

framework has recently been described, and future development may see this method 

extended to site-specific estimation50.

Inferring rates from amino-acid data

The primary approach for inferring rates from amino-acid data is implemented in the 

program Rate4Site51. Rate4Site estimates a per-site rate-scaling factor that indicates how 

rapidly each residue evolves relative to the mean protein rate. It is implemented in both ML-

based and Bayesian frameworks, with the latter being the default52. Under the Bayesian 

framework, Rate4Site employs a random-effects approach, specifying either a single gamma 

distribution52 or a mixture of gamma distributions11 as the prior rate distribution. A Bayes 

Empirical Bayes approach is then used to calculate site-specific rates. Importantly, Rate4Site 

can only accommodate datasets with fewer than approximately 300 sequences51, and thus 

future research endeavors may seek to extend this method for use on larger datasets.

Alternatively, Fernandes and Atchley proposed a fixed-effects framework for estimating 

site-specific evolutionary rates from proteins53. Unlike the Bayes Empirical Bayes approach 

in Rate4Site, this method provides an independent rate estimate at each site, thus avoiding 

the confounding influences of mis-specified prior distributions on the rate. Finally, a 

relatively new method called GP4Rate uses a Gaussian process to infer site-specific 

evolutionary rates while taking protein tertiary structure into account54;55. This approach 

effectively accounts for non-independence among site-specific rates.
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Structural and environmental rate constraints

The among-sites rate variation observed in natural sequence alignments is, to a large extent, 

driven by the requirement that proteins fold properly and stably into their required, active 

conformation. In evolutionary terms, this requirement corresponds to purifying selection, 

such that sites at which mutations would disrupt folding or stability the most will be most 

conserved. In addition, proteins experience selection pressure to avoid disrupting their native 

environment, for example by forming non-specific protein–protein interactions56. In the 

following, we refer to these kinds of selective forces as structural and environmental 

constraints on sequence evolution.

Early studies of structural constraints established a basic paradigm dividing the protein into 

two general regions: the interior, which evolves slowly, and the surface, which evolves more 

rapidly15;16 (Figure 1). This paradigm poses two questions: i) why is the protein interior 

more conserved than the surface? and ii) what are the salient structural differences between 

these two regions? Several biophysical measures have been proposed to explain the 

observed rate differences in structurally distinct regions. These measures include a residue's 

solvent accessibility, packing density, and flexibility. Although these measures are distinct, 

they all quantify the position of a given residue relative either to other nearby residues or to 

the protein as a whole.

Solvent accessibility

The most obvious difference between surface and interior is that the surface is accessible to 

the external environment, e.g. water, while the interior is not. This observation defines 

solvent accessibility (ASA, accessible surface area, or SASA, solvent-accessible surface 

area), which indicates the surface area of a given residue that is accessible to water. ASA 

values are commonly normalized by the largest possible ASA for a given amino acid57, 

resulting in the relative measure RSA (Relative Solvent Accessibility). RSA ranges from 0 

for completely buried residues to 1 for completely exposed residues.

Because early studies showed a relatively high conservation of protein cores, solvent 

accessibility formed the basis of research investigating the relationship between protein 

evolution and structure through the mid-1990s58-63. A broad consensus emerged that amino-

acid substitution rates and properties differ between buried and exposed sites, with buried 

sites being more conserved and tending more towards hydrophobic residues, due to the local 

environment in a protein's core. Over time, it was generally assumed that solvent 

accessibility represented the dominant structural constraint on evolutionary rate. For 

example, one study partitioned residues according to RSA and secondary structure (e.g. 

helix, sheet, coil, turn, etc.) and found that exposed sites evolved more rapidly than buried 

ones, regardless of secondary structure64. A study of site-specific substitution rates for 25 

α/β barrel enzymes found that a minimal model which considered RSA as the main factor 

could not be improved upon by adding other properties such as secondary structure or H-

bonding information17. A third study showed that amino-acid properties, such as 

hydrophobicity or size, had little influence on site rates beyond the strong effect of solvent 

exposure65.
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More recently, studies have leveraged the power of genomic datasets and sophisticated rate 

inference methods to perform more comprehensive analyses. For example, Franzosa and 

Xia18 examined the correlation of site-specific dN/dS with several structural properties 

across nearly 1000 Saccharomyces cerevisiae proteins. They found that evolutionary rate 

increased linearly with RSA. Since then, several additional studies have reinforced the 

strong, positive relationship between RSA and site-specific rate66-68.

Packing density

As we have seen in the previous subsection, solvent accessibility has become the de facto 

structural measurement to use in protein evolution studies. However, more recent work has 

called the central role of solvent accessibility into question, suggesting instead different 

structural measures which correlate more strongly with evolutionary rate.

In particular, instead of quantifying the extent to which a given residue comes into contact 

with solvent, as RSA and ASA do, we can also quantify the extent to which a residue comes 

into contact with other residues in the protein. This alternative concept, known as packing 

(or contact) density, indicates how densely packed a residue is within the protein tertiary 

structure. The two packing measures most commonly used in evolutionary studies are the 

contact number (CN) and the weighted contact number (WCN). For a given amino acid, CN 

simply counts the number of other residues within a local, structural neighborhood. By 

contrast, WCN considers all residues in the protein and weights them by the square of their 

inverse distance to the focal amino acid19;69.

Packing density was initially introduced into the protein evolutionary rate literature because 

theoretical calculations predicted that more densely packed proteins should be easier to 

design70and, as a consequence, evolve more rapidly71. The first studies relating contact 

density to evolutionary rate focused on whole-protein rather than site-specific rates, and 

broadly found that average protein rates are higher for proteins whose residues have, on 

average, higher packing densities71-73. Once packing density was established as a veritable 

predictor of evolutionary rate, several groups began investigating the packing–rate 

relationship on a site-specific basis. Franzosa and Xia found a modest but significant partial 

correlation of CN with site-specific rates while controlling for RSA, prompting them to 

conclude that CN influences rate independently from RSA18: More densely packed sites 

evolve more slowly. Importantly, Franzosa and Xia concluded that, while CN does predict 

evolutionary rate, RSA is a much stronger predictor18. However, subsequent works have 

challenged this finding, pointing out that using WCN instead of CN to estimate packing 

density results in stronger predictive power, and moreover that RSA's independent 

contribution becomes relatively small when WCN is controlled for19;23;74.

In all above-mentioned studies, WCN was calculated using Cα carbons to represent residues. 

Recent work has proposed that using side chains rather than Cαcarbons may provide a more 

robust determinant75. Indeed, side-chain based WCN has consistently outperformed both 

Cα-based WCN and RSA as a rate determinant (Figure 2). Therefore, it now appears that 

WCN is the main determinant of site-specific substitution rates, and RSA provides a 

comparatively minor independent contribution.
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Even so, as can be seen in Figure 2, both the relative performance of WCN and RSA and the 

overall performance of either predictor varies widely among protein structures. While for 

some proteins we can explain over 60% of the observed rate variation with simple structural 

measures such as RSA and WCN, for other proteins we can only explain less than 10% with 

the same measures. Similarly, for some structures WCN outperforms RSA by over 15 

percentage points, while for others the two measures perform comparably. The underlying 

cause of these discrepancies is not well understood, but there are several, not mutually 

exclusive possibilities: First, other predictors, e.g. related to protein function (see below), 

may be more important in some structures than in others. As an example, consider the case 

of structure 1AKO shown in Figure 2B. Second, in some cases alignments may be poor or 

contain insufficient or excessive divergence. In general, alignments need to be sufficiently 

diverged for accurate rate inference at individual sites26 but not be saturated with mutations. 

Finally, standing polymorphisms, slightly deleterious mutations, or mutations hitchhiking on 

recent selective sweeps may cause biased rate estimates76, and as a consequence structural 

predictors may not work well on alignments in which any of these factors are highly 

prevalent.

Flexibility

Proteins are not static structures; they are dynamic polymers that undergo constant 

conformational fluctuations. Such movements are frequently critical for protein function. 

For example, enzymes must shift their structural conformation to expose the active site 

before a substrate can be accommodated. Similarly, conformational changes could control 

the mutational tolerance of a site, such that a site in a highly flexible region of a protein 

structure would likely be more tolerant to mutations than a site in a less flexible 

region20-22;77.

At the site level, conformational dynamics can be quantified using measures of local 

flexibility, such as Mean Square Fluctuations (MSF) or B-factors. These quantities measure 

to what extent a given residue changes its position over time. Using these and similar 

quantities, several studies have found that site-specific sequence variation correlates with 

local flexibility20;22;24;77, such that flexible sites evolve more rapidly than rigid ones do.

That flexibility and evolutionary divergence correlate has been interpreted as evidence that 

protein dynamics imposes significant constraints on sequence evolution20;77. However, 

whether flexibility is the underlying causal factor in the observed flexibility–rate correlation 

is unclear. Local flexibility relates directly to packing density78, which, as discussed above, 

correlates strongly with rate. Therefore, it is possible that either flexibility or packing 

density represents the underlying causal factor affecting rate.

One of the first studies of the flexibility–evolution relationship used the inverse of the 

contact number as a proxy of flexibility, making the implicit assumption that flexibility was 

the causal factor79. Several later studies made similar arguments20;77. However, if flexibility 

were the actual determinant and packing just a proxy, site-specific rates would have higher 

correlations with flexibility than with packing, which is not the case. Instead, the reverse is 

true: Site-specific substitution rates correlate more strongly with measures of packing 

density (such as WCN) than with measures of flexibility (such as MSF)22;24. Moreover, 
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when packing density is controlled for, no residual correlation remains between rate and 

MSF24. Thus, it appears that flexibility correlates with rate simply because both quantities 

are determined by local packing density, and not because of a direct, causal relationship 

between flexibility and rate.

Other structural constraints: folding kinetics, protein expression, and cellular environment

There are other quantities and constraints that broadly relate to the requirement of proper 

and stable protein expression. For example, structural factors that may constrain evolution at 

the site level include secondary structure, side-chain hydrogen bonds, unusual side-chain 

rotamers, nonplanar peptide bonds, strained main-chain conformations, or buried 

hydrophilic-charged residues80. However, the majority of these factors have little 

explanatory power for site-specific rates once solvent accessibility is controlled for17;64;81. 

One factor that does matter is structural disorder: sites in disordered regions tend to evolve 

more rapidly, and with less conservative amino-acid substitutions, than do ordered 

regions82-84.

In addition to being stable, proteins need to fold sufficiently rapidly. It is reasonable to 

expect this requirement for rapid folding to further constrain evolutionary divergence. 

Folding occurs via a transition state involving a small number of sites that assume their 

native conformation, a folding nucleus85. A classic study of the cytochrome c family 

speculated that those sites that were very conserved but not involved in activity could be the 

sites forming the folding nucleus86. In another study, the experimentally determined folding-

nucleus sites of 9 proteins were found to be more conserved than average87. By contrast, a 

more exhaustive, systematic study found no significant evidence for extra conservation of 

folding-nucleus residues and, moreover, argued that the previously found special 

conservation was due to biases of the experimental data88. Note that the cited studies 

quantified conservation using entropy-based measures. A more recent study based on 

substitution rates found no significant differential conservation of folding-nucleus sites89.

The level at which a protein is expressed and the cellular location where it functions 

influence site variation as well. For example, it is well known that more highly expressed 

proteins evolve more slowly90. Analyses at the site level have shown that this evolutionary 

constraint is RSA dependent67;68. In yeast, the difference in mean evolutionary rates for 

lowly and highly expressed genes increases linearly with RSA. For the most buried residues 

(RSA=0), sites in highly expressed genes evolve approximately two times slower than sites 

in lowly expressed genes, while for the most solvent-exposed genes (RSA=1), the relative 

ratio in mean rates grows to above three67. An example of environment dependence can be 

seen in membrane proteins. In such proteins, the transmembrane regions are more 

evolutionarily conserved than the extramembrane regions are, and this effect seems to be 

separate from conservation due to solvent accessibility91;92.

Rate variation caused by protein function

None of the structural and environmental constraints discussed in the preceding section are 

directly related to protein function. Indeed, while proteins need to fold stably into their 

active conformation, this requirement alone does not guarantee that they will function 
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properly, except perhaps for proteins whose sole purpose is structural, as building blocks of 

organs and tissues. All other proteins, including enzymes, transcription factors, molecular 

motors, and antibodies, have specific functional or active sites at which they experience 

additional selection pressures. These pressures may act in the form of purifying selection, 

causing increased evolutionary conservation, or in the form of positive, diversifying, or 

balancing selection, causing increased evolutionary variability.

Purifying selection

In many cases, selection for function adds additional evolutionary constraints to the specific 

amino acids (such as catalytic sites) involved in a protein's function93;94. These sites—as 

well as their neighbors—are often particularly conserved93 (as one example, consider the 

pattern of conservation near the active site in Figure 1). Curiously, selection for function 

seems to extend beyond just the active site and its immediate neighbors. Dean et al. found 

that distance to the active site correlated with site-specific variation in several enzymes17. 

Similarly, several experimental studies have observed that mutations far away from the 

active site can disable protein function by inducing protein-wide structural alterations (see 

also Box 1). These findings provide evidence for the presence of long-range, indirect 

interactions in protein structures, likely mediated by steric interactions among neighboring 

amino acids95.

Besides catalytically active sites, residues involved in protein–protein or protein–nucleic-

acid interactions also experience added functional constraint and generally are more 

conserved than other surface sites18;96-98. The extent to which protein–protein interactions 

constrain site evolution seems to depend on the exact nature of the interaction. For example, 

obligate interactions, which often persist for the lifetime of the protein, are associated with 

lower rates compared to transient interactions that occur only occasionally96. Since residues 

involved in protein–protein interactions experience reduced solvent accessibility when the 

interacting protein partner is present, Franzosa and Xia asked whether this reduction could 

explain the added added evolutionary constraint on interface residues18. Their answer was 

“not entirely.” They found that while the evolutionary constraint increases linearly with 

increasing amount of solvent-accessible surface area lost due to the interaction, there is also 

an additional, albeit low, fixed cost that can be attributed to the mere fact that a residue is 

participating in the interface interaction18. The fixed cost is independent of RSA. Its low 

magnitude is consistent with recent experiments and computer simulations showing that 

protein–protein interfaces can maintain function despite extensive divergence of one 

partner99.

Finally, ligand-binding sites tend to be more conserved than other sites, and this 

conservation is exploited in ligand-binding-site prediction methods100;101. However, the 

degree of conservation varies. For example, while catalytic sites are very conserved, 

allosteric sites, while more conserved than average, vary more than catalytic sites, because 

of either weaker constraints or positive selection on the regulatory mechanisms102.
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Positive selection

When organisms are faced with novel or changing environments, their protein-coding genes 

may experience positive selection, i.e., a selection pressure to change rather than remain the 

same. This selection pressure will primarily act on the sites directly involved in the specific 

function under selection. That individual sites can experience positive selection for specific 

function was first recognized over thirty years ago. Early examples include positive 

diversifying selection in the active sites of three related rodent protease inhibitors103, over 

dominance in the antigen recognition site of human and mouse class I MHC (major 

histocompatibility complex) genes104, and positive selection in the V3 region of the HIV-1 

envelope gene41, likely reflecting immune escape or adaptation to cell tropism.

Positive selection is probably the most prevalent in viral surface proteins, which experience 

intense selection pressure to adapt to their host or to escape their host's immune response. 

For example, positive selection strongly shapes the evolution of the influenza hemagglutin 

in protein105-108, which initiates fusion of the viral envelope with the cellular membrane. 

Indeed, in that protein, positive selection explains nearly as much rate variation as does 

RSA109.

Since positively selected sites can provide meaningful insight into the functioning of and 

selective constraints on a gene, the molecular evolution community is broadly interested in 

identifying such sites under many different scenarios. This interest has spurred the 

development of numerous tests for positive selection, based on the approaches and inference 

frameworks discussed in the previous section “Estimation of site-specific rates.” 

Importantly, these existing methods rarely consider the baseline structural constraints acting 

on most sites in a protein. Consequently, they tend to be overly conservative and likely miss 

many important sites36.

For example, the widely used test for dN/dS>1 makes the implicit assumption that sites 

evolve at dN/dS=1 in the absence of selection. However, for protein-coding sequences 

selection is virtually never absent; structural constraints will induce purifying selection that 

will push dN/dS to values much lower than 1 in nearly all cases. Thus, we can expect that 

positive selection at a site that otherwise would have been highly conserved may yield 

elevated dN/dS values that nevertheless remain below 1 (Figure 3). Purely statistical 

methods that consider only the value of dN/dS at individual sites will not be able to identify 

such site (Figure 3A). However, methods that incorporate appropriate baseline expectations 

derived from protein structure may be able to do so (Figure 3B). In general, functional 

constraints may be the reason why sites evolve faster or slower than expected from 

structural constraints (Figure 3B; see also Figure 2B). Finally, methods that incorporate both 

structural and functional information may accurately predict the rate of evolution at 

functionally selected sites, thus providing mechanistic insight into why a given site evolves 

at the rate it does (Figure 3C).

Predicting rates from first principles

Correlations between rates and predictor variables allow us to identify factors that influence 

rate variation, but ultimately they do not provide explicit mechanistic insight into why a 
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given site is variable or conserved. To gain mechanistic insight, we need to develop 

biophysical models, grounded in first principles. Several biophysical models have been used 

to study issues such as marginal protein stability and site–site coevolution110;111. Here, we 

will focus on the models that have been used to study site-specific rates.

While phenomenological models depend directly on predictor variables such as RSA and 

WCN, biophysical models are based, essentially, on protein stability. This choice is 

reasonable because from a physicochemical perspective a protein's function is determined by 

its thermodynamics and kinetics, which are related to stability. In addition, stability is 

related to all the molecular features that correlate with evolutionary rates. For example, 

solvent accessibility (RSA) is related to stability via the energetic cost of burying a side 

chain into the core112;113. Similarly, packing density (CN and WCN) and flexibility (MSF) 

are related to the mean interaction energy of a site with the rest of the protein78. Therefore, 

molecular features such as RSA, WCN, and MSF could be mere proxies of stability, which 

would be the true determinant of protein fitness and, therefore, site-specific evolutionary 

rates.

Two distinct biophysical models have been proposed in the literature. The stability-

threshold model, also referred to here as the native-stability model, links site-specific 

substitution rates to mutational changes of protein thermodynamic stability114. Specifically, 

it assumes that all proteins with sufficient stability in the native state function equally well 

and have identical fitness, and proteins that are not sufficiently stable have zero fitness. 

Thus, they impose a stability-threshold condition that the protein needs to meet at all times 

during its evolution. We note that variations of this model may employ a sigmoidal function 

instead of a hard threshold, but they show similar behavior and make the similar assumption 

that native stability is the critical factor in a protein's function115;116.

In the threshold model, the probability of fixation of a given mutation is equivalent to the 

probability that the mutation will push the stability below the threshold. This probability can 

be calculated under the assumption that the free-energy changes ΔΔGij,k for mutations from 

amino acid i to amino acid j at site k are known25. (ΔΔG measures the change in free energy 

ΔG between two protein variants, and ΔG is a measure for the stability of the protein fold.) 

These free-energy changes can be estimated from atomic force fields such as FoldX117 and 

subsequently converted into rate estimates25.

In contrast to the native-stability model, the active-stability or stress model assumes that a 

mutation will affect not just the native conformation of a protein but its whole energy 

landscape. For example, if a protein needs to adopt a certain active conformation to function, 

the stability of this active state likely affects fitness. The active-stability model postulates 

that the fixation probability is proportional to the probability of finding the mutant in the 

active conformation, which in turn is a function of the stability change of the active 

conformation, ΔΔG* (Figure 4). This stability change can be calculated analytically via 

perturbed elastic network models (ENMs)24;75. In particular, using the parameter-free 

Anisotropic Network Model (pfANM)118, one can show that the substitution rate should be 

proportional to the weighted contact number WCN. Thus, the active-stability model 

provides a mechanism for the observed rate–WCN correlation24;75.
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The site-specific rates predicted by both the active-stability and the native-stability models 

are in good agreement with empirical rates24;25;75. However, the active-stability model tends 

to perform better, and there is little independent contribution from the native-stability model 

once the active-stability contribution is accounted for. Therefore, the empirical evidence so 

far favors the active-stability model. Mechanistically, the active-stability model can explain 

why native-stability predictions correlate with empirical rates: As shown in Figure 4, 

ΔΔG*=ΔΔG+ΔΔG‡, where the first term is the change in native-state stability and the 

second term is the change in activation free energy. From the perspective of the active-

stability model, ΔΔG affects evolutionary constraints via its effect on the stability of the 

active conformation. Importantly, a given mutation may destabilize the active state even if it 

increases native stability (Figure 4), and the native-state-model predictions for such 

mutations would be incorrect.

Challenges and future directions

Our present-day understanding of site-specific rate variation broadly agrees with the initial 

picture developed over 40 years ago. However, whereas early work suggested definite 

structural regions (interior and surface), the emerging view is more nuanced (see also Table 

1). Structural constraints decrease continuously from the solvent-inaccessible, tightly 

packed, and rigid protein interior towards the solvent-exposed, loosely packed, and flexible 

protein surface. Moreover, active sites and protein–protein interfaces exert additional 

evolutionary constraints, in the form of either positive or purifying selection, and these 

constraints seem to extend beyond the immediate residues involved in the protein's function.

Yet a complete and accurate predictive model of rate variation remains elusive. Our best 

current models can explain only ∼60% of the observed rate variation, and only in some 

structures. Model performance varies widely among different proteins, for unknown reasons. 

Thus, while the field has made considerable progress, many important questions remain 

(Box 2). To make further progress, we will have to pursue three distinct research areas: 

First, we need to improve rate estimates by developing better inference methods and by 

quantifying the errors of these estimates for realistic data sets. Second, we must try to 

improve predictions by finding yet undiscovered relevant molecular traits. Third, to advance 

mechanistic understanding, we need further research on theoretical models. All of these 

efforts will likely benefit from stronger integration with experimental work, as discussed in 

Box 1. Some questions that could help orient future research in these three areas are listed in 

Box 2.

The three main challenges

While the field of rate estimation is mature, we still see ample room for improvement. In 

particular, rate estimation is subject to both stochastic and systematic errors. Estimation 

methods are typically based on some model and assessed using data simulated using the 

same type of model. This practice serves to assess stochastic errors and their convergence 

with, for example, number of sequences and divergence29;51. It also serves to assess, for 

example, whether Bayesian or ML methods result in better estimates49;52. However, 

differences between the process that generated the actual data and the model used for 

analysis will lead to systematic errors119. Using the most rigorous statistical approaches and 
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increasing the amount of data cannot compensate for the use of incorrect models; on the 

contrary, it may lead to even more biased estimates120. Among the most important 

assumptions that may affect rate estimates are the codon or amino acid replacement model, 

prior rate distributions, the assumption that rates are constant over time and lineages, and 

independently evolving sites. Investigating the effects of violating such model assumptions 

is, we believe, the most important current challenge for improving rate inference methods.

Phenomenological models that combine predictors such as RSA and WCN are not in perfect 

agreement with observed rates, and the origin of the mismatch, especially of the wide 

variation of explanatory power among proteins, is unknown. RSA and WCN are the best 

currently-known predictors, but they are not the only ones. Even though other constraints, 

such as local flexibility, secondary structure, and side-chain hydrogen bonding, do not seem 

to have a large effect on determining the overall pattern of site-specific rates, these 

properties have been found to affect the evolutionary process of some sites, and further work 

in this area, in particular comparing and contrasting these quantities to RSA and WCN, may 

be worthwhile. More importantly, we will have to develop useful predictors that quantify 

functional constraints. Beyond the high conservation of a few sites directly involved in 

function, there is some evidence of functional constraints inducing longer range patterns. 

Measures such as the distance to the active site improve site-specific rate predictions in 

some cases, and these and similar functional predictors of site-specific rate variation are the 

obvious next direction for the field. Finally, phenomenological models can also be 

integrated directly into the rate-inference framework36;121, and such integrated models could 

provide both better rate estimates and novel insight into structural and functional 

evolutionary constraints.

Ultimately, we aim at a mechanistic understanding of protein evolution, derived as much as 

possible from first principles. We have described the two biophysical models that have been 

applied to the study of site-specific rates. These models are based on the idea that fitness 

depends on protein activity which, in turn, depends on stability changes. While one of the 

models depends on changes in the stability of the native conformation, the other depends on 

the (de)stabilization of an active conformation. Even if the active-stability model results in 

better predictions of site-specific rates, whether active-state stability or native-state stability 

or both are the primary drivers of site-specific evolution is not currently known. Moreover, 

there exists no framework currently to incorporate functional constraints into biophysical 

mechanistic models. For example, what is the biophysical origin of the increase of site-

specific rates with distance to the active site? Including function explicitly in mechanistic 

biophysical models is one of the main challenges for further development of mechanistic 

models.

Other limitations of current work

All the structural predictors of rate we have discussed here suffer from one important 

shortcoming: They ignore pairwise interactions between amino acids. While quantities such 

as solvent accessibility or packing density implicitly take into account the extent to which 

other amino acids are nearby, they cannot explicitly model the increased or decreased 

substitution rate at one site in response to a substitution at another site. Yet such co-
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evolution among sites is well documented122-126, and it has been used to infer protein 

tertiary structure127-129 and protein–protein interactions130;131 from sequence alignments. 

How pairwise interactions among sites affect rate heterogeneity, however, is poorly 

understood. Indeed, studies have primarily focused on inferring structure from sequence 

alignments, and few attempts have been made to solve the inverse problem of predicting site 

co-variation from structure.

As a generic approach towards developing more accurate models of structural constraints, 

one could move away from simple summary statistics such as RSA or WCN and instead 

employ mechanistic, all-atom models of protein folding. In principle, we should be able to 

recover any evolutionary constraints attributable to protein folding stability from the detailed 

energetic models used in protein design algorithms, which naturally consider interactions 

among residues in the structure132. However, attempts to date have fallen short of 

expectations22;133;134; the simple quantities RSA and WCN perform much better in 

predicting site-specific rates than do sophisticated all-atom protein-design calculations. In 

particular, protein design underestimates the amount of co-variation among sites observed in 

natural protein sequences133. It also tends to overestimate the variability of buried sites and 

underestimate that of exposed sites134.

Importantly, we are limited in the extent to which we can compare findings from distinct 

existing studies, because they frequently employ widely diverging inference methods, data 

sets, or models. For example, while rates estimated with Rate4Site51 should correlate with 

dN/dS estimates, the extent to which this relationship holds true has never been tested. 

Similarly, results found for highly diverged globular enzymes23;75 may not be comparable to 

results found for viral proteins that have experienced little divergence22, and which may 

inherently possess distinct structural features relative to cellular proteins135. Also, while 

some studies are based on highly diverged data sets that include all major taxa23;75, others 

are based on a few closely related species18. Even though the mutational response of 

proteins of different major taxa seems to be universally distributed136, the extent to which 

patterns of rate variation among sites can be compared among different taxa has not been 

assessed. Thus, future work will have to test explicitly to what extent results obtained under 

one method, for one taxonomic group, or for one type of data carry over to very different 

methods, taxonomic groups, or data types.

Finally, we have focused here on the variation of evolutionary rates among sites while 

implicitly assuming that rates are constant. However, rates vary also over evolutionary time, 

a phenomenon called heterotachy137. If, as we saw, site-specific rates depend on structural 

and functional constraints, the rate of a site should change due to evolutionary divergence of 

protein structure and function. Indeed, heterotachy has been observed in relationship with 

functional26;138;139 and nonfunctional divergence137. In addition, even under constant 

structural or functional constraints, changes in the amino acids of the local environment of a 

site also impact its substitution rate140. Addressing the challenges proposed here, especially 

the development of mechanistic biophysical models of evolution, coupled with studies of 

structural and functional divergence, should advance our understanding of the variation of 

evolutionary rates over time.
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Glossary

Substitution Mutation that has spread to all members of the population (i.e., has 

fixed), substituting the ancestral variant.

evolutionary rate Number of substitutions (fixed mutations) per unit of evolutionary 

time.

non-synonymous 
mutation

DNA mutation that changes from a codon that codes for one amino 

acid to a codon that codes for a different amino acid.

synonymous 
mutation

DNA mutation that changes from a codon that codes for one amino 

acid to a codon that codes for the same amino acid.

non-synonymous 
evolutionary rate 
(dN)

Rate at which non-synonymous substitutions (fixed mutations) 

occur per unit of evolutionary time.

synonymous 
evolutionary rate 
(dS)

Rate at which synonymous substitutions (fixed mutations) occur 

per unit of evolutionary time.

dN/dS Ratio of non-synonymous to synonymous evolutionary rates.

positive selection Fixation of mutations that increase fitness (adaptative).
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purifying selection Loss of mutations that decrease fitness (deleterius).

structural 
constraint

Structural feature that correlates with sequence conservation (e.g. 

solvent accessibility).

functional 
constraint

Functional features that correlates with sequence conservation (e.g. 

involvement in the active site).

Rate4Site Popular software to estimate relative site-specific rates from 

amino-acid sequence data.

solvent accessible 
surface area 
(SASA)

surface area of a given residue that is accessible to water.

accessible surface 
area (ASA)

same as SASA.

relative solvent 
accessibility (RSA)

Measures the proportion of an amino acid's surface that is 

accessible to solvent (i.e., water) in the folded protein structure, 

from 0 (completely inaccessible) to 1 (completely accessible). 

Calculated as the ratio of the SASA of a given residue in the 

protein structure and the maximum SASA of that residue in a fully 

solvent-accessible conformation.

contact number 
(CN)

Number of neighboring residues present in a protein structure 

within a given distance (e.g., 10Å) from a focal residue.

weighted contact 
number (WCN)

Similar to contact number, but the neighboring residues are 

weighted by their inverse square distance to the focal residue, and 

all residues in a structure are considered to be neighboring 

residues.

mean square 
fluctuation (MSF)

Time-average of the square norm of the vector that connects the 

instantaneous coordinates of a site to its equilibrium coordinates; 

measures the amount of movement a residue undergoes over time.

B factor Quantity that measures the amount of thermal motion of an atom in 

a protein crystal structure; also referred to as “temperature factor”,

ΔΔG Mutational change of stability; the folding free energy difference 

between mutant and wild type when each is in its own native 

conformation.

ΔΔG* Mutational change of stability of the active conformation; free 

energy difference between the active conformation of the mutant 

and the active conformation of the wild type.

ΔΔG‡ Mutational change of the activation free energy; difference 

between mutant and wild type of the free energy needed to deform 

the protein from the native into the active conformation.
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Box 1

Experimental approaches to measure site-specific variation

Most of the work quantifying site-specific rate variation has been conducted 

computationally; however, a growing body of literature has emerged that takes an 

experimental approach to the question. Specifically, several experimental lines of 

research have sought to determine site-specific amino-acid preferences and/or tolerance 

to mutations. These quantities are intimately tied to evolutionary rate: sites which are 

more tolerant to mutation, or at which more amino-acids are selectively tolerated, will 

generally evolve more rapidly. Conversely, sites with low mutational tolerance will 

evolve more slowly66;119. Results from experimental work sampling all possible 

mutations across all residues in a given protein have supported these theoretical 

predictions. For example, McLaughlin, Jr., et al.95 have shown that functionally 

important residues are generally less mutationally tolerant than are residues with less 

stringent functional constraint. Leferink et al.141 demonstrated that mutations which 

increase solvent accessibility at an active site have strong influences on an enzyme's 

catalytic efficiency, demonstrating a tight relationship between evolutionary rate and 

function.

One new and powerful approach to addressing site-specific properties in proteins is deep 

mutational scanning, an experimental approach which samples as many as one million 

protein variants at a time142-144. Under deep mutational scanning, many different variants 

of a given gene are subjected to selection in a high-throughput procedure. By measuring 

the relative enrichment or depletion of variants after selection, this procedure allows for 

precise quantification of the gene variants' relative fitnesses (see figure). Deep mutational 

scanning studies conducted on proteins from bacteria145;146 and viruses147;148 have 

revealed extensive heterogeneity in mutational tolerance within a given protein, and that 

tolerance generally correlates with solvent accessibility. Moreover, deep mutational 

scanning on TEM lactamase has shown that residues near active sites can sustain very 

few substitutions146. Finally, Bloom linked the experimentally measured mutational 

tolerances to evolutionary models with site heterogeneity and showed that these 

experimentally informed models better account for observed variation in natural 

sequences than do standard phylogenetic models145;147.
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Box 2

Open questions

1. How accurate are current rate estimates, and how can we improve them?

• Can we quantify the expected errors and biases of rate estimates?

• How do rate estimates depend on the number of sequences and the degree 

of sequence divergence?

• How robust are rate estimates with respect to violation of model 

assumptions, such as prior rate distributions and site independence?

2. Do we know all the molecular determinants of site rates?

• How much of the variation of rates among sites do the factors we 

currently know actually explain?

• Is the unexplained variation due to unidentified factors or errors of rate 

estimates or unexplainable variation (i.e., noise and biases of estimates)?

• What other molecular features affect evolutionary rates? How can we 

incorporate the effect of specific functional features, such as an active 

site, into quantitative predictors of rates?

3. What are the mechanisms that produce site-specific evolutionary rate variation?

• Does natural selection favor more stable proteins?

• Is there a stability optimum due to stability–activity trade-offs?

• Is there a stability threshold above which all mutants are neutral?

• What is more important, stability or the correct active-site conformation?

• How can we incorporate protein function explicitly into mechanistic 

models?
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Figure 1. Structural and functional constraints shape site-specific evolutionary divergence
Substitution rates for Exonuclease III of Escherichia coli are mapped onto its structure (pdb 

code 1AKO) using a divergence scale that goes from darker low rates to lighter high rates. 

Due to structural constraints, substitution rates are low in the protein interior and high on the 

surface. Residues close to the catalytic sites (visualized in gray) also evolve slowly, likely 

because of functional constraints. Evolutionary rate data are taken from Ref. 75.
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Figure 2. Weighted contact number (WCN) correlates more strongly with site-specific rate than 
relative solvent accessibility (RSA) does
(a) Absolute rate–RSA correlation vs. absolute rate–WCN correlation for 209 enzyme 

structures75. The solid line represents the x=y line. The rate–WCN correlations are 

systematically stronger than the rate–RSA correlations. However, for some proteins RSA 

performs better than WCN, as can be seen for example, for highlighted structure 1AKO. (b) 

Observed vs. predicted rate, mapped onto the backbone of three structures. Rate predictions 

were obtained from either WCN or RSA. The structures were chosen to represent low 

(1OGO), moderate (1AKO), and strong (1R44) structure–rate correlations, as highlighted in 

part (a). Colors represent the differences between observed and predicted rates at each site, 

with white representing a perfectly accurate prediction. As can be seen for structures 1AKO 

and 1OGO, poor predictions often coincide with surface loops that are more conserved than 

predicted from structure alone. These surface loops likely experience additional purifying 

selection due to function—compare e.g. the location of the conserved surface loops in 

1AKO to the location of the protein's active site, as shown in Fig. 1.
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Figure 3. Predictors of evolutionary variation can help identify important sites in a protein
(a) When plotted against the linear position (site) in the protein, site-specific evolutionary 

rates appear random. We can identify sites under positive selection (dN/dS>1, indicated in 

yellow) but we cannot easily identify other important sites (here indicated in green and 

blue). (b) If we can identify a baseline predictor that captures the effect of protein structure 

on site-specific evolutionary rate, then sites that deviate from this baseline expectation 

clearly stand out (green: sites that evolve more rapidly than expected, blue: sites that are 

more conserved than expected). Such sites are likely functionally important. (c) If we can 

develop a predictor that can capture both the effects of structure and the effects of functional 

importance on evolutionary rate, then previously outlying sites appear to now follow the 

overall trend. This result indicates that we have identified the proper underlying reasons for 

why blue sites evolve slower and green or yellow sites faster than expected under the model 

of (b).
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Figure 4. Trade-off between native stability and active stability
A mutation shifts the free energy landscape from that of the wild-type protein (black curve) 

to that of the mutant (red curve). The mutant has a different equilibrium conformation and 

its stability differs by an amount of ΔΔG from that of the wild type (difference between red 

and black minima). The stability of the active conformation changes by an amount of ΔΔG* 

due to the mutation (difference between the intersections of the vertical “active 

conformation” line with the red and black curves). To function, the mutant protein must 

deform from its equilibrium conformation to the active conformation, which requires an 

activation energy ΔΔG‡=ΔΔG*−ΔΔG. We assume here that the wild type native structure is 

the active conformation. In this scenario, a mutation may stabilize the native state (ΔΔG<0) 

yet destabilize the active state (ΔΔG*>0). Thus, even a stabilizing mutation can create an 

energy barrier that may reduce or eliminate proper protein function.
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Table 1
Summary of quantities and/or biophysical effects observed to influence site-specific rate

Rates in the cited studies have been estimated either from codon or from amino-acid data, as discussed in 

section “Estimation of site-specific rates”.

Quantity/physical effect Effect on rate References

Structural constraints

Contact Number (CN, WCN) Decreases with increasing CN/WCN 18;19;22-24;74;75;79

Relative Solvent Accessibility (RSA) Increases with increasing RSA 17;18;23;24;64;66-68;74;75;81

Structural flexibility Increases with increasing flexibility 20-22;24

Structural disorder Increased in disordered regions 82-84

Functional constraints

Protein–protein interfaces Depressed in interface regions 18;96;97

Protein–nucleic acid interfaces Depressed in interface regions 98

Catalytic sites Depressed at and near catalytic sites 17

Environmental constraints

Gene expression level Decreases with increasing expression level, in particular at surface 
sites

67;68
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