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Abstract

Background—The Parkinson’s Progression Marker Initiative is an international multi-center 

study whose main goal is investigating markers for Parkinson’s disease (PD) progression as part 

of a path to a treatment for the disease. This manuscript describes the baseline genetic architecture 

of this study, providing not only a catalog of disease linked variants and mutations, but also 

quantitative measures with which to adjust for population structure.

Methods—383 newly-diagnosed typical PD cases, 65 atypical PD and 178 healthy controls from 

the Parkinson’s Progression Marker Initiative study have been genotyped on the NeuroX and/or 

Immunochip arrays. This data is freely available to all researchers interested in pursuing PD 

research within the Parkinson’s Progression Marker Initiative.

Results—Parkinson’s Progression Marker Initiative represents a study population with low 

genetic heterogeneity. We recapitulate known PD associations from large-scale genome-wide 

association studies and refine genetic risk score models for PD predictability (area under the curve 

~ 0.74). We show the presence of 6 LRRK2 p.G2019S and 9 GBA p.N370S mutation carriers.

Conclusions—The Parkinson’s Progression Marker Initiative study and its genetic data are 

useful in studies of PD biomarkers. The genetic architecture described here will be useful in the 

analysis of myriad biological and clinical traits within this study.
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INTRODUCTION

The Parkinson’s Progression Marker Initiative (PPMI, http://www.ppmi-info.org/) is a 

multi-center international collaborative effort sponsored by the Michael J. Fox Foundation 

for Parkinson’s Research (MJFF). At its core PPMI is a longitudinal observational study that 
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aims to identify one or more markers of progression for Parkinson’s disease (PD), a critical 

step in the development and testing of new treatments.

PPMI uses a large variety of imaging methods, clinical measures and extensive biological 

sampling. Subjects for the study are collected from a number of sites across North America, 

Israel, Europe, and Australia. The core PPMI dataset centers on the acquisition of data from 

400 newly diagnosed PD cases, 200 healthy controls, and 70 individuals who, while 

clinically diagnosed as PD cases, fail to show evidence of dopaminergic deficit by DAT 

scan. This latter group of patients are referred to as SWEDDs (subjects without evidence of 

dopaminergic deficit).

A critical part of the PPMI study is the deposition of samples and data in a repository that is 

readily accessible to the scientific and clinical community. In creating a relatively open data 

structure, the study sponsors aim to facilitate analysis, collaboration, and progress. As a part 

of this study all data generated from PPMI samples is required to be returned to the 

repository. We describe here the generation and analysis of the genetic data within PPMI. 

These data, which comprise more than 400,000 genotypes per subject, allow a genetic 

characterization of the PPMI samples; this includes the identification of known disease 

causing mutations and risk variants, in addition to metrics that can be readily used in the 

quality control and genetic classification of samples. We argue here that these data should be 

widely used to both understand the role of genetic influence in progression and biomarkers, 

and where appropriate to adjust for the effects of genetic background in analyses.

PATIENTS AND METHODS

Patients

PPMI actively recruited early-stage untreated PD subjects along with age appropriate 

controls. Currently, the PPMI cohort is divided into three subsets of participants: healthy 

controls (HC), etiologically typical PD cases, and an additional set of atypical PD subjects 

without dopaminergic deficit (SWEDD). The SWEDD subset are individuals presenting 

clinical features that meet criteria for a PD diagnosis but have normal dopamine transfer 

imaging scan data (DatScan).

The recruitment of PD, SWEDD and HC subjects has been previously described in detail 

elsewhere (1). PD subjects in PPMI are required to demonstrate at least asymmetric resting 

tremor or asymmetric bradykinesia or some combination of bradykinesia, resting tremor 

and/or rigidity within two years of diagnosis. They must be untreated for PD at the time of 

enrollment, as well as for the prior two years. SWEDD subjects include the PD criteria 

although DatScans show no dopaminergic deficit with high sensitivity and specificity after 

clinical diagnosis (2). HC subjects must be clinically ascertained as not having any 

neurologic dysfunction and Montreal Cognitive Assessment (MoCA) > 26 (3).

Genetic data

All available biobanked DNA specimens from all three participant subsets were genotyped 

using two genotyping arrays, ImmunoChip and NeuroX.
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Briefly, the Immunochip is an Illumina Infinium based array that interrogates 196,524 

variants. The Immunochip was designed in 2009 by investigators interested in inflammatory 

and autoimmune disorders, however this content also included ~2000 variants that had been 

prioritized for follow up by PD genome wide association study (4). The content of the 

Immunochip is available on the PPMI site and this platform has been previously described 

(5).

Briefly, NeuroX was designed to include over 240,000 exonic variants, as well as over 

24,000 variants specific to the study of neurodegenerative disease (6). These 

neurodegenerative disease-focused variants include loci derived from the largest completed 

meta-analyses of PD cases and controls, which identified many of the known PD mutations 

and additional rare/high-risk variants (7). The content for NeuroX is also available via the 

PPMI website.

For both NeuroX and ImmunoChip genotyping was performed as per the manufacturer's 

protocol (Illumina Inc, CA). Initial quality control centered on genotype success rate per 

individual using a cutoff of 95%, followed by concordance of reported and genotype sex. 

Subsequently the rates of heterozygosity and homozygosity were assessed to ensure that for 

each individual they were within an expected range (within 6 standard deviations of the 

population mean).

In addition to genotyping from these arrays, the APOE e2/e3/e4 genotypes (derived from 

SNPs rs7412 and rs429358) were generated for 301 subjects are available at PPMI; these 

variants were genotyped using TaqMan genotyping as previously described (8).

Statistical analyses

In order to assess for sample handling errors that would not be detected by gender checks we 

compared genotype concordance across polymorphisms common to both genotype 

platforms.

In an attempt to detect genetic outliers principal components analyses of common variants 

derived from NeuroX (minor allele frequency, MAF > 5%) were performed. The resulting 

metrics were used to compare PPMI subjects to HapMap Phase 3 samples and generate 

estimates of continental ancestry (9).

Two genetic risk scores (GRS) were generated for this study as a means of summarizing the 

cumulative effect of known genetic risk variants. The first can be referred to as the common 

variant GRS (cGRS), and is a composite of the 28 replicated risk loci identified in Nalls et 

al., 2014 (7). The second GRS can be referred to as the common and rare variant GRS 

(crGRS), and is an expansion of the previously described GRS to include two additional rare 

risk variants detected in PPMI that are well known to be associated with PD: p.N370S in 

GBA and p.G2019S in LRRK2 (Table S1) (10,11) . To create each GRS, the number of risk 

alleles per variant of interest are scaled by multiplying them by the natural log of the odds 

ratio published for that variant, then the scaled risk allele counts per variant are summed per 

sample. Risk estimates for the cGRS and crGRS were taken from Nalls et al., 2014, and 

odds ratios of rare alleles at p.N370S with 3.33 and p.G2019S with 9.620 were taken from 
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the PDgene database and 23AndMe [www.pdgene.org and www.23andme.com] (12). The 

common and rare variant GRS were also recalculated from this GWAS replication series 

using publicly available data to facilitate more direct comparisons using identical methods. 

For each relatively normally distributed GRS, risk scores were Z transformed based on the 

mean and standard deviation of the HC subset (Figure S1, Panel A). Therefore, all 

regression models are modeling change in terms of one standard deviation from the HC 

subset mean. As part of this transformation, the HC population was used as a reference with 

a theoretical mean of 0 and standard deviation of 1 for each GRS.

Logistic regression was used to quantify a trend of risk associated with a one standard 

deviation change from the control population mean to assess risk associated with PD, 

SWEDD or combined PD and SWEDD status compared to the same set of pooled controls 

separately for both the rare and common GRS estimates. Stepwise modeling was used to 

generate the most parsimonious models. Covariates used include up to five eigenvectors 

from principal components analysis of PPMI sample genetic data after quality control and 

filtering, age at onset for cases or age at most recent follow-up for controls, and family 

history within 2nd degree or closer relatives. All analyses of PD and controls used age, 

family history and principal components to account for population substructure. Analyses of 

PD combined with SWEDD and controls used the same covariates as prior analyses, while 

age was dropped from the models incorporating only SWEDD and controls. Predictive 

power of each model was quantified by generation of receiver operator curves. Single 

variant analyses for all 3 subsets were carried out for all variants comprising both risk scores 

using identical logistic regression models with the same covariates. Although these single 

variant analyses possess relatively low power with estimates of 15.6% power after 

Bonferroni correction for 30 tests and and less than 1% power for genome-wide significance 

assuming modest effect sizes seen in GWAS (Cohen’s h = 0.2 with 367 cases and 165 

controls).

In addition, each of the 3 subsets used for analyses (PD, SWEDD, and SWEDD+PD) were 

split into quintiles of genetic risk based on each of the two GRS models. Risk associated 

with membership in each quintile of genetic risk was evaluated using identical regression 

models as those used for the trend test described above, but with the reference population 

being the lowest quintile of genetic risk. This model tests each increasing quintile of genetic 

risk as a possible predictor of case status across all 3 subsets compared to pooled controls; 

for each quintile subset the percentage of cases was also calculated.

RESULTS

Genotyping and Quality Control

For the Immunochip there is existing data on 524 successfully genotyped PPMI subjects 

(call rates > 95%, acceptable rates of heterozygosity and homozygosity, and concordance 

between self-reported and genetically ascertained sex). For NeuroX there is existing data on 

619 successfully genotyped subjects (call rates > 95%, acceptable rates of heterozygosity 

and homozygosity (within +/− 6 SD of population mean), and concordance between self-

reported and genetically ascertained sex). This data is readily available for analyses by 

qualified researchers after a brief application process that can be found at http://www.ppmi-
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info.org/access-data-specimens/download-data/. Once approved, any researcher with a valid 

login can activate the data access link below. The individual level genotype data for these 

arrays is available as plink binary files on the PPMI website (https://ida.loni.usc.edu/pages/

access/geneticData.jsp).

The genotypes of variants typed both on Immunochip and NeuroX arrays (n=520) were 

compared and these showed an extremely high genotype concordance rate between the two 

platforms (99.94%). The rs7412 variant of APOE was also genotyped on NeuroX and this 

genotype showed ~99.3% concordance with the custom TaqMan genotyping across 5 

redundant probes. Rs429358 could not be assayed accurately using currently available array 

technology, but using a proxy (rs4420638) we were able to achieve > 90% accuracy to tag 

the APOE epsilon-4 haplotype.

Population characterization

Principal component analysis revealed that from the 619 successfully genotyped subjects 

from the NeuroX array. Of these samples, 587 were of predominantly European ancestry 

and 32 subjects were of predominantly African or Asian continental ancestry. We have 

calculated principal components for all NeuroX genotyped subjects together (eigenvectors 

1-20) and for the European ancestry subset separately. These eigenvectors are available for 

use in future studies to account for varying degrees of population substructure, as well as to 

give a more fine scale and accurate assessment of the continental ancestries of subjects 

included in PPMI (Figure 1).

GRS analyses in this report are restricted to the 587 confirmed European ancestry PPMI 

subjects whose estimates for eigenvectors 1 and 2 from principal components were within 9 

standard deviations of the mean for the combined CEU and TSI HapMap populations (13). 

This was done to reduce population stratification and more closely recapitulate genetic risk 

models from our previous work, which centered on individuals of European ancestry (7). 

Descriptive statistics were calculated using this subset of 587 subjects (Table 1, Part A). One 

related pair of subjects was detected via identity by descent estimates (14). This sibling pair 

included one SWEDD and one PD sample, in analyses in which PD and SWEDD subjects 

were jointly compared to healthy controls, the PD sample from this pair was removed (Table 

1, Part B).

PD related variants

We identified 6 carriers of the LRRK2 p.G2019S variant (rs34637584; Table S1), all of 

whom were PD cases. In addition we identified 9 subjects who carried the GBA p.N370S PD 

risk variant (rs76763715; also called p.N409S; Table S1), including 7 PD patients, 1 

SWEDD, and 1 control. No carriers of LRRK2 p.R1441H, p.Y1699C, or p.I2020T were 

identified.

The variants used for the generation of the GRS models were abstracted from NeuroX. In 

addition to posting all genotype data for NeuroX and ImmunoChip to the PPMI site, we 

have also posted these variants individually along with the individual genetic risk scores 

calculated here. In the GRS analysis, we recapitulate the associations between cGRS and 
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crGRS and PD as seen in previous publications (7). Using similar data, we observed a highly 

significant association between PD and the crGRS (P-value = 1.59E-07). This shows that a 

one standard deviation increase in the crGRS above the HC mean is associated with an odds 

ratio of 1.74 (95% CI 1.413-2.134). When the SWEDD subset was compared to the same 

controls no significant GRS association was observed, although there was a suggestive trend 

that mirrored the PD association’s directionality (Table 1, Part B). Although we see no 

association between the GRS models and SWEDD status, when comparing the AUCs of the 

models that include the crGRS or the cGRS (as well as appropriate covariates such as family 

history, age and principal components), DeLong’s test showed no significant difference 

between the PD and SWEDD ROC curves (15). This could be due to low power to detect a 

difference because of the small number of SWEDD in PPMI; thus we cannot discount the 

possibility of a significant differences between these groups due to divergent genetic 

etiologies.

Our previous efforts in risk prediction analysis in large-scale, primarily cross-sectional 

studies of GWAS data have yielded an AUC of 0.633 based on a common GRS model (7). 

When comparing only the cGRS between the cross-sectional GWAS and longitudinal PPMI 

data (excluding all other factors from the model), the common variant GRS are 0.607 (95% 

CI 0.597-0.617) for the former and 0.631 (95% CI 0.581-0.681) for the latter, while the 

common and rare variant scores are 0.613 (95% CI 0.603-0.623) and 0.639 (95% CI 

0.589-0.688) respectively. These differences in AUCs are not statistically significant when 

comparing GWAS data to PPMI; again this is likely due to the comparatively small sample 

size in PPMI. Notably, the depth of available data in PPMI has allowed us to include the 

variants p.G2019S and p.N370S as well as family history of PD in our model, further 

improving on previous efforts in which this data was not available for all participants. This 

leads to an increase in our ability to predict disease with an AUC of 0.748 for the crGRS in 

PD (Table 1, Part B and Figures 2 and S1).

The AUC seen in PPMI surpasses previous estimates reported by large scale meta-analyses, 

despite its current application in PPMI being a much smaller dataset. When examining 

covariates themselves including eigenvectors accounting for population substructure as well 

as family history and age, the AUC for PD is 0.702 (0.657-0.747) in PPMI; examining 

classification based solely on age and family history of PD in PPMI, the AUC is 0.605 

(0.556-0.654). As previously described, the AUC including all nominated factors and 

covariates in the common and rare GRS model is 0.748 (0.706-0.790).

Based on DeLong’s test the inclusion of genetic information in the model is a significant 

improvement over the model using just family history and age (p = 1.55e-07) or the model 

that includes population structure, family history, and age (p-value = 0.0026).

DISCUSSION

In this report, we describe baseline associations in the PPMI dataset and provide metrics that 

afford adjustment for known associations, common mutations, and genetic background. We 

also show the utility of a genetic risk score approach, even in cohorts that are of insufficient 

size to detect individual variant associations.
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Notably our efforts showed a low degree of genetic heterogeneity in the PPMI cohort. We 

identified a small number of non-European ancestry individuals based on PCA of 

informative genotypes. Of note, we also identified a pair of cryptically related individuals, 

being members of the SWEDD and PD groups. The principal components calculated as a 

part of this study should be considered for use as a quality control or adjustment parameter 

in much of the work intended for PPMI. For example, it is conceivable that biomarkers may 

behave differently based on ethnic background, and this could be accounted for by 

adjustment using the PCA metrics or by excluding genetic outliers.

We identified 6 carriers of the LRRK2 p.G2019S mutations; as expected all of the carriers 

were PD cases. We also identified 9 subjects who carried the GBA p.N370S PD risk variant , 

including 7 PD patients, 1 SWEDD, and 1 control. In both instances the frequency of these 

more common GBA and LRRK2 variants was close to that expected from previous work in 

European ancestry cohorts (10,16,17).

This dataset illustrates the use of GRS models in complex disease; there are two 

observations that are of particular note. First, the GRS performs marginally better in the 

longitudinal and deeply phenotyped PPMI study compared to typical cross sectional studies. 

If genetic risk across populations is assumed to be uniform, this increase in AUC associated 

with the cGRS in PPMI compared to cross sectional series of PD could likely be due to the 

low misdiagnosis rate afforded by the deep and longitudinal phenotyping in PPMI, 

particularly in comparison to that of a cross sectional study that does not include an imaging 

component. The observation that the PD GRS models performed poorly in the SWEDD 

cohort would suggest that as a whole the SWEDD group represents a disorder(s) with an 

etiology that is distinct from typical PD, or a mix of typical PD and atypical parkinsonism 

cases.

There are of limitations relating to the genotyping data described here; first, not all known 

PD mutations or neurological disease related variants are reliably assayed using NeuroX or 

ImmunoChip. For example both the GBA p.L444P and APOE e4 allele are not directly 

genotyped using these arrays. While the APOE e2/3/4 polymorphism has been directly 

genotyped using taqman in PPMI (data for which are available through the PPMI site), the 

GBA p.L444P variant remains untyped in this series at the time of writing. In addition both 

NeuroX and ImmunoChip are focused arrays, and while they contain a large number of 

putatively PD-associated variants, they do not assay common variability in a genome wide 

context. This may be limiting in the discovery of genetic variants associated with traits 

tested in the PPMI individuals.

In summary, here we have performed a baseline genetic characterization of the PPMI 

dataset. This work shows that genetically these cases appear to be consistent with typical 

PD, and that the genetic information included in this study will likely add significant value 

to future analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Population substructure within the PPMI genetics dataset
Abbreviations for HapMap Phase 3 reference populations as follows: ASW: African 

ancestry in Southwest USA; CEU: Utah residents with Northern and Western European 

ancestry from the CEPH collection; CHB: Han Chinese in Beijing, China; CHD: Chinese in 

Metropolitan Denver, Colorado; GIH: Gujarati Indians in Houston, Texas; JPT: Japanese in 

Tokyo, Japan; LWK: Luhya in Webuye, Kenya; MEX: Mexican ancestry in Los Angeles, 

California; MKK: Maasai in Kinyawa, Kenya; TSI: Toscani in Italia; YRI: Yoruba in 

Ibadan, Nigeria.
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Figure 2. Comparison of PPMI and large-scale cross-sectional meta-analysis results
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Panel A, areas under the curve from receiver operator curve analyses of crGRS; Panel B, 

comparison of odds ratios by quintile of genetic risk. The data for cross sectional analysis 

was taken from our previously published work (7).
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Table 1

Descriptive statistics and GRS regression summaries for PD, SWEDD and healthy controls.

Part A. Descriptive statistics

Subset PD SWEDD Controls

Total in analyses (N) 367 55 165

Age in years (mean, SD) 64.256,
9.598 63.018, 10.117 63.794, 1.588

Females (%) 33.242 34.545 33.333

Family history of PD (%) 25.068 30.909 5.454

N370S carriers (%) 1.912* 1.818 0.606

G2019S carriers (%) 1.3624 0 0

SNCA multiplication (%) 0 1 0

Common variant GRS (mean, SD
in Z units) 0.511, 1.034 0.323, 0.976 0, 1

Common and rare variant GRS
(mean, SD in Z units) 0.596, 1.201 0.347, 1.065 0, 1

Part B. GRS logistic regression
models

Subset Odds ratio
of trend

95%
confidence

interval

P-value of
trend AUC AUC confidence

interval

PD versus controls, common
variant GRS 1.691 1.372, 2.083 8.39E-07 0.741 0.698-0.784

SWEDD versus controls,
common variant GRS 1.371 0.971, 1.934 0.073 0.696 0.608-0.784

PD and SWEDD versus controls,
common variant GRS 1.617 1.328, 1.969 1.69E-06 0.716 0.674-0.759

PD versus controls, common and
rare variant GRS 1.736 1.413, 2.134 1.59E-07 0.748 0.706-0.791

SWEDD versus controls,
common and rare variant GRS 1.359 0.970, 1.904 0.075 0.694 0.606-0.782

PD and SWEDD versus controls,
common and rare variant GRS 1.701 1.396, 2.074 1.40E-07 0.733 0.691-0.775

Star denotes one missing genotype. Odds ratios and other summary statistics are based on a single standard deviation (Z) change in the GRS 
distribution from the mean of the healthy controls. Age refers to onset in cases and age at last clinic visit in controls. Family history refers to any 
first or second degree relatives with PD from self-report.
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