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Summary

Genetic studies of survival outcomes have been proposed and conducted recently, but statistical 

methods for identifying genetic variants that affect disease progression are rarely developed. 

Motivated by our ongoing real studies, we develop here Cox proportional hazard models using 

functional regression (FR) to perform gene-based association analysis of survival traits while 

adjusting for covariates. The proposed Cox models are fixed effect models where the genetic 

effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test 

(LRT) statistics to test for associations between the survival traits and multiple genetic variants in 
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a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT 

statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT 

with the previously developed burden test (BT) in a Cox model and sequence kernel association 

test (SKAT) which is based on mixed effect Cox models. The Cox FR LRT statistics have higher 

power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had 

negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics 

have higher power than Cox BT LRT. The models and related test statistics can be useful in the 

whole genome and whole exome association studies. An age-related macular degeneration dataset 

was analyzed as an example.

Keywords

rare variants; common variants; association study; complex diseases; functional data analysis; Cox 
models

1 Introduction

Using modern genotyping and sequencing technology, large numbers of genetic variants can 

be assayed in a chromosomal region of interest or a gene region. The high dimensional 

nature of the data raises challenges in gene-based statistical analysis of disease gene 

mapping. Ordinary fixed effect regression models may not be able to estimate the genetic 

effects of all genetic variants due to a large number of genetic terms in the regression model. 

To analyze high-density genetic variant data, two methods among many others have been 

developed in recent years to model the contribution of the genetic variants in a gene region: 

(1) mixed models which treat the genetic contribution of genetic variants as random, and (2) 

fixed effect functional regression (FR) models which model the genetic contribution of 

genetic variants as an unknown function of physical position.

In mixed models, the regression coefficients of multiple genetic variants in a major genetic 

region are assumed to be random with means of zero and constant variance. The association 

between phenotypic traits and genetic variants is tested by testing a null hypothesis of zero 

variance by a sequence kernel association test (SKAT). For quantitative and dichotomous 

traits, Lee et al. (2012) found that the SKAT and its optimal unified test (SKAT-O) have 

higher power than burden test (BT). Here the burden test is one class of rare variant tests and 

the rare variants may have minor allele frequencies (MAFs) of less than 0.01 ~ 0.05. The 

burden tests collapse the genotypes of multiple rare variants into a summary variable to test 

for association between the trait of interest and the genetic variants [Li and Leal, 2008; 

Madsen and Browning, 2009; Morris and Zeggini, 2010]. Kernel-based tests and burden 

tests were extended to analyze time-to-event outcomes [Cai et al., 2011; Chen et al., 2014; 

Lin et al., 2011]. Chen et al. (2014) developed a Cox SKAT likelihood ratio test (LRT) and 

Cox BT LRT to analyze rare variants and found that Cox SKAT LRT had accurate type I 

error rates and good power performance.

Fixed effect FR models are based on traditional theory of population genetics. The FR 

models treat the contribution of genetic variants as an unknown function of physical position 

[Fan et al., 2013, 2014; Luo et al., 2011, 2012, 2013; Vsevolozhskaya et al., 2014; Wang et 
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al., 2015; Zhang et al., 2014; Zhao et al., 2015]. For quantitative traits, functional linear 

models lead to both F-distributed and χ2-distributed test statistics which are almost always 

more powerful than SKAT and SKAT-O [Fan et al., 2013; Luo et al., 2012; Wang et al., 

2015]. For dichotomous traits, FR models lead to test statistics which are more powerful 

than SKAT and SKAT-O except in some cases when the causal variants are all rare [Fan et 

al., 2014; Luo et al., 2011, 2013; Vsevolozhskaya et al., 2014]. Therefore, FR models 

usually outperform other methods and hold promise for use in gene-based association 

analysis of complex diseases. This stimulates us to develop fixed effect FR based models to 

analyze survival traits.

Here we develop FR based Cox proportional hazard models for a gene-based association 

analysis of survival traits adjusting for covariates. The genetic effects of multiple genetic 

variants are assumed to be fixed. The proposed Cox models can analyze rare variants or 

common variants or a combination of the two. LRT statistics are introduced to test for an 

association between the survival traits and multiple genetic variants in a genetic region. 

Extensive simulations are performed to evaluate type I error rates and power. The proposed 

methods were applied to analyze an age-related macular degeneration dataset.

2 Methods

Consider n individuals who are sequenced in a genomic region that has m variants. We 

assume that the m variants are located in a region with ordered physical positions 0 ≤ u1 < 

⋯ < um, and that each variant’s physical position uj is known, e.g., in terms of base pair 

positions. To make the notation simpler, we normalize the region [u1, um] to be [0, 1]. For 

the i-th individual, let Ti denote the survival time, and Ci denote the respective right-

censoring time. Let yi = min(Ti,Ci) be the observed time-to-event and censoring indicator δi 

= 1(yi=Ti). In addition, let Gi = (gi(u1), ⋯, gi(um))′ denote the genotype of the m variants, and 

Zi = (zi1, ⋯, zip)′ denote a p × 1 vector of fixed effect covariates. For the genotypes, we 

assume that gi(uj) (= 0, 1, 2) is the number of minor alleles of the individual at the j-th 

variant located at the position uj.

2.1 Functional Regression Based Cox Proportional Hazard Models

In addition to the time-to-event observation yi and covariates, we denote the i-th individual’s 

genetic variant function (GVF) as Xi(u), u ∈ [0, 1]. Notice that the data set includes n 

discrete realizations or observations Gi of the genotypes, one for each individual. By using 

the genetic variant information Gi, we may estimate the related genetic variant function 

Xi(u), which will be discussed below. To relate the genetic variant function to the time-to-

event observation adjusting for covariates, we consider the following fixed effect FR based 

Cox proportional hazard model

(1)

where λ0(s) is the baseline hazard function, α is a p × 1 vector of fixed regression 

coefficients of covariates, and β(u) is the genetic effect of genetic variant function Xi(u) at 

the position u.
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In the Cox model (1), the genetic variant functions Xi(u) are assumed to be smooth. This 

assumption can be relaxed by considering the following fixed effect beta-smooth only Cox 

model

(2)

where the genetic effect function β(u) is assumed to be continuous/smooth and so it is called 

beta-smooth only Cox model. In the above model (2), the integration term 

in Cox model (1) is replaced by a summation term , and we make no 

assumption about smoothness of the genetic variant functions Xi(u). We use the raw 

genotype data Gi = (gi(u1), ⋯, gi(um))′ directly in the beta-smooth only Cox model (2).

The genetic effect function β(u) in the Cox models (1) and (2) is assumed to be smooth, i.e., 

β(u) is a continuous function of physical position u. One may expand it by B-spline or 

Fourier basis functions. Formally, let us expand the genetic effect function β(u) by a series 

of Kβ basis functions ψ1(u), ⋯, ψKβ (u) as β(u) = (ψ1(u), ⋯, ψKβ(u))(β1, ⋯, βKβ)′ = ψ(u)′β, 

where β = (β1, ⋯, βKβ)′ is a Kβ × 1 vector of coefficients and ψ(u) = (ψ1(u), ⋯, ψKβ(u))′. We 

consider two types of basis functions: (1) the B-spline basis: ψk(u) = Bk(u), k = 1, ⋯, Kβ; 

and (2) the Fourier basis: ψ1(u) = 1, ψ2r+1(u) = sin(2πru), and ψ2r(u) = cos(2πru), r = 1, ⋯, 

(Kβ − 1)/2. Here for Fourier basis, Kβ is taken as a positive odd integer [de Boor, 2001; 

Ferraty and Romain, 2010; Horváth and Kokoszka, 2012; Ramsay et al., 2009; Ramsay and 

Silverman, 2005].

To estimate the genetic variant functions Xi(u) from the genotypes Gi, we use an ordinary 

linear square smoother [Fan et al., 2013, 2014; Ramsay et al., 2009; Ramsay and Silverman, 

2005; Vsevolozhskaya et al., 2014; Wang et al., 2015]. Let ψk(u), k = 1, ⋯, K, be a series of 

K basis functions, such as the B-spline basis and Fourier basis functions. Let Φ denote the m 

× K matrix containing the values ψk(uj), and we let ϕ(u) = (ϕ1(u), ⋯, ϕK(u))′. Using the 

discrete realizations Gi = (gi(u1), ⋯, gi(um))′, we estimate the genetic variant function Xi(u) 

using an ordinary linear square smoother as follows [Ramsay and Silverman, 2005, Chapter 

4]

(3)

Assume that the genetic effect β(u) is expanded by a series of basis functions ψk(u), k = 1, 

⋯, Kβ, as β(u) = ψ(u)′β. Replacing Xi(u) in the Cox proportional hazard model (1) by X̂
i(u) 

in (3) and β(u) by the expansion, we have a revised Cox hazard model

(4)
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where . In the statistical packages R or 

Matlab, codes to calculate Φ[Φ′Φ]−1 and  are readily available [Ramsay et 

al., 2009].

For the beta-smooth only Cox proportional hazard model (2), β(uj) is introduced as the 

genetic effect at the position uj. In this article, we assume that the genetic effect function 

β(u) is a continuous function of the physical position u. Therefore, β(uj), j = 1, 2, ⋯, m, are 

the values of function β(u) at the m physical positions. Expanding β(uj) by B-spline or 

Fourier basis functions as above, the Cox model (2) can be revised as

(5)

where .

To test for association between the m genetic variants and the survival trait, the null 

hypothesis is H0 : β = (β1, ⋯, βKβ)′ = 0. By fitting the Cox models, we may test the null H0 : 

β = 0 by a χ2-distributed LRT (Cox FR LRT) statistic with Kβ degrees of freedom [Cox, 

1972; Cox and Oakes, 1984]. In the data analysis and simulations, we used functions in the 

fda R package to create the basis functions. The order of the B-spline basis was 4, the 

number of B-spline basis functions was K = Kβ = 10, and the number of Fourier basis 

functions was K = Kβ = 11. To make sure that the results are valid and stable, we examined a 

wide range of parameters: 6 ≤ K = Kβ ≤ 13 for B-spline and Fourier basis functions.

2.2 Simulation Studies

Extensive simulations were performed to evaluate the performance of the proposed Cox FR 

LRT statistics. The sequence data are of European ancestry from 10,000 chromosomes 

covering 1 Mb regions, simulated by Yun Li at the University of North Carolina, Chapel 

Hill using the calibrated coalescent model as programmed in COSI. The sequence data were 

generated using COSI’s calibrated best-fit models, and the generated European haplotypes 

mimick CEPH Utah individuals with ancestry from northern and western Europe in terms of 

site frequency spectrum and LD patterns [Figure 4 in Schaffner et al., 2005; The 

International HapMap Consortium 2007]. Genetic regions of 6 kb length were randomly 

selected for empirical type I error and power calculations.

In our simulations, we define rare variants to be the genetic variants whose MAFs are less 

than or equal to 0.03. Two scenarios were considered: (1) some causal variants are rare and 

some are common; (2) all causal variants are rare. We reported the results of Cox SKAT 

LRT and Cox BT LRT proposed by Chen et al. (2014) for comparison by using R package 

SeqMeta. To make the comparison valid, we used the same strategy as Chen et al. (2014) to 

generate phenotype data, as described next.

Type I Error Simulations—For a constant a > 0, let U ~ U(0, a) denote a uniform 

random variable on (0, a). To evaluate the type I error rates of the proposed LRT statistics, 
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we generated baseline survival time from a Weibull (2, 2) using this formula [Bender et al., 

2005]

(6)

where z1 is a continuous covariate from a normal distribution N(50, 52), z2 is a dichotomous 

covariate taking values 0 and 1 with a probability of 0.5, and U was uniformly distributed 

random variable U(0, 1). As explained in Chen et al. (2014), z1 is a covariate to simulate 

age, and z2 is a covariate to simulate sex. Four censoring schemes were considered: (1) C = 

∞, no censoring, (2) C ~ U(0, 10), (3) C ~ U(0, 5), and (4) C ~ U(0, 3). The time-to-event 

time is calculated by yi = min(Ti,Ci) and the censoring indicator is calculated by δi = 1(Ti≤Ci) 

for a random sample Ti,Ci, i = 1, 2 ⋯, n. The proportions of censored observations in 4 

censoring schemes are 0, 17.5%, 35.0%, and 56.5%, respectively.

Genotypes were selected from variants in 6 kb subregions which were randomly selected 

from the 1 Mb region. Notice that the trait values are not related to the genotypes, and so the 

null hypothesis holds. The sample sizes of the datasets were 1,000, 2,000, 3,000, and 4,000. 

For each combination of a sample size and a censoring scheme, 36 independent randomly 

seeded simulations were implemented: 105 phenotype-genotype datasets in each simulation 

were generated. For each data set, we fit the proposed Cox models and calculated the Cox 

FR LRT statistics and related p-values. However, the statistics could not be computed on 

some replicates due to failure to converge. Thus, the total number of analyzable replicates 

ranges from 0 to 3.6 × 106. After the simulations were complete, an empirical type I error 

rate was calculated as the proportion of the total p-values which were smaller than a given α 

level. If the total number of simulations is 0, no type I error rate is available.

Empirical Power Simulations—To evaluate the power of the proposed Cox FR LRT 

statistics and the Cox SKAT LRT and Cox BT LRT proposed by Chen et al. (2014), we 

simulated data sets under the alternative hypothesis by randomly selecting 6 kb subregions 

to obtain causal genetic variants. For each sample dataset, a subset of q causal variants 

located in the selected 6 kb subregion was then randomly selected, yielding genotypes G = 

(g(u1), ⋯, g(uq))′. Then, we generated the survival time by

(7)

where z1 and z2 were the same as in the type I error model (6), G = (gi(u1), ⋯, gi(uq))′ were 

genotypes of the i-th individual at the causal variants, and the βs are additive effects for the 

causal variants defined as follows. We used |βj| = c| log10(MAFj)|/2, where MAFj was the 

MAF of the jth variant. Three different settings were considered: 5%, 10%, and 15% of 

variants in the 6 kb subregion are chosen as causal variants in the main text and 

Supplementary Materials, Appendix A. When some causal variants are rare and some are 

common, c = log(9.0), log(4.5), and log(3.5) if 5%, 10%, and 15% of the variants were 

causal, respectively. When all causal variants are rare, c = log(18.0), log(9.0), and log(4.5) if 

5%, 10%, and 15% of the variants were causal, respectively. For each setting, 1,000 datasets 
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were simulated to calculate the empirical power as the proportion of p-values which are 

smaller than a given α level.

In the Supplementary Materials, Appendix B, three more settings were considered: 30%, 

40%, and 50% of variants were causal in the 6 kb subregion. When some causal variants are 

rare and some are common, c = log(1.75), log(1.50), and log(1.25) if 30%, 40%, and 50% of 

the variants were causal, respectively. When all causal variants are rare, c = log(2.5), 

log(2.0), and log(1.5) if 30%, 40%, and 50% of the variants were causal, respectively.

For each dataset, the causal variants are the same for all the individuals in the dataset, but we 

allow the causal variants to be different from dataset to dataset.

2.3 Real Data Analysis

We applied the proposed Cox models to analyze age-related eye disease study (AREDS) 

data [Age-Related Eye Disease Study Research Group, 1999]. AREDS is a clinical trial to 

learn about the risk factors for macular degeneration and cataract, two leading causes of 

vision loss in older adults. A total of 2,914 individuals were included in our analysis. Each 

individual has long-term phenotypic data and was genotyped using a customized exome 

chip. We tested two gene regions, CFH and ARMS2. In both gene regions, single variant 

analysis showed that some SNPs are associated with the risk of macular degeneration and its 

progression [Seddon et al., 2007; Fritsche et al., 2013]. In our analysis, we included all 

genetic variants in a gene region if they were located within 10 kb of either gene boundary 

by using ANNOVAR [Wang et al., 2010]. We tested the association between the time to 

advanced age-related macular degeneration of left eye and each of the two genes using the 

Cox FR LRT statistics of the proposed Cox models adjusted for age and gender. We also 

compared with the results of Cox SKAT LRT and Cox BT LRT [Chen et al., 2014].

3 Results

3.1 Empirical Type I Error Rates

The empirical type I error rates for the proposed Cox FR LRT statistics and the Cox SKAT 

LRT statistic are reported in Tables 1 and 2 at four nominal significance levels α = 0.05, 

10−3, 10−4, and 10−5. In Table 1, all variants in 6 kb regions were used to generate genotype 

data but none of them relates to the trait. In Table 2, only rare variants in 6 kb regions were 

used to generate genotype data. The results of the “Basis of both GVF and β(u)” statistics 

were based on Cox model (4) by smoothing both the GVF and the genetic effect function 

β(u) by either B-spline or Fourier basis functions, and the results of the “Basis of beta-

Smooth Only” statistics were based on Cox model (5) by smoothing the genetic effect 

function β(u) only.

Tables 1 and 2 show that the Cox FR LRT statistics of the proposed Cox models control the 

type I error correctly, no matter whether the genotype data are smoothed or not and which 

basis functions are used to smooth the GVF and β(u). In addition, the results of “Basis of 

both GVF and β(u)” are very similar to those of “Basis of beta-Smooth Only” in Tables 1 

and 2; and actually, many of them are identical. We also note that the empirical type I error 

rates of Cox SKAT LRT are inflated compared to those of the Cox FR LRT as well as the 
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nominal levels. In Table 2, the computation of type I error rates failed due to convergence 

issues for censoring U(0, 3) for sample sizes 1,000 and 2,000 when the causal variants are 

all rare.

3.2 Statistical Power Evaluation

Based on the simulated sequence data, the power of the proposed Cox FR LRT statistics was 

compared with Cox SKAT LRT and Cox BT LRT by Chen et al. (2014). The Cox FR LRT 

statistics are those considered in the type I error simulations, i.e., the LRT statistics of Cox 

models (4) and (5). The results are reported in Figures 1 and 2. In Figure 1, some causal 

variants are rare and some are common. In Figure 2, all causal variants are rare. In the 

legend of the Figures, “GVF&Beta, B-sp” (or “GVF&Beta, F-sp”) means that both genetic 

variant functions and genetic effect function β(u) were smoothed by B-spline (or Fourier) 

basis functions, “Beta, B-sp” (or “Beta, F-sp”) means that only the genetic effect function 

β(u) was smoothed by B-spline (or Fourier) basis functions (i.e., beta-smooth only), “B-sp” 

means a B-spline basis was used, and “F-sp” means a Fourier basis was used.

When some causal variants are rare and some are common as shown in Figure 1, the Cox FR 

LRT statistics of the proposed Cox models have higher power than that of Cox SKAT LRT 

when all causal variants had positive effects [graphs (a1), (b1), and (c1) in Figure 1]; When 

20%/80% causal variants had negative/positive effects in graphs (a2), (b2), and (c2) in 

Figure 1, the Cox FR LRT statistics have slightly higher or higher power than that of Cox 

SKAT LRT; When 50%/50% causal variants had negative/positive effects, in graphs (a3), 

(b3), and (c3) in Figure 1, the Cox FR LRT statistics have similar power as that of Cox 

SKAT LRT.

When all causal variants are rare as shown in Figure 2, the Cox FR LRT statistics of the 

proposed Cox models have higher power than that of Cox SKAT LRT when all causal 

variants had positive effects [graphs (a1), (b1), and (c1) in Figure 2]; When 20%/80% causal 

variants had negative/positive effects in graphs (a2), (b2), and Figure 2, the Cox FR LRT 

statistics have similar power as that of Cox SKAT LRT; When 50%/50% causal variants had 

negative/positive effects, in graphs (a3), (b3), and (c3) in Figure 2, the Cox FR LRT 

statistics have lower power than that of Cox SKAT LRT.

In total, we compared the power of four Cox FR LRT statistics of the fixed effect models: 

two are based on B-spline basis functions, and two are based on Fourier basis functions. In 

the two Cox FR LRT statistics to use B-spline (or Fourier) basis functions, one is to smooth 

both the genetic variant functions and the genetic effect function β(u), and the other is only 

to genetic effect function β(u) (i.e., beta-smooth only). Generally, the four Cox FR LRT 

statistics of the proposed Cox models have similar power. The power levels of beta-smooth 

only are almost identical to those of smoothing both the genetic variant functions and 

genetic effect function β(u) by B-spline basis (or Fourier basis). Therefore, the Cox FR LRT 

statistics do not strongly depend on whether the genotype data are smoothed or not, or which 

basis functions are used. Hence, they are very stable in terms of power performance.
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3.3 Additional Simulation Results

In the Supplementary Materials, Appendix A, more simulation results are presented for three 

sets of parameters:

1. In Tables A.1 and A.2 and Figures A.1 and A.2, the order of B-spline basis was 4, 

and the number of B-spline basis functions was K = Kβ = 6; the number of Fourier 

basis functions was K = Kβ = 7.

2. In Tables A.3 and A.4 and Figures A.3 and A.4, the order of B-spline basis was 4, 

and the number of B-spline basis functions was K = Kβ = 8; the number of Fourier 

basis functions was K = Kβ = 9.

3. In Tables A.5 and A.6 and Figures A.5 and A.6, the order of B-spline basis was 4, 

and the number of B-spline basis functions was K = Kβ = 12; the number of Fourier 

basis functions was K = Kβ = 13.

For the first set of parameters, the computation of all simulations of type I error rates 

succeed. For the second set of parameters, the computation of most simulations of type I 

error rates succeed. However, the computation of more simulations of type I error rates 

failed for the third set of parameters. The type I error rate results of Supplementary 

Materials are similar to those of the main text, i.e., the Cox FR LRT statistics control the 

type I error rates correctly.

The empirical power levels in Figures A.1 and A.2 are slightly lower than those of Figures 1 

and 2. On the other hand, the empirical power levels in Figures Figures A.3, A.4, A.5, and 

A.6 are similar to those of Figures 1 and 2. Therefore, the range of parameters 8 ≤ K = Kβ ≤ 

13 should be fine to use in fitting the proposed Cox models, in terms of controlling type I 

error rates well and good power.

In the Supplementary Materials, Appendix B, three more settings were considered: 30%, 

40%, and 50% of variants were causal in the 6 kb subregion. In Figures B.1 – B.8, the range 

of parameters K and Kβ are from 6 to 13 as those in the main text and Supplementary 

Materials, Appendix A. If some causal variants are rare and some are common, the Cox FR 

LRT statistics have higher or similar power as Cox SKAT LRT. If all causal variants are 

rare, the Cox FR LRT statistics have higher or similar power as Cox SKAT LRT except 

when 50%/50% causal variants had negative/positive effects.

The Cox FR LRT statistics have higher power than Cox BT LRT in all the Figures 1, 2, A.1 

– A.6 and B.1 – B.8. In addition, the power levels of Cox SKAT LRT are higher than those 

of Cox BT LRT in all the Figures B.1 – B.8 except when 50% variants are causal and all 

causal variants had positive effects [graph (c1) in Figures B.1 – B.8]. This is consistent with 

the results of Chen et al. (2014).

3.4 Application to AREDS Data

Table 3 shows the results of association analysis of AREDS data for the two genes, CFH and 

ARMS2, using the proposed Cox FR LRT, Cox SKAT LRT, and Cox BT LRT. We analyze 

the data three times in each gene region: (1) all genetic variants, (2) common variants only, 
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and (3) rare variants only. Here the rare variants are defined as those that the MAF ≤ 0.05, 

and common variants are defined as those that the MAF > 0.05.

By analyzing all genetic variants, both genes are significant since all the p-values are small, 

suggesting that gene-based method can be used in the genome-wide association study of 

survival outcome and is complimentary to single marker test analysis. For the ARMS2 gene, 

the p-values of the Cox FR LRT, 4.28 × 10−43 and 4.37 × 10−43, are much smaller than 9.65 

× 10−7 of Cox SKAT LRT and 2.56×10−37 of Cox BT LRT. For the CFH gene, the p-values 

of the Cox FR LRT, 4.95 × 10−51 and 7.19 × 10−49, are much smaller than 4.03 × 10−15 of 

Cox SKAT LRT, but slightly larger than 9.74 × 10−53 of Cox BT LRT.

The results of analyzing common variants only are similar to those of analyzing all genetic 

variants by the Cox FR LRT and Cox BT LRT. The p-values of Cox SKAT LRT of 

analyzing common variants only are bigger than those of analyzing all genetic variants. For 

the CFH gene, there are 103 rare variants in the gene region and the results of analyzing rare 

variants only are less significant than those of analyzing all genetic variants or common 

variants only. For the ARMS2 gene, there are only 7 rare variants and the results of 

analyzing rare variants only are not reliable by FR based Cox models.

From the analysis of AREDS data, we may see that it is a good strategy to analyze all 

genetic data instead of only analyzing rare or common variants. In the analysis of rare 

variants, the FR based Cox models can not converge for the ARMS2 gene since there are 

only 7 variants. Note the cutoff is 0.05 to define the rare variants and the cutoff is artificial. 

By using different cutoffs, one will get different results. Therefore, it is better to analyze all 

variants to get a uniform result.

In the Table 3, the results of the Cox FR LRT statistics of beta-smooth only are identical to 

those of smoothing both the genetic variant functions Xi(u) and the genetic effect function 

β(u) except for ARMS2 gene of analyzing rare variants only. Thus, whether the genetic 

variant functions are smoothed or not does not have much impact on the results. We 

observed this for quantitative and dichotomous traits in Fan et al. (2013, 2014) and Wang et 

al. (2015).

4 Discussion

In this article, we developed FR based Cox proportional hazard models for gene-based 

association analysis of survival traits adjusting for covariates. By fitting the proposed Cox 

models, Cox FR LRT statistics are introduced to test for an association between the survival 

traits and multiple genetic variants. Extensive simulations are performed to evaluate 

empirical type I error rates and power of the Cox FR LRT statistics. We show that the Cox 

FR LRT statistics control the type I error very well. The Cox FR LRT statistics have higher 

power than Cox SKAT LRT when all causal variants had positive effects no matter some 

causal variants are rare and some are common or all causal variants are rare. If 20%/80% 

causal variants had negative/positive effects, the Cox FR LRT statistics have higher power 

than (or similar power as) that of Cox SKAT LRT, when some causal variants are rare and 

some are common (or all causal variants are rare). If 50%/50% causal variants had negative/
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positive effects, the Cox FR LRT statistics have similar power as (or lower power than) that 

of Cox SKAT LRT, when some causal variants are rare and some are common (or all causal 

variants are rare).

In our simulation studies on our linux system, it takes about 24, 40, 90, and 120 hours to 

analyze 105 phenotype-genotype datasets to calculate the four Cox FR LRT statistics and 

Cox SKAT LRT in Tables 1 and 2 for sample sizes of 1,000, 2,000, 3,000, and 4,000, 

respectively. The models and related test statistics can be useful in the whole genome and 

whole exome association studies.

The proposed methods were applied to analyze an age-related macular degeneration dataset. 

For both CFH and ARMS2, the results of the Cox FR LRT statistics are much more 

significant than Cox SKAT LRT and are similar to Cox BT LRT if all or only common 

variants were used in the analysis. For the CFH gene, the results of the Cox FR LRT 

statistics are similar to Cox SKAT LRT but more significant than Cox BT LRT if only rare 

variants were used in the analysis. For the ARMS2 gene, there are only 7 rare variants and 

the results are not reliable by the FR Cox models. In practice, one can perform analysis by 

the Cox FR LRT statistics and Cox SKAT LRT and Cox BT LRT to make a comparison, 

and this can be readily done using our R codes and the R SeqMeta package.

It is noteworthy that SKAT and Cox SKAT LRT were constructed as score tests on the 

variance component parameter for the genetic random variations in linear/logistic or Cox 

mixed effects models. The test statistic is a weighted sum of single-marker score test 

statistics when using the linear kernel [Chen et al., 2014; Lee et al., 2012]. Therefore, the 

test statistics of SKAT and Cox SKAT LRT only model pair-wise linkage disequilibrium 

(LD) between each individual marker and the trait locus, while the LD among genetic 

markers are not modeled.

In the proposed FR based Cox models, the genetic effects are treated as a function of the 

physical position and the genetic variant data are viewed as stochastic functions of the 

physical position and so any orders of LD are taken care of in the models [Ross, 1996]. The 

regression coefficients of genetic terms in the models of SKAT and Cox SKAT LRT do not 

depend on the physical position, while our genetic effect function is actually a function of 

physical position. Hence, the proposed Cox models can fully utilize LD and physical 

position information.

Chen et al. (2014) reported that the score test shows inflated type I error rates when the 

effective sample size is small (e.g., in finite samples with a high proportion of censoring), 

and the Cox SKAT LRT has better finite-sample performance than the score test. However, 

it is worth noting that the LRT follows a chi-square distribution asymptotically under the 

null hypothesis, thus for variants with very low minor allele counts (e.g., singletons), LRT 

asymptotics may not work well either. In practice, such variants are usually filtered out or 

collapsed together. Therefore, it would be necessary for Cox SKAT LRT to go through 

genotype quality control or filtering procedures prior to analysis. However, we do not need 

to remove any variants before running the proposed FR based Cox models. Note that the 

number of B-spline or Fourier basis functions is fixed in our Cox models and does not 
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depend on the number of genetic variants. Therefore, one may keep all variants for a 

uniform analysis. Actually, with more genetic variants, we estimate more accurate genetic 

variant functions.

The Cox FR LRT statistics could not be computed in some simulation replicates due to 

failure of convergence. The failure of the convergence is due to a number of parameters, i.e., 

the number of B-spline or Fourier basis functions. When the number of B-spline or Fourier 

basis functions is 6 or 7, all simulation of 1,200,000 datasets were successfully done in 

Tables A.1 and A.2. When the number of B-spline or Fourier basis functions increase, not 

all models can be successfully fit. Once the calculation can be done, the type I error rates are 

around the nominal levels. However, when the number of B-spline or Fourier basis functions 

is 6 or 7, the empirical power levels in Figures A.1 and A.2 are slightly lower than those of 

Figures 1 and 2 when the number of B-spline or Fourier basis functions is 10 or 11. 

Therefore, we report the results of the number of B-spline or Fourier basis functions of 10 

and 11 in the main text.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Empirical Power of the Cox FR LRT Statistics of the Cox Models (4) and (5) and 
Cox SKAT LRT and Cox BT LRT by Chen et al. (2014) at α = 0.001, When Some Causal 
Variants are Rare and Some are Common and a Sample Size of 2,000
When Neg pct = 0, All Causal Variants Had Positive Effects; When Neg pct = 20, 20%/80% 

Causal Variants Had Negative/Positive Effects; When Neg pct = 50, 50%/50% Causal 

Variants Had Negative/Positive Effects.
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Figure 2. The Empirical Power of the Cox FR LRT Statistics of the Cox Models (4) and (5) and 
Cox SKAT LRT and Cox BT LRT by Chen et al. (2014) at α = 0.001, When All Causal Variants 
are Rare and a Sample Size of 2,000
When Neg pct = 0, All Causal Variants Had Positive Effects; When Neg pct = 20, Causal 

Variants Had Negative/Positive Effects; When Neg pct = 50, 50%/50% Causal Variants Had 

Negative/Positive Effects.
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