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Abstract

The incidence of pediatric Inflammatory Bowel Disease, which includes Crohn's and ulcerative 

colitis, has risen alarmingly in the Western and developing world in recent decades. 

Epidemiological (including monozygotic twin and migrant) studies highlight the substantial role 

of environment and nutrition in IBD etiology. Here we review the literature supporting the 

developmental and environmental origins hypothesis of IBD. We also provide a detailed 

exploration of how the human microbiome and epigenome (primarily through DNA methylation) 

may be important elements in the developmental origins of IBD in both children and adults.

Introduction

Inflammatory Bowel Diseases (IBD), including Ulcerative Colitis (UC) and Crohn's Disease 

(CD), are disorders characterized by chronic inflammatory destruction of the gastrointestinal 

mucosa(1). The etiology of IBD is unknown, but the diseases are thought to arise secondary 

to an uncontrolled mucosal immune response in the background of host genetic 

susceptibility, environmentally induced predisposition, and gut microbial dysbiosis. The key 

feature of pathogenesis is believed to be a dysregulated immune response against the 

commensal microbiota(2).

A recent systematic review chronicles the relative contribution of genetics, nutrition, 

environment, and other factors on early-onset vs. late-onset IBD(3). For children with rare, 

very early-onset IBD, genetic predisposition appears to play a more important role, while 

environmental factors and gut microbiota are likely more involved in the disease etiology 
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and natural history of patients who present with the diseases at a later age. The incidence of 

IBD, particularly in pediatric populations, has been rising in the Western world and in 

developing nations at an alarming rate(4–6). The prevailing theory behind this surge in light 

of the geographical distribution of IBD is that the environmental and nutritional factors 

associated with Westernization are at fault(7). The purpose of this review is to highlight the 

environmental and nutritional origins hypothesis of IBD. We will further explore how select 

environmental and nutritional factors may affect host epigenetics and commensal 

microbiota.

Epidemiological Evidence Supports The Environmental Origins of IBD

General Epidemiology of IBD

IBD prevalence is highest in Western Europe, North America, and Australia and steeply 

declines outside of the developed world(8,9). In recent decades, however, IBD incidence has 

increased in previously low prevalence areas, such as South America and Asia, and is 

thought to be correlated with industrialization and Westernization(8,10). Particularly, 

pediatric IBD incidence is increasing at an alarming rate in both developed and developing 

countries,(8,11) although some investigations indicate a relative stabilization of incidence in 

certain high prevalence areas(12). Generally, UC appears before CD where IBD is on the 

rise(11). Many of these observations may be a byproduct of increased physician access and 

improving healthcare systems in developing nations. The rise in IBD, however, that has 

been observed in Eastern Europe, a region of comparatively quality healthcare, over the last 

25 years strongly associates with the steady appropriation of a Western lifestyle(13–15). 

Prevalence of IBD follows a North-South gradient in the United States and an East-West 

gradient in Canada. These gradients likely reflect differences in population density, urbanity, 

and environmental exposure within each nation rather than genetic differences or access to 

healthcare(16–18). A recent meta-analysis of previous epidemiological studies, mostly from 

North America and Western Europe, discovered a modest, though significant, increase of 

pediatric CD incidence associated with increasing latitude and low daily ultraviolet radiation 

levels (19). The authors suggest that diminished daily ultraviolet radiation levels at higher 

latitudes might affect vitamin D synthesis, immunologically predisposing children to the 

disease. Within-region observations, such as the above, dampen the theorized role of 

genetics and point to the greater contribution of environment and nutrition in IBD etiology.

The Environmental/Nutritional Origins of IBD

The rise in IBD incidence in developed and developing nations has coincided with a 

plethora of factors associated with Westernization including improved hygiene, increased 

access to and consumption of food that has changed in composition and processing, 

sedentary lifestyle, antibiotic use, refrigeration, urbanization, etc. (described, briefly, in 

Table 1). It should be emphasized that many of the environmental/nutritional factors 

contributing to IBD have been disputed or questioned in the literature. Furthermore, there 

are several considerations that are important to exercise when assessing environmental 

factor contribution to IBD etiology:
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1. IBD is specific to humans (since similar disorders are still markedly different even 

in non-human primates(20)). Therefore, animal environmental/nutritional model 

studies of IBD etiology are inherently flawed.

2. Dependable results from human epidemiologic studies (even if prospective and 

well-controlled) are very difficult to attain for ethical and technical reasons(21).

3. Secondary to the limitations above, it is almost impossible to exclusively examine a 

single environmental factor in human IBD etiology.

In regard to the third consideration, we bring a few examples to demonstrate the complexity 

and interactive nature of environmental elements relevant for IBD pathogenesis based on 

epidemiologic and animal model studies.

First, increased n-6 polyunsaturated fat (PUFA) consumption has been associated with UC 

development in a large scale human prospective trial(22). Concomitantly, one major dietary 

source of n-6 PUFA is fried foods, which have been observed as significant component of a 

pre-illness diet in Crohn's disease patients(23). Additionally, consumption of potato skin 

derived glycoalkaloids (through French fries, for example) has been shown to worsen colitis 

in 2 different mouse models of IBD(24). These studies underscore the complex dietary 

attributes of one single nutritional component (n-6 PUFA linked to fried foods in this 

example) that can be relevant for IBD development. In a recent work, we have not found 

any significant effect of isolated n-6 PUFA supplementation on acute colitis susceptibility in 

mice. Rather, the transient pediatric supplementation of n-6 PUFA resulted in acute colitis 

protection in young adult animals(25).

For our second example illustrating the difficulty of associating any single environmental 

factor to IBD etiology, we examine the proposed contribution of refrigeration, as a 

consequence of industrialization, to the development of CD(26). It is thought to do so by 

inducing increased exposure to psychotropic bacteria such as Yersinia spp and Listeria spp 

(i.e. the cold-chain hypothesis). This hypothesis was further substantiated by a record of 

significantly earlier pediatric exposure to a home fridge in CD patients than in controls(27). 

The consumption of refrigerated foods, however, has many secondary effects that could be 

relevant for IBD pathogenesis. Refrigeration results in the consumption of less pickled food 

and increases dietary diversity, both of which are highlighted as major characteristics of the 

Westernization of global dietary habits.(28). The consumption of acetate (a major 

component of pickling), for instance, has been shown to be protective against murine 

colitis(29). Additionally, we have highlighted the potential for increased dietary diversity to 

possibly contribute to IBD pathogenesis based on a murine colitis model and human 

epidemiology(30). Consequently, decreased consumption of pickled foods and increased 

dietary diversity resulting from the expansion of refrigeration may be important contributors 

to its association with IBD development (in addition to the hypothesized cold-chain effect). 

Importantly, both acetate and dietary diversity have functional and compositional relevance 

to the intestinal microbiota, emphasizing its physiologic role in communicating 

environmental/nutritional exposures to host physiology and pathology.
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In spite of the difficulties in interpreting environmental influences on IBD susceptibility, an 

emerging common theme from animal model(31,32) and human epidemiological 

observations is that pediatric (especially infantile) disruption of the gut microbiome 

maturation process can significantly contribute to colitis susceptibility in animals and to IBD 

in humans. Prematurity, infantile exposure to antibiotics, pediatric exposure to refrigeration 

(see above), and plausibly all environmental factors relevant in IBD etiology can have 

significant effects on gut microbiota composition during critical periods of development. 

Microbiome composition changes during such developmental periods may lead to persistent 

modifications in host physiology (and vice-versa) that could alter predisposition to IBD later 

in life. This will be discussed further in a later section.

Migrant Population Studies

Interestingly, studies focusing on immigrants further point to a substantial contribution of 

environment and diet to IBD incidence. Migrants represent a unique study cohort – clearly, 

the genetic susceptibility of an immigrant to IBD remains static, yet they experience a 

dramatic change in environment and diet upon arrival to a new country. Epidemiological 

evidence suggests that exposure to environmental factors associated with IBD has greater 

influence on IBD incidence during early life, although transient exposures to higher levels of 

industrialization even in young adulthood may increase one's chances for developing 

UC(33). Recent studies, conducted in Canada and Sweden, show that immigrants have lower 

IBD incidence, with decreasing risk for each additional year of age at immigration(6,34). 

Furthermore, children of some, but not all, migrant groups are less likely to be diagnosed 

with IBD(6). The heterogeneity of IBD incidence appropriation in children of migrants 

indicates that early life exposure to a Western environment cannot exclusively predict 

likelihood of disease. Variation in different ethnic groups towards preserving dietary habits 

within the family following migration, however, could explain the heterogeneous IBD 

incidence in first generation immigrant children. This latter hypothesis would imply that 

nutritional influences are more important in IBD pathogenesis during postnatal pediatric 

development than other environmental factors. Second generation immigrants, however, 

have a similar IBD incidence rate as non-immigrants(35). These studies indicate that 

environmental exposures (including maternal diet) in prenatal life and during pediatric 

development (perhaps diet being the most important postnatally) are more critical than 

genetic predisposition towards IBD pathogenesis.

Genetics and Monozygotic Twin Studies

Over 160 genetic susceptibility loci have been linked to IBD(36). The vast majority of these 

loci contribute to disease development with low odds ratios (1-1.5) revealing the complexity 

of the limited genetic attribution (13.6% for CD and 7.5% for UC) to these disorders. There 

is also diverse genetic susceptibility to IBD in different ethnic backgrounds in spite of 

similar disease phenotypes(37–41). This genetic diversity suggests that changes common to 

industrialization induce non-genetic modifications in genetically vulnerable hosts that may 

be more important than the genetic predisposition itself towards inducing disease.

Observations in monozygotic (MZ) twins revealed low concordance for IBD within pairs. 

Concordance rates are overall less than 50% for IBD with CD higher (27-56%) than UC 
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(15-19%)(42). This suggests that genetic predisposition is insufficient for IBD development 

– and that environmental factors are playing a bigger role in disease pathogenesis, especially 

in UC. In the meantime, it is MZ twins who, unless they are raised apart, share the same 

environmental and nutritional influences. Therefore, based on MZ twins, genetic and 

epidemiologic observations, it appears that genetic predisposition and shared environment/

nutrition only heighten the probability of developing IBD, but are insufficient to instigate 

the onset of disease. Stochastic biological factors influenced by genetics and the 

environment appear to be key elements in the pathogenesis of the disorders (Figure 1.). 

Although frequently overlooked, physiologic noise (or stochasticity), defined as an 

unpredictable disturbance to a biological system, is an inherent part of human 

biology(43,44). IBD are prime examples where physiologic stochasticity is likely to play a 

significant etiologic role(45). It is, of course, mindboggling to consider that unique 

instigators may offset each case of IBD stochastically within the complex and interactive 

biologic systems involved in the pathology of the diseases.

Criteria for Interactive Systems

Out of these interactive systems, the microbiome and the host epigenome fulfill certain 

criteria, which make them prime candidates for communicating the environmental, 

nutritional, and developmental origins of IBD. Such criteria are:

1. Developmental maturation/modification - Biologic systems that are in flux during 

critical developmental periods are most likely to respond to environmental stimuli

2. Environmental/nutritional responsiveness

3. Stability once adjusted to environmental/nutritional influences

4. Penetrance (i.e. able to convey phenotypically relevant effects)

In the next section, we will highlight how the epigenome and the commensal microbiome 

fulfill the above criteria.

The Microbiome and The Host Epigenome are Potential Elements in The 

Environmental Origins of IBD

The Microbiome in the Environmental Origins of IBD

The human microbiome is defined as the complete population of bacteria, fungi, and viruses 

that live in and on the human body (all their molecular components as well, dead or alive)

(46). In humans, the gastrointestinal system houses the largest quantity and diversity of 

microbiota (i.e. the live microbiome)(47). Generally, the enteric microbiota exists in 

symbiosis with the host, and plays important roles in digestion, immune system maturation, 

and epithelial barrier integrity, in addition to acting as a competitive “barrier” to pathogenic 

invasion(48). The microbiota can act as an environmental sentinel, able to quickly respond 

to external stimuli such as dietary/environmental change, with protein-coding bacterial 

genes outnumbering human host genes approximately 360:1(49).

Gastrointestinal microbiome composition, microbial function, and metabolic activity of gut 

microbiota are perturbed in patients suffering from IBD, though whether this is an initiator 
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or consequence of the disease is unclear(50,51). Abnormal secretion of antibodies against 

common commensal microbiota, including common enteric fungi, in IBD-affected tissues 

suggests that the mechanisms responsible for tolerance induction are obstructed(52,53). A 

dysregulated immune response toward enteric microbes results in the down-regulation of 

tight junction proteins, allowing bacteria to infiltrate the epithelial barrier(52,54–56). This 

results in further inflammation and exaggerates dysbiosis (i.e. abnormal microbiome 

composition)(54,57). The current paradigm states that IBD pathology is characterized by an 

aberrant inflammatory response to microbiome, resulting in the subsequent destruction of 

the gastrointestinal mucosa and further bacterial/microbial encroachment.

In relation to the nutritional and environmental origins of IBD, the microbiome appears to be 

an important element in postnatal life by fulfilling the above outlined “systems criteria”:

1. The human microbiome goes through an intense evolution from birth that stabilizes 

following 3 years of age, but proceeds at lower velocity to young adulthood(58,59). 

Therefore, environmental influences such as infantile exposure to antibiotics, 

pediatric exposure to refrigerated foods, and even young adulthood exposure to 

high levels of industrialization could modulate its composition to promote IBD.

2. The human microbiome is highly responsive to nutritional changes. Rapid 

microbiome shifts can occur upon drastic dietary modification even in adults,(60) 

where microbiome composition is otherwise relatively stable over several months 

to years(61). The microbial dietary shifts appear to depend mostly on the nutritional 

impact, rather than the host genotype based on murine studies(62). Therefore, it is 

conceivable that environmental/nutritional changes of industrialization could 

induce similar IBD prone microbiome modifications in different ethnic 

backgrounds.

3. As previously stated, the human microbiome possesses stability(61). Individual 

microbiomes remain separated in spite of significant nutritional changes over short 

periods of time in adults, and long-term dietary influences link to distinct 

enterotypes(63). Therefore, once a nutritional change modifies the microbiome 

during a critical developmental period (i.e. childhood), IBD promoting 

characteristics could be carried on to young adulthood, when the onset of disease 

peaks. We have observed both transient(64) and persistent(25) microbiome-

associated pediatric dietary influences to modulate IBD predisposition in young 

adult mouse models.

4. The mammalian, including human, microbiome can modulate the host phenotype. 

A large number of emerging studies utilizing broad-spectrum antibiotics and fecal 

microbiota transplantation into germ free animals(65) or even humans with 

disease(66) show the significant phenotype-modulating capacity of the 

microbiome. Our work demonstrates that mice fed a high n-6 fat diet in early life 

show prolonged protection against DSS-induced colitis, but only when the diet is 

reversed prior to insult. Critically, this protection appeared to be mediated by the 

microbiota as transplantation of the n-6 microbiome into germ free mice 

transmitted significant protection against colitis(25). Similar studies demonstrate 

that capacity of the microbiome to transmit the metabolic phenotypes of the 
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donor(67,68). The most clinically relevant application of the transmissive 

properties of the microbiome is in the treatment of C. difficile infection. Fecal 

microbiome transplantation not only restores microbiome composition/function, it 

also reinstates normal bile acid composition and re-establishes gut homeostasis(69–

71).

The Epigenome in the Environmental Origins of IBD

Epigenetic changes define molecular modifications that alter gene expression independently 

from genetic alterations in the DNA. Such functionally relevant genome-wide molecular 

modifications are frequently referred to as the “epigenome”. The epigenome may also be an 

important etiologic element in the environmental origins of IBD by fulfilling the above 

outlined “systems criteria”:

1. Epigenetic programming occurs during the prenatal and post-natal stages of life. A 

large, longitudinal (from birth to 18 months of age) study in twins has 

demonstrated that the epigenome changes rapidly in early life(72). Increasing 

epigenetic discordance between twins over time further underscores the role of 

non-shared environmental factors and, in part, stochasticity in the development of 

the epigenome during early life(72). Mouse studies highlight the post-infantile 

epigenetic maturation of the colonic mucosa as well(73). These findings indicate 

that the epigenetically responsive/vulnerable period in respect to colitis 

predisposition extends beyond infancy in mammals.

2. The human epigenome is responsive to environmental and nutritional changes(74). 

In mammals, supplementing the murine maternal diet with methyl-donor 

micronutrients can induce pronounced changes in colonic mucosal gene 

methylation and this associates with augmented colitis predisposition in the 

offspring(73,75,76). In Wistar rat offspring, a gestational diet rich in multivitamins 

inflicted specific epigenetic alterations, particularly affecting metabolic 

pathways(77). However, epigenome responsiveness is likely not limited to the 

prenatal period as our murine studies suggest that epigenetic maturation in the 

colonic mucosa continues post-natally through pediatric development (73). Similar 

findings in neonatal pigs have been made(78). In a study of preadolescent humans, 

quality of dietary fat consumed influenced DNA methylation of genes specifically 

involved in metabolic syndrome(79) underscoring the nutritional responsiveness of 

the human epigenome during childhood.

3. Epigenetic modifications, particularly DNA methylation, are stable over time. As 

mentioned above, supplementing the murine maternal diet with methyl-donors 

induced methylation changes still identifiable 3 months into the post-natal 

period(80). Perhaps the most famous example regarding environmental 

responsiveness of the epigenome in humans is the infamous Dutch Hunger Winter, 

throughout which pregnant women were deprived of food and nutrients during 

wartime – the effects of this prenatal programming were discernable in their 

children nearly 6 decades later (81).
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4. Epigenetic changes in response to stimuli may exert phenotypically relevant effects 

in health and disease. The concept of epigenetic disease origins is erupting in all 

areas of medicine from neurology(82) to cardiology(83) and anesthesiology.(84) 

The potential importance for epigenetics in IBD was raised in 2000,(85) but is only 

recently receiving more attention(2,7,86,87). Although other epigenetic 

mechanisms besides DNA methylation may contribute to the development, 

progression and/or maintenance of IBD (e.g., histone modifications(86,88,89) and 

microRNAs(90–93)), only DNA methylation has been shown to be stably 

transmitted through repetitive cell divisions,(94,95) thereby having the capacity to 

permanently convey epigenetic information during the lifetime of an individual. 

Additionally, only DNA methylation has been described to directly communicate 

environmental exposures to phenotypic outcome in mammals(96). Recent work 

from Scotland has identified differentially methylated regions (DMRs) in 

peripheral blood leukocyte (PBL) DNA derived from treatment naïve pediatric CD 

patients(97). However, these had significant co-localization with IBD susceptibility 

single nucleotide polymorphisms (SNPs) indicating their genetic origins. As 

opposed to the Scottish study, we, in untreated pediatric IBD patients from the US, 

could not identify significant PBL DMRs following SNP exclusion despite using 

similar methodology(98). Significant cell-subset, variation-induced epigenetic 

noise in PBL may also interfere with consistent findings(99). Colonic mucosa, as 

the end-organ of IBD, has naturally been a tissue where DNA methylation 

associations of the disease group were extensively studied. Targeted(100) and non-

biased(101) assessments of DNA methylation detected numerous colonic mucosal 

associates of inflammation in IBD. IBD treatments can modulate DNA 

methylation,(102) and most previous GI mucosal studies examined patients 

following treatments. We recently studied treatment naïve pediatric IBD cases and 

discovered a remarkable colonic mucosal epigenetic separation of UC compared to 

CD(103). Functional methylome studies indicate that such modifications may 

impact gene transcription relevant to UC(104). Our findings however, implicated 

that the majority of UC-specific DNA methylation variation resulted from mucosal 

inflammation and did not persist in patients achieving treatment-induced remission.

(103) Therefore, much work needs to be done in the future to overcome the 

difficulties of epigenetic etiology research in humans. Causation-centered mouse 

studies, however, suggest that the epigenome's response to a nutritional stimulus 

can modulate colitis predisposition in mammals(80).

Epigenome-Microbiome Interactions

We have already indicated that the host epigenome and the commensal microbiota are likely 

to act in concert to modulate IBD predisposition secondary to environmental/nutritional 

exposure during critical periods of life. This potential has been highlighted by others as well 

in recent reviews(105,106). Briefly, pathogenic and commensal microbiota (and their 

metabolites) may contribute to epigenetic changes in their human hosts through a variety of 

mechanisms. Pathogenic bacteria may initiate host epigenetic modifications to inhibit 

immune response to invasion and to encourage proliferation of infected tissues(107,108). 

Interestingly, a recent investigation by Chernov, et al. demonstrated that Mycoplasma, a 
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common intracellular pathogen in colonic epithelia, produces DNA methyltransferases 

(DNMTs: enzymes catalyzing DNA methylation). As illustrated in Figure 2B, the 

mycoplasmal DNMTs had the capacity to localize into the host nucleus and alter host DNA 

methylation at genomic regions not methylated by host-derived DNMTs (109). These 

findings suggest that microbes could directly induce long-lasting unique epigenetic changes 

in the host.

Commensal microbiota may also epigenetically modify the host genome through the 

production of Short Chain Fatty Acids (SCFAs) such as butyrate, through generating biotin 

and folate, and though their interaction with Pattern Recognition Receptors (PRRs) on cell 

surfaces (summarized in Figure 2C).

Butyrate is produced by bacteria as a consequence of dietary fiber digestion and is important 

for intestinal health(107,110). Well-studied groups of butyrate-producing bacteria include 

Faecalibacterium prausnitzii and many of the Roseburia species(111). The reduced 

representation, and sometimes complete absence, of these butyrate-producing bacteria is 

repeatedly observed in the gastrointestinal microbiome of both UC and CD patients(112–

116). A number of in vivo and in vitro studies suggest that butyrate acts as a major nutrient 

for colonocytes, and can dampen intestinal inflammation (in part) by suppressing nuclear 

factor-B (Nf-kB) activation. Butyrate can also promote epigenetic remodeling in intestinal 

stem cells by acting as a histone deacetylase inhibitor(117–120). In UC patients, butyrate 

uptake is reduced in colonocytes and elements of the butyrate oxidation pathway are 

impaired(121–124). Concordantly, a double-blind, placebo-controlled clinical trial in UC 

patients demonstrated that supplementation of rectal 5-ASA enemas with butyrate resulted 

in a significant amelioration of disease activity(125). Biotinylation, the epigenetic process in 

which biotin is attached to histone groups, is important for suppressing retrotransposon 

activity and maintaining chromosomal stability. The human body uses diet- and bacteria-

derived biotin to achieve this, as it is incapable of synthesizing its own (110). Some 

commensal genera (namely, Lactobacillus and Bifidobacteria) affect the bioavailability of 

methyl groups through their production of folate(126). Folate feeds into the one-carbon 

metabolism cycle, regulating methyl-donor availability and eventually can affect DNA 

methylation. Bifidobacteria and Lactobacillus populations are reported to be significantly 

reduced in IBD patients, and are associated with disease severity, though the mechanism of 

action is still unclear(127–129). Reports of blood folate concentrations in IBD patients are 

inconsistent: some groups report folate deficiency, while others present evidence for 

significantly higher folate concentrations in affected individuals(130–133). A potential, 

unexplored explanation for these inconsistent reports is that variability in microbiome 

composition between patients may be linked to folate bioavailability and resulting systemic 

concentrations of the molecule.

Microbiota interact with intracellular and extracellular PRRs, resulting in transcriptional 

responses critical to tissue development, immunological maturation/surveillance, and normal 

physiological function (summarized in Figure 2D). Toll-like receptors (TLRs) are critical 

microbiome surveillance receptors as they bind microbe-associated molecular pattern 

(MAMP) molecules. These molecular interactions can stimulate the emergence of 

appropriate crypt-villus architecture in the intestinal mucosa. Germ free mice have an 
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overall abnormal architecture of the gastrointestinal epithelium which can be rescued by 

microbial colonization(134,135). Immunologically, microbiota-mediated signaling through 

PRRs is essential for the post-natal maturation of gut-associated lymphoid tissue (GALT)

(136), direct the conversion of CD4(+) T cells into Foxp3(+) T-regulatory cells(31,137), and 

are required for the establishment of a proper TH1/TH2 balance after birth(138,139). 

Furthermore, colonic region-specific TLR2 and TLR4 expression has been reported in SPF, 

but not germ-free mice, and microbiome transplantation reverses this region-specific 

expression pattern(140). It was later discovered that this microbiota-induced, region-specific 

expression associated with epigenetic alterations in the involved genes(141,142). In this 

way, commensal microbiota may modulate TLR expression, priming the host to respond to 

pathogenic threats later on. Later in life, microbe-mediated signaling via PRRs primarily 

affects gut homeostasis. Signaling through the TLR receptors, for example, regulates tight-

junctions to maintain epithelial barrier integrity and stimulates the secretion of anti-

microbial peptides to control commensal microbiota composition(143). Importantly, 

commensal microbiota are lifelong immunomodulators, promoting the intestinal expression 

of cytoprotective genes while suppressing pro-inflammatory genes(143).

The conceptualization of the microbiome as an epigenetic modulator is steadily gaining 

attention as researchers have begun to associate overall commensal microbiome 

composition, rather than select species, with epigenetic profiles in mice and in 

humans(141,142,144). Successive work has recently indicated strong associations between 

gut microbiome composition and promoter methylation of genes relevant for lipid 

metabolism, obesity and inflammation in PBL DNA(144).

Conclusion

Though a great many environmental and nutritional factors have been implicated in IBD, 

none have proven to be causal. This review presents a unique intersection of several 

compelling lines of evidence suggesting that environment and diet, through their profound 

effects on gut microbiome function and host epigenome modification, may play a primary 

role in IBD pathogenesis. This realization will hopefully fuel the near-future development of 

novel nutritionally- and epigenetically-focused preventative and therapeutic interventions 

for this highly morbid disease group.
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Figure 1. 
Schematic demonstration of the role of stochastic biological factors in the initiation of IBD. 

In genetically predisposed individuals, environmental and nutritional factors contribute to 

IBD predisposition (balloon inflation), where degree of predisposition positively correlates 

with Westernization/urbanization (pressure gauge). Stochastic biological factors (sharp 

objects), however, give impetus for the onset of the disease. Such factors may exert their 

critical effect in any of the intercalating biological systems that participate in IBD 

pathogenesis. Disease presentation is similar, however, irrespective of the critical trigger 

secondary to the intimately interactive systems (microbiome-mucosa-immune system).
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Figure 2. 
Direct and indirect modulation of the human epigenome by pathogenic and commensal 

microbiota: (A) Human colonic physiology and its spatial relationship with the microbiome 

and the short chain fatty acids (SCFAs) and metabolites it produces. (B) Mycoplasma, an 

intracellular microbial pathogen, synthesizes DNA methyltransferases (DNMT) complete 

with nuclear localization signals (NLS) that penetrate the host nucleus and result in de novo 

methylation. (C) Microbe-derived metabolites (folate, butyrate, and biotin) indirectly 

modulate the host epigenome: Folate enters the one carbon metabolism cycle (OCM Cycle) 

to affect the bioavailability of methyl groups, butyrate acts as a potent histone deacetylase 

(HDAC) inhibitor, biotin availability for biotinylation promotes chromosomal stability. (D) 

Commensal interactions with pattern recognition receptors (PRRs) cause downstream 

transcriptional changes, mediated primarily through methylation and acetylation, resulting in 

increased/decreased production of PRRs as well as extra-epithelial responses.
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Table 1

Non-exhaustive description of environmental/nutritional factors identified in epidemiological studies as being 

associated with IBD and the known effects of those factors on the microbiome and epigenome. Importantly, 

many of these factors have been disputed or questioned in the literature, repeatedly emphasizing the 

limitations of human epidemiologic observations.

Factor Observed IBD Associations Effects of Factor on 
Microbiome

Effects of Factor on 
Epigenome

Encironmental Helminth Infection Protective against IBD 145,146 Reduces bacterial 
attachment, alters 

community structure, 
increases diversity 147,148

Affects methylation 
signature in host T-cell 

response 149

Antibiotic Use in Childhood Strongly associated with CD 
incidence but generally not 

withUC150-153

Antibiotic use for treatment of 
gastroenteritis – strongly 

associated with both UC and 
CD 150,154,155

Antibiotic use has 
substantial effects on 

microbiome composition/
function, decreases 

diversity over time, and 
predisposes hosts to 

infection 156

Antibiotics have trans-
generational effects on 

sperm viability in insect 
models 157

Urbanization IBD incidence is high in urban 
environments 158-160

Rural, farming upbringing is 
protective against IBD161

Air pollutants may increase 
risk of early onset IBD 162,163

Rural and urban 
community structures and 

functions differ 164,165

Insufficient Information

Smoking Protective (and therapeutic) in 
UC 166-168

Associated with increased risk 
and prognosis in CD 169-171

Cessation in results in 
increased microbial 

diversity; gut microbiome 
composition changes to 

one associated with 
improved energy 

harvest 172,173

CD patients that smoke 
have clinically relevant 

dysbiosis 174

Maternal smoking – 
persistent, altered 

methylation of 
development- and 

metabolism-associated 
fetal genes 175-179

In adults – global, 
persistent methylation 

changes 180-182

Preterm Birth Increases risk of IBD 183 Reduced diversity, high 
risk of pathogenic 

colonization, decreased 
stability 184

Extreme preterm birth 
transiently affects 

methylation profile; 
select regions show 

persistence into 
adulthood185

Gastroenteritis Strongly associated with 
increased IBD risk 150,154

Intestinal microbiota can 
promote infection with 

and replication of enteric 
viruses 186,187

Insufficient Information

Mycobacterial Infection M. avium paratuberculosis 
(MAP) frequently identified in 

CD patients 188-190

Insufficient Information MAP inhibits chromatin 
remodeling in host 
macrophages 191

Appendectomy Protective for U C 192-194

More frequent, though not a 
risk factor, for CD 193-196

Limited evidence 
suggests microbiota in 
normal and diseased 
appendixes differ 197

Insufficient Information

Nutritional Breastfeeding Generally found to protect 
against IBD 198

Promotes microbial 
homeostasis and 

microbiome plasticity 
later in life 158,199,200

Breast milk contains 
SCFAs, which have 

epigenome-modifying 
properties (including 

DNA methylation and 
histone modification)

Non-Western Dietary Practices Fasting protected against 
(murine) colitis; lack of fasting 

Variable diet reduces 
microbial diversity in 

mice 30

Caloric restriction during 
the prenatal and 

adolescent periods has 
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Factor Observed IBD Associations Effects of Factor on 
Microbiome

Effects of Factor on 
Epigenome

predisposes colitis, presumably 
leptin-mediated 201-205

Monotonous diet protects 
against colitis in humans and 

murine models 30,206

Fasting alters microbiome 
composition and diversity 

in species – dependent 
manner, generally 

associated with reduced 
inflammation 207-209

potent, persistent effects 
on DNA 

methylation 81,210-212

High Fat / High Carb Diet High intake of trans-
unsaturated fat associated with 
increased UC risk; High intake 

of long-chain n-3 fatty acid 
associated with reduced UC 

risk213

However, dietary reversal after 
n-6 fat consumption protects 

against murine colitis 25

Stimulate expansion of 
organisms within the 
microbiome that are 

efficient at energy harvest 
which then promote 

inflammation, 
hyperphagia, 

hyperlipidemia, gut 
permeability, etc. 68,214

Associated with specific 
methylation differences 

affecting metabolic 
pathways in pediatric 

population 79

Dietary Fiber Increased fiber 
consumption 215

Cellulose supplementation 
ameliorates murine colitis 64

Decreased fiber 
consumption dramatically 
alters composition, gene 

content, richness, and 
SCFA production 206

Dietary fiber is 
fermented to release 
SCFAs, which have 

validated epigenome-
modifying properties 

(including DNA 
methylation and histone 

modification) 216,217

Dietary Protein (meat and 
dairy)

Diet high in animal protein 
increases risk of IBD 218

Reliably alter 
composition and function: 

Increase in bile-tolerant 
organisms, fewer (anti-
inflammatory) butyrate 

producers60

Insufficient Information

Vitamin D Latitude associates with IBD 
risk, presumably due to 
Vitamin D intake 17,19

Regulates gut microbiota 
to protect against colitis 

in mice 219

Vitamin D deficiency 
increases C. difficile 
infection risk 220,221

Pre-natal vitamin D 
deficiency epigenetically 

reduces immune cell 
development in mice 222

Food Additives Dietary emulsifiers promote 
murine colitis and metabolic 
syndrome in a microbiome 

mediated manner67

Micronutrient supplementation 
of maternal diet augments 

murine colitis in microbiome-
mediated manner75,76

Emulsifiers alter 
microbiome composition 
and function, microbiome 
transplant of treated mice 

results in metabolic 
disease in recipient 67

Artificial sweeteners 
induce microbiome-

mediated glucose 
intolerance65

Maternal methyl donor 
supplementation alters 
murine clonic mucosal 
microbiome, arguments 

colitis 76

Supplementation of 
murine maternal diet 
with methyl donors 
modified colonic 

mucosal epigenome and 
conferred colitis 
susceptibility80

Refrigeration Associates with CD 
development27

Insufficient Information Insufficient Information
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