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Abstract

Objective—To elucidate the association of a functional catechol-O-methyltransferase (COMT) 

genotype (rs4680) with recovery of executive functions up to 18 months after early childhood 

traumatic brain injury (TBI) compared to an orthopedic injury (OI) group.

Setting—Outpatient

Participants—134 children with a moderate to severe TBI (n=63) or OI (n=71) between the ages 

of 3-6 years who were followed 18 months post-injury

Design—Case-comparison, longitudinal cohort

Main Measures—The Behavior Rating Inventory of Executive Function (BRIEF), 

developmental neuropsychological assessment (NEPSY) of verbal fluency (VF), and a modified 

Stroop Test for young children (Shape School)

Results—The low activity COMT enzyme genotype (AA) was associated with better scores on 

the NEPSY VF (F=3.80, p=.02) and the Shape School (F=2.89, p =.06) in all participants when 

controlling for injury type (TBI vs. OI) over the first 18 months after injury. Injury type (TBI vs. 

OI) did not significantly moderate the effect of the COMT genotypes on executive function 

recovery.
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Conclusion—This study provides preliminary evidence for a role of COMT genotypes in long-

term recovery of executive function after pediatric TBI and OI. Larger studies are needed to 

determine the exact link between genetic variation in the COMT gene and TBI recovery in 

children.
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Introduction

Traumatic Brain Injury (TBI) is a leading cause of morbidity and mortality for children.1 

TBI commonly results in physical and cognitive impairments. Common cognitive 

impairments include memory deficits, executive dysfunction, decreased concentration and 

attention, and language impairment.2-13 The prognosis after TBI varies among individuals, 

even those with similar injuries. Such variability is likely due to environmental, injury-

related, and other individual factors, including genetics. To date, a paucity of research has 

evaluated the association of genetics with outcomes after pediatric TBI.14 Genetic variants 

associated with inflammatory cascades, neuroplasticity, cognitive functioning, and 

neurologic signaling pathways may influence initial biologic response and longer-term 

recovery after TBI.15,16 Catecholaminergic systems are of particular interest because these 

systems are sensitive to TBI and play roles in neural plasticity and repair, as well as attention 

and memory function.16-21

Dopamine, epinephrine, and norepinephrine are catecholamines that are thought to play a 

role in recovery and functioning after TBI, given that variation in the metabolism of 

catechoamines after injury may influence cognitive function and recovery.16 Because the 

enzyme Catechol-O-methyltransferase (COMT) primarily functions to degrade 

catecholinergic neurotransmitters, variations in the functioning of the enzyme may affect 

recovery after TBI.22 The COMT enzyme is coded by a gene located on the long arm of 

chromosome 22q11.21.22 The gene contains a common site of genetic variation that results 

in a methionine to valine substitution at codon 158 and leads to differing enzyme 

activity.23,24 The AA genotype codes for methionine homozygotes that are associated with 

lower enzyme activity and the GG genotype codes for valine homozygotes that are 

associated with higher enzyme activity. Low COMT enzyme activity (i.e., decreased 

degradation of catecholamines) is associated with potentially higher levels of 

neurotransmitters while high activity of COMT (i.e., increased degradation of 

catecholamines) is associated with potentially lower levels of neurotransmitters.23,24 

Because of the biologic implications of this COMT genetic variation on catecholamine 

metabolism, genotypes associated with lower or higher levels of catecholamines may 

influence cognitive and behavioral recovery after injury.

The COMT genoyptes have been associated with performance on cognitive tasks in several 

populations. In healthy participants, Blasi et al. showed that the low activity COMT 

genotype (AA) was associated with superior attention when compared to the high activity 

COMT genotype (GG).25 Kramer et al. showed that university student participants 
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homozygous for the high activity COMT genotype (GG) had greater prefrontal processing 

related to inhibitory functions.26 Fossela et al. reported that adult subjects homozygous for 

the high activity COMT genotype (GG) had poorer executive attention scores than those 

homozygous for the low activity genotype (AA).27 Additionally, amphetamine, a stimulant 

known to increase dopamine signaling, enhanced working memory task performance and 

efficiency of prefrontal cortex function in healthy individuals homozygous for the high 

activity COMT genotype (GG).28 In adults with TBI, homozygotes for the higher activity 

COMT genotype (GG) showed more executive dysfunction on the Wisconsin Card Sorting 

Test compared to homozygotes for the lower COMT genotype (AA).29 COMT 

polymorphisms have also been linked to emotion, thinking, and self-regulatory functions.30 

Specifically, they are involved in the mediation of cognitive functions related to executive 

functioning and self-regulating behavior.30 In summary, this prior work indicates that these 

COMT genotypes may have implications for cognitive and behavioral functioning in several 

conditions associated with attention and executive functions; however, the association of this 

genetic variation with cognitive and behavioral recovery after pediatric TBI has not been 

explored. The aim of this study was to broaden the evaluation of the association of genetic 

variants with cognitive and behavioral recovery after pediatric TBI to COMT variants. 

Specifically, our goal was to better understand the association of the functional COMT 

variants (rs4680) with executive function and behavioral recovery longitudinally, up to 18 

months after early childhood TBI compared to an orthopedic injury group. We predicted that 

the high enzyme activity genotype (GG) of the rs4680 COMT genetic variant would be 

associated with poorer executive functioning and that TBI would amplify these adverse 

effects over time.

Methods

Design

This was a prospective, longitudinal observational, case-comparison study of the association 

of a functional COMT variant (rs4680) with behavioral and executive function outcomes of 

young children with TBI and orthopedic injuries (OI).

Participants

Participants were recruited from an ongoing, prospective, long-term descriptive study 

evaluating children who sustained a TBI between age 3 and 7 years and a comparison group 

of age-matched children with orthopedic injury (OI). 213 participants who were enrolled in 

the original study were eligible for the current genetic study. Recruitment was from 3 

children’s hospitals and 1 general hospital in Ohio. Participants underwent assessments at 

multiple time points, including the immediate post-acute period (0-3 months after injury) 

and 6, 12, and 18 months post-injury. Inclusion criteria included hospitalization overnight 

for traumatic injury (TBI or OI) sustained between the ages of 36 and 83 months, no 

evidence of child abuse as the cause of the injury, no history of documented neurological 

problems or developmental delays pre-injury, and English as the primary language in the 

home. The severity of injury was characterized using the Glasgow Coma Scale (GCS). 31 

Severe TBI was defined as a GCS score less than or equal to 8 as the lowest post 

resuscitation score. The moderate TBI group had a GCS score of 9-12 or a GCS score of 
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13-15 in association with abnormal brain imaging. Children with mild TBI had a GCS of 

13-15 without evidence of abnormal brain imaging. The OI group included children who 

sustained a bone fracture (not including skull fractures), had an overnight stay in the 

hospital, and did not exhibit alterations in consciousness or other signs or symptoms of head 

trauma or brain injury.

DNA Collection

DNA was collected from saliva samples from the participants, purified using the Oragene 

(DNA Genotek, Ottawa, Ontario, Canada) OG-500 self-collection tubes, and analyzed using 

TaqMan (Applied Biosystems) assay protocols to identify the COMT rs4680 genotypes. 

Genotypes were AA (methionine/methionine homozygote; low COMT enzyme activity; 

higher catecholamine levels), GA (valine/methionine heterozygote; intermediate COMT 

enzyme activity, intermediate catecholamine levels) and GG (valine/valine homozygote; 

high COMT enzyme activity; lower catecholamine levels)

Measures

Several measures were used to ensure comprehensive assessment of behavior and executive 

function skills. The Behavior Rating Inventory of Executive Function (BRIEF) provides a 

parent rating of child executive function skills.32-34 A developmental neuropsychological 

assessment (NEPSY) verbal fluency (VF) subtest measures mental flexibility or the ability 

to shift from one conceptual set to another.35 The Shape School is a modified Stroop test 

designed to evaluate executive function skills, specifically inhibition, attentional control, and 

the ability to shift from one set of rules to another in pre-school aged children.36,37 Because 

the BRIEF is a parent rating of executive function skills, initial ratings were based on the 

parent’s interpretation of the child’s executive function skills prior to the injury. The 6, 12, 

and 18 month evaluations represent the parent’s ratings of the child’s current executive 

function skills. Since the NEPSY and Shape School are measures completed by the child, 

they assess functioning at the time of evaluation. We used the global executive composite 

score on the BRIEF (BRIEF GEC) and the total score on the NEPSY VF to assess global 

executive function behaviors and mental flexibility respectively. For the Shape School, we 

used efficiency subtest scores (#correct responses minus incorrect responses/time) on tasks 

of inhibition, switching, and a task combining inhibition and switching as our main outcome 

measures. This measure evaluates selective attention, cognitive flexibility, and processing 

speed skills.

Analysis

Simple statistics such as means, standard deviations, and frequencies were used to 

summarize the data. Group comparisons (TBI and OI) were conducted using independent T-

tests, Chi-Square tests, and analysis of variance (ANOVA) when appropriate. COMT 

genotypes were tested for Hardy-Weinberg equilibrium using JMP genomics software as 

part of the SAS program. Mixed model linear regression was used to analyze the 

relationship between executive functioning and the COMT genotypes over time, with 

behavior and executive functioning as the dependent variable and COMT genotypes as the 

independent variable. The three outcome measures or dependent variables were: BRIEF 

GEC, Verbal Fluency, and a measure of executive efficiency on the Shape School. Baseline 
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BRIEF GEC was included as a covariate in the models because it was a retrospective pre-

injury rating; for verbal fluency and shape school, baseline outcomes were post-injury and 

were treated as dependent variable in the modeling. We included genotypes as a categorical 

variable. To examine the moderating effect of injury type (TBI vs. OI) on the association of 

genotype with the executive function outcomes over time, the triple interaction of genotype 

with injury type and time since injury, as well as the lower-level interaction terms were 

included in the model. The models also controlled for age at injury, gender, race (white 

versus non-white), and socioeconomic status (defined as Z-score that combined parental 

education and median census track income by zip code). Because of potential confounding 

of outcomes with race, race was retained as a covariate in all models. Additionally, because 

of the potential effects of socioeconomic status on outcomes, socioeconomic status was also 

included as a covariate. We examined multicollinearity and dropped gender from the models 

due to substantial collinearity with age at injury (Variance Inflation Factor ~ 10). Because 

standard scores for the BRIEF-GEC and VF were used, age at injury was not a significant 

predictor (p>.05) for the Brief GEC or VF total, and was trimmed from these models. 

However, because standard scores are not available for the Shape School, raw scores were 

used for the Shape School model and age at injury was significant in the Shape School 

model and was retained in this model. The interaction of injury group × genotype × time was 

the primary association evaluated in interaction models. Given the exploratory nature of the 

study, a p value of less than 0.05 was considered statistically significant and p values less 

than 0.1 were considered as trending toward significance. All statistical analysis was 

conducted using SAS 9.3©.

Results

Genetic data was collected for 134 participants. The TBI (n=63) group was 57% (n=36) 

male with an average age at injury of 5.2 ± 1.1 years, 30% (n=19) nonwhite, and 14% (n=9), 

64% (n=40), and 22% (n=14) with mild, moderate, severe TBI, respectively. The OI group 

(n=71) was 52% (n=37) male with an average age at injury of 5.1±1.1 years and 24% (n=17) 

nonwhite. There was no difference in age, race, or gender between the TBI and OI groups 

(Table 1). The TBI group had significantly longer times since injury at baseline (0.12±0.07 

versus 0.09±0.04 years, p < 0.001). There were 79 potential participants from the original 

cohort that were unable to be contacted or declined participation. There was no difference 

between groups with and without genetic data collected in terms of injury type (44.3% 

versus 47.0% TBI, p = .70), gender (64.6% versus 54.5% male, p = .15), race (31.7% versus 

26.9% nonwhite, p = .46), and age at injury (4.9 versus 5.1 years, p = .22)

No bias was identified in the baseline data. Hardy Weinberg Equilibrium was not violated. 

There were no significant differences in genotype frequency between the TBI (AA = 8, GA 

= 32, and GG = 23) and OI (AA = 16, GA = 34, and GG = 21) groups. There were no 

significant differences in genotype frequency among the mild (AA = 1, GA = 4, GG = 4), 

moderate (AA = 4, GA = 21, GG = 15), and severe (AA = 3, GA = 7, GG = 4) TBI groups. 

There was no significant difference in mean injury severity score (ISS) within the OI group 

among the genotypes: ISS (stdv) = 6.50 (2.58), 7.21(3.04), 6.14(2.54) for AA, GA, and GG 

genotypes, respectively.
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Main effect analyses

There was a main effect association of the low activity COMT genotype (AA) with 

improved scores on the NEPSY VF (F=3.80, p = .02, Figure 1B) and trend for an association 

with the Shape School (F=2.89, p = .06, Figure 1C) over time. There was not a main effect 

association of COMT genotypes with the BRIEF GEC (F=.27, p = .76, Figure 1A) over 

time.

Moderation analyses

The triple interaction term of time since injury by group by genotype was not significantly 

predictive of the BRIEF GEC (F= 0.83, p = 0.44, Figure 2), NEPSY VF (F=.32, p = .72, 

Figure 2), or Shape School (F=.92, p = .40, Figure 3) over time. These moderation analyses 

did not support the hypothesis that the high activity genotype (GG) would further exacerbate 

executive dysfunction, as measured by the BRIEF-GEC, NEPSY VF, and Shape School, 

over time after TBI. This finding is demonstrated in Figure 2 by the overall parallel nature of 

the plotted lines rather than a widening of a difference in outcomes over time for the BREF-

GEC. In the NEPSY VF analysis (Figure 3), the plotted lines demonstrate a trend for low 

activity genotype (AA) in the TBI group to be associated with poorer performance over 

time. In the Shape School analysis (Figure 4), the plotted lines demonstrate a comparable 

rate of improvement over time across all groups, with the lower activity genotype (AA) in 

the TBI group showing the most improvement and the high activity genotype (GG) in the 

TBI group showing the least improvement.

Discussion

Our findings indicate that there is likely a complex association of the COMT genotypes 

evaluated in this study with executive function recovery after pediatric TBI and OI. When 

controlling for injury type (TBI versus OI), main effect analyses of the entire cohort 

indicated that the low activity COMT genotype (AA) was associated with improved lab-

based measures of executive function, but not parent ratings of executive function as 

manifest in everyday behavior. The effect was not limited to the TBI group as the interaction 

of group by time by genotype did not achieve significance. Thus these analyses did not 

support the hypothesis that the high enzyme activity genotype (GG) would exacerbate 

executive dysfunction in the TBI group. Further work is needed to better understand the 

association of these functional COMT genotypes with recovery after pediatric TBI.

To our knowledge, this is the first study to evaluate the association of a functional COMT 

genotype with longer-term recovery after pediatric TBI and OI. The study builds on prior 

work that has evaluated the association of COMT and other catecholamine-related genetic 

variants after TBI in adults.17,29,38,39 In prior cross-sectional work, the low COMT activity 

enzyme genotype (AA) was associated with better executive function.29 In agreement with 

this prior work, our results indicate that the low activity COMT genotype (AA) was 

associated with overall better function on lab-based measures of executive functioning in the 

entire cohort (TBI and OI). In contrast, our study did not demonstrate a protective 

association of the low activity genotype (AA) with executive function in the TBI group 

compared to an OI group. This finding should be interpreted as exploratory, although several 
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potential explanations exist for these seemingly conflicting findings. First, because an 

individual genetic variant is likely to have a relatively small influence on outcome, larger 

studies are needed to definitively evaluate the relationship of these COMT genotypes with 

executive function outcomes. Additionally, executive function development occurs at a 

variable pace in children;40,41 thus it is difficult to measure executive function with 

precision, especially in younger children. Furthermore, it is possible that COMT enzyme 

functioning may have differential effects in a population of children with pediatric TBI 

compared to non-injured children or adults. Finally, prior work did not evaluate association 

of the COMT genotypes over time and it is possible that the relationship of these COMT 

genotypes with executive function outcomes may be dynamic and change over time after 

injury. In conclusion, results of this study did not conclusively demonstrate a role of COMT 

genotypes in long-term recovery of executive function after pediatric TBI. However, these 

results raise the possibility of gene-dependent moderation of injury effects that may vary 

across different measures of outcome and time. Further work is needed to better understand 

the role of the COMT genotypes evaluated in this study and other genetic variants in 

moderating the effects of injury on executive functioning.

Multiple factors likely influence recovery after TBI. In pediatric TBI, the child’s 

environment, specifically, family environment and parenting styles, is associated with 

neurocognitive and behavioral recovery.42-46 There are also several examples of the 

interaction of environmental and genetic factors in determining disease phenotypes.47 

Specifically, dopamine receptor and dopamine pathway, serotonin transporter, and COMT 

genetic variants interact with environmental factors to influence cognitive and behavioral 

functioning in various childhood populations.18,48-58 Although the higher activity enzyme 

genotype (GG) is generally associated with a reduction in executive cognition, it is also 

associated with better stress resiliency, indicating that stressful environmental factors may 

overwhelm the direct effects the COMT genotype has on cognition59 Because a TBI often 

leads to increased family burden42,60,61, the potential stress resiliency effects of the high 

activity genotype (GG) may outweigh the effects on executive cognition. Future studies 

should evaluate the interaction of genetics and environmental and other factors on recovery.

Although several previous studies have demonstrated an association of the COMT genotypes 

evaluated in this manuscript with cognitive and behavioral functioning, with most reporting 

an association of the low COMT enzyme activity genotype with improved cognitive 

function25-27,29, there may be a within-gene explanation of the conflicting associations in 

the TBI group. One study suggests that several genetic variants within the COMT gene may 

contribute to the final overall activity of the enzyme;62,63 therefore, interaction of several 

within-gene genotypes (i.e., a haplotype) may be better associated with overall activity. 

Additionally, there may be a complex interaction across several genes that may explain the 

genetic association with outcomes. Genes involved in other neuro-signaling, inflammatory, 

or neuroplasticity pathways may interact with the COMT genotypes evaluated in this 

manuscript to determine cognitive and behavioral recovery after pediatric TBI.
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Limitations

Although this study is large relative to other studies of pediatric TBI, much larger studies 

and replication are needed to provide a firm understanding of the influence of COMT 

genotypes on cognitive and behavioral recovery after pediatric TBI. This study consisted 

primarily of subjects with moderate TBI, limiting the ability to perform subpopulation 

analyses to understand whether the COMT genotype effects are more pronounced among 

individuals with milder and severe TBI. Larger studies that include a broad range of injury 

severity are needed to better elucidate the interaction between severity and genotype. There 

was no examination of the interaction between environment and genotype. Future studies 

should take environment into consideration. Additionally, other functional polymorphisms 

within the COMT gene or genetic variation in other genes may influence recovery after 

pediatric TBI. Thus, larger studies examining the contribution of a set of genetic variants 

within and across genes are needed in the future.

Conclusions

Limited research has examined the effects of genetics on outcomes after pediatric TBI. This 

current study expands the knowledge base with a relative large sample that has been 

followed prospectively. The study provides preliminary evidence that genetic variation in the 

COMT gene may influence long-term recovery of certain executive function domains. The 

results indicate that the COMT genotypes evaluated may have different effects on executive 

function depending on domain and type of measure used to assess executive functioning. 

Larger studies and replication are needed to determine the exact link between genetic 

variation in the COMT gene and other genes with recovery after TBI in children, and how 

this information can be used to inform prognosis and develop individualized treatment 

protocols. These preliminary findings indicate that there are potential genetic influences on 

outcomes after pediatric TBI that warrant further investigation.
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Figure 1. 
Mixed model analysis and least square means for the main effect association of COMT 

genitive variants with executive function outcomes in all participants: (A) GEC, (B) NEPSY 

VF, and (C) Shape School

The primary independent variable was genetic variant (AA, GA, GG). Covariates included in 

the models were baseline global executive composite (GEC) score (GEC outcome only), age 

at injury (Shape School outcome only), race, socioeconomic status, group (TBI versus OI), 

time since injury. Error bars indicate standard error.
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Figure 2. 
Mixed model analysis of the relationship of the COMT variants with the Global Executive 

Composite (GEC) ratings, evaluation of the interaction of group by genetic variant by time.

The primary independent variable was genetic variant (AA, GA, GG). Co-variates included 

in the model were baseline (i.e., pre-injury rating) GEC, race, socioeconomic status, group 

(TBI versus OI), time since injury, interaction terms of group by genetic variant, time since 

injury by genetic variant, time since injry by group, and time since injury by group by 

genetic variant.

Kurowski et al. Page 14

J Head Trauma Rehabil. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Mixed model analysis of the relationship of the COMT variants with the Verbal Fluency 

outcome, evaluation of the interaction of group by genetic variant by time

The primary independent variable was genetic variant (AA, GA, GG). Co-variates included 

in the model were race, socioeconomic status, group (TBI versus OI), time since injury, 

interaction terms of group by genetic variant, time since injury by genetic variant, time since 

injry by group, and time since injury by group by genetic variant.
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Figure 4. 
Mixed model analysis of the relationship of the COMT variants with Shape School outcome, 

evaluation of the interaction of group by genetic variant by time

The primary independent variable was genetic variant (AA, GA, GG). Co-variates included 

in the model were age at injury, race, socioeconomic status, group (TBI versus OI), time 

since injury, interaction terms of group by genetic variant, time since injury by genetic 

variant, time since injry by group, and time since injury by group by genetic variant.
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Table 1

Demographics of participants and outcome measures

Demographics OI (n=71) TBI (n=63)

Gender, n (%)

 Male 37 (52.1) 36 (57.1)

 Female 34 (47.9) 27 (42.9)

Race, n (%)

 White 54 (76.1) 44 (69.8)

 Non-white 11 (15.5) 14 (22.2)

Age at injury in years, mean (stdv) 5.1 (1.1) 5.2 (1.1)

Time since injury at baseline in years,
mean (stdv)

0.09 (0.04)* 0.12 (0.07)*

Median family income, mean (stdv) $60,712 (21,964) $59,647 (23,047)

Highest Educational Attainment, n (%)

 Less than 2 years of high school 1 (1.4) 3 (4.8)

 Two years of high school 5 (7.0) 7 (11.1)

 High school degree 24 (33.8) 27 (42.9)

 Two years of college 15 (21.1) 12 (19.1)

 Four years of college 18 (25.4) 10 (15.9)

 Graduate degree 8 (11.3) 4 (6.4)

Outcome Measures

BRIEF-GEC, mean (stdv) 47.7 (12.8) 50.8 (15.2)

NEPSY: VF, mean (stdv) 9.5 (3) 8.6 (2.8)

Shape School, mean (stdv) 0.4 (0.2) 0.3 (0.2)

*
indicates significant difference at p-value < .05

J Head Trauma Rehabil. Author manuscript; available in PMC 2017 May 01.


	Abstract
	Introduction
	Methods
	Design
	Participants
	DNA Collection
	Measures
	Analysis

	Results
	Main effect analyses
	Moderation analyses

	Discussion
	Limitations

	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1

