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Summary

Large-scale genomic studies have identified multiple somatic aberrations in breast cancer, 

including copy number alterations, and point mutations. Still, identifying causal variants and 

emergent vulnerabilities that arise as a consequence of genetic alterations remain major 

challenges. We performed whole genome shRNA “dropout screens” on 77 breast cancer cell lines. 

Using a hierarchical linear regression algorithm to score our screen results and integrate them with 

accompanying detailed genetic and proteomic information, we identify vulnerabilities in breast 

cancer, including candidate “drivers,” and reveal general functional genomic properties of cancer 

cells. Comparisons of gene essentiality with drug sensitivity data suggest potential resistance 

mechanisms, effects of existing anti-cancer drugs, and opportunities for combination therapy. 

Finally, we demonstrate the utility of this large dataset by identifying BRD4 as a potential target in 

luminal breast cancer, and PIK3CA mutations as a resistance determinant for BET-inhibitors.
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Introduction

Breast cancer is the second leading cause of cancer death in women. Better detection and 

therapy have led to >85% 5-year survival, yet half of affected women die from their disease. 

This outcome reflects incomplete understanding of the molecular alterations, heterogeneity, 

and determinants of drug response in breast tumors. Genetic and epigenetic abnormalities in 

breast cancer have been defined, but identifying causal defects and exploiting them for 

target discovery remain challenging.

“Breast cancer” actually comprises molecular subtypes that predict prognosis and drug 

response. Early profiling studies identified “intrinsic subtypes”: luminal A and B, basal-like 

(basal), HER2+ and normal-like (Perou et al., 2000; Sorlie et al., 2001). These were joined 

by a “claudin-low” subtype which, like basal breast cancer, is typically Estrogen Receptor-

negative (ER−), Progesterone Receptor-negative (PR−), and HER2-negative (HER2−) 

(Hennessy et al., 2009; Prat et al., 2010). Basal and luminal B tumors have the worst 

prognosis; claudin-low tumors have intermediate outcome (Prat et al., 2010). Clinically, 

intrinsic subtypes can be defined by the “PAM50” classifier (Parker et al., 2009).

These molecular subtypes complement, but do not fully overlap, pathologic classification by 

ER, PR and HER2 status (Parker et al., 2009). Luminal tumors are typically ER+/PR+, and 

basal tumors are usually “triple negative” (ER−, PR−, HER2−). Breast cancer cell lines 

generally fall into four subtypes: basal A or B, HER2+, and luminal (Neve et al., 2006; Prat 

et al., 2010). Basal A lines resemble “basal” tumors; basal B lines are enriched for claudin-

low genes.

Recent large scale RNA and proteomic profiling studies have further divided luminal and 

“triple negative” breast cancer (TNBC) into at least ten subtypes (Curtis et al., 2012; 

Lehmann et al., 2011; TCGA, 2012), and next-generation sequencing (NGS) has identified 

multiple aberrations in breast tumors (Banerji et al., 2012; Ellis et al., 2012; Shah et al., 

2012; Stephens et al., 2012; TCGA, 2012). Whether breast cancer lines represent these new 

categories and have mutational profiles like tumors remains unresolved.

Moreover, genomics often cannot distinguish “passenger” mutations from “drivers” that 

promote tumorigenesis and might be therapeutic targets. Highly recurrent defects (e.g., 

HER2 amplification) point to drivers, and some have led to “targeted therapies” (e.g., 

Trastuzumab). Many other abnormalities, some clearly oncogenic, occur at low frequency, 

and some drivers are difficult to target (e.g., MYC, RAS). However, the collateral genotoxic, 

proteotoxic, and metabolic stresses caused by the abnormal tumor genome can cause 

“emergent dependencies,” potentially providing alternate therapeutic options.

Functional genomics, partnered with genomic data, can identify targets coupled to 

biomarkers (Zender et al., 2008). Pooled shRNA libraries enable genome-wide “drop-out” 

screens, which can identify cancer drivers and context-dependent events. Several groups 

have performed shRNA screens (Cheung et al., 2011; Marcotte et al., 2012), but most 

surveyed relatively few cell lines of the same cancer type, and none represented the diversity 

of neoplasms such as breast cancer. Here we report the results of genome-wide shRNA 

screens of >75 breast cancer lines with genomic, transcriptomic and proteomic annotation. 
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Employing an improved statistical framework (siMEM), we provide an integrated map of 

subtype- and context-dependent essentiality in breast cancer cells.

Results

Breast cancer lines are reasonable models

We performed genomic and proteomic analysis on 78 breast cancer and 4 immortalized 

mammary cell lines (Table S1A). Copy number abnormalities (CNAs) were similar (r=0.7) 

in lines and breast tumors, with all major CNAs represented (Figures 1A, S1A). RNAseq 

and non-negative matrix factorization (NMF) yielded seven clusters (Figure 1B, S1B). 

Compared with the Neve classification (Neve et al., 2006), we found four basal, two 

luminal/HER2-, and one mixed cluster(s). The extra basal clusters mainly sub-divided the 

basal A and B subtypes (Figures 1B, S1C), and resembled the additional subgroups seen in 

an extensive survey of TNBC (Lehmann et al., 2011). Most luminal/HER2 cell lines fell into 

Clusters 6 and 7, which were distinguished by ERBB2 and ESR1 expression, respectively. 

The NMF clusters also related to specific METABRIC “iClusters” (Curtis et al., 2012). 

Every iCluster was present in the panel, although iClusters 2 and 7 each were represented by 

less than five lines (Figure S1C). Lines defined as “basal” by PAM50 generally fell into our 

basal clusters and those of Lehmann (Lehmann et al., 2011), but PAM50-derived signatures 

did not place luminal/HER2 lines into subgroups similar to those seen by NMF or the Curtis 

classification.

The top 50% variable proteins by reverse-phase protein array (RPPA) formed 9 clusters by 

NMF (Figures 1C, S1D). With few exceptions, RPPA-(R) and RNA clusters differed 

markedly. Most (13/18) HER2+ lines fell into R-Cluster 9. R-Cluster 8 consisted mainly of 

expression-derived Cluster 7 lines and was driven by ERα, GATA3, and BCL2. Two small 

R-clusters were enriched for luminal/HER2 lines: R-Cluster 3 was mainly ER−/AR+ and 

featured high p-AKT (pT308 and pS473) and p–AMPKα (pT172). R-Cluster 7 (3 lines) was 

distinguished by high G6PD, p-4EBP, and reactivity to a VHL antibody that cross-reacts 

with Epiplakin. The other R-clusters were enriched for basal lines. R-Cluster-1 contained 

three of the four “normal breast” lines, and was driven by NDRG1, MYC, TAZ, and p-YAP. 

R-Cluster 2 also had high NDRG1, MYC, TAZ and p-YAP, as well as high PAI-1 and 

phospho- and total EGFR (Table S1B). R-Cluster-4, the largest, was a default basal cluster.

Exome sequencing of genes mutated in ≥3% of breast tumors in COSMIC and TCGA 

(Table S1C) showed that all frequent somatic mutations in breast cancer were found in our 

cell line panel. TP53 and PIK3CA mutations (23% and 26%, respectively, in tumors) were 

seen in 63% and 33% of lines, respectively. TP53 is mutated more often in TNBC/basal 

tumors (80% vs. 26%, TCGA 2012), but its mutation frequency was similar in basal and 

luminal/HER2 lines. For most genes, mutation rate and distribution were comparable in 

tumors and lines (Figure 1D).

We also profiled miRNAs by NanoString. ERα is the major determinant of miRNA levels in 

breast tumors (Dvinge et al., 2013; Riaz et al., 2013). Similarly, unsupervised clustering 

revealed three miRNA groups in cell lines, two basal and one luminal (Figure S1E). Overall, 

we conclude that a sufficiently large cell line panel represents the genomic and proteomic 
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landscape of breast tumors and provides a reasonable template for identifying context-

dependent essential genes.

Improved prediction of gene essentiality

To identify genes required for proliferation/survival (“essentials”), we used pooled lentiviral 

shRNA dropout screens (Marcotte et al., 2012). Nearly all (77/82) lines gave satisfactory 

data (Table S1A). Using our earlier metric, zGARP, we scored 402 genes as essential in at 

least 50% of lines (Table S2A). These included most (261/297 and 218/291, respectively) 

genes defined earlier as “general essential” or “core essential” in ovarian, pancreas, and 

selected breast cancer lines (Hart et al., 2014; Marcotte et al., 2012). Not surprisingly, genes 

annotated as having “housekeeping” roles (e.g., translation, splicing, proteasome, cell cycle) 

were prominent general essentials (Table S2B).

By contrast, neither zGARP, nor other algorithms [ATARIS (Shao et al., 2013), RIGER 

(Barbie et al., 2009), RSA (Konig et al., 2007)], identified known subtype-specific essential 

genes from our large dataset. Such methods summarize replicate shRNA measurements into 

single “hairpin” or “gene” scores, which are compared between subtypes by t tests or similar 

statistics. This approach leads to loss of information about measurement variance, limiting 

statistical power to detect biological differences.

Hierarchical (“mixed-effect”) linear models allow systematic measurement effects, such as 

hairpin differences or heterogeneous genetic contexts, to be specified and used in 

significance calculations. Such a model could increase sensitivity for detecting biological 

differences in screens by avoiding information loss, while limiting false positives. We 

therefore developed the si/shRNA Mixed-Effect Model (siMEM), which considers the level 

of each shRNA to be a regression function of its initial abundance, baseline trend in 

abundance over time, and difference in abundance trend between samples sharing a common 

feature (Figure 2A, S2A–B and Extended Experimental Procedures).

Using siMEM and previous metrics, we sought genes selectively required in HER2+ lines 

(N=17). Reassuringly, siMEM detected known HER2+-associated essentials (“known 

positives”), such as ERBB2, its dimerization partner ERBB3, PI3K/mTOR pathway members 

(PIK3CA, AKT1/2, RHEB, MTOR), CDC37 (encodes an ERBB2 co-chaperone), and two 

transcription factors (TFAP2C, YBX1) in the HER2 (ERBB2) pathway. Almost none of 

these survived false discovery rate (FDR) correction using GARP or ATARIS (Figure 2B; 

Table S2C). Only siMEM predicted “known positives” from the data in our earlier screen 

(Marcotte et al., 2012), and it greatly improved their prediction rankings and p-values 

(Figure 2C, S2C). When classes (normal/HER2+) were shuffled randomly for each gene, 

siMEM p-values were close to the expected uniform distribution (Figure S2D). Regression 

structures that ignored systematic measurement effects produced many (incorrectly) 

significant p-values (Figures S2E–F). By contrast, siMEM produced the best fit and ranking 

of known positives (Figure S2B, G–H). Finally, we applied siMEM and ATARIS to the 

“Achilles” dataset (Cheung et al., 2011): siMEM was better at predicting BRAF, KRAS, or 

PIK3CA essentiality in cognate mutant cells and in finding genes more essential with 

increased expression, which are enriched for drivers (Figure 2D; also see below).
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Breast- and subtype-specific essential genes

We focus here on gene essentiality relative to the Neve classification, which most closely 

resembles clinical subtypes, but Tables S3A–G provide essentiality data for each subtype in 

Figures 1B–C. Comparing basal with luminal/HER2 cell lines, we found 975 and 985 

subtype-specific essentials (FDR < 0.1), respectively (Figure 3A, Table S3F–G). The top 

luminal/HER2-essentials were FOXA1, a pioneer factor for ERα (Lupien et al., 2008), 

SPDEF, which promotes luminal differentiation and survival of ERα + cells (Buchwalter et 

al., 2013), CDK4 and CCND1, which form a complex targeted by Palbociclib in ER+ breast 

cancer (Dhillon, 2015), and TFAP2C, which directs ERBB2 expression (Bosher et al., 1995). 

Other “expected” luminal/HER2-essential genes included PI3K/mTOR pathway components 

(PIK3CA, PDPK1, AKT1/2, RHEB, MTOR) and ER-interacting proteins/co-activators 

(KMT2D, EP300, GATA3, KDM1A, DNM1L, NCOA2).

The top basal-selective essentials, PSMB3 and PSMA6, encode proteasome subunits (Table 

S3F), a dependency seen earlier (Petrocca et al., 2013). The next most essential basal-

specific gene was ATP6V1B2, which encodes a component of the vacuolar ATPase required 

for lysosomal acidification that is the target of Bafilomycin A1 (BafA1). Notably, basal lines 

were 5-fold, and basal A lines 7-fold, more sensitive to BafA1 than luminal/HER2 lines 

(Figure S3AB). Other genes reputedly more important in basal breast cancer scored as 

“basal-essential,” including PLK1, EGFR, FZD7, SLC7A11, CTNNB1, LRP5, FZD8, and 

TWIST2 (Jamdade et al., 2015; Maire et al., 2013; Timmerman et al., 2013), but we also saw 

other potential vulnerabilities (Table S3F).

We selected several subtype-specific genes for orthogonal testing with siRNAs. Multiple 

basal-, luminal-, and HER2-specific genes validated and demonstrated the predicted subtype 

preference (Figure 3B, Table S3L). Overall, the validation rate was ~70%, with most 

siRNAs showing >80% knockdown (Figure 3C and data not shown).

The genomics of basal breast cancer and high-grade serous ovarian cancer (HGSC) are very 

similar (TCGA, 2011, 2012). Remarkably, in a pairwise comparison with luminal-specific 

(this screen) or HGSC- or pancreatic cancer-specific essentials (Marcotte et al., 2012), only 

20 essential genes differed between basal breast cancer and HGSC. By contrast, thousands 

of differences were seen in all other comparisons (Figure S3C).

We analyzed subtype-specific essential gene sets for preferred pathways and protein-protein 

interactions (PPIs) (Figure 3D–E; Table S3H–K). As expected, HER2-specific essential 

pathways included EGF, PI3K, and mTOR signalling. Other functions important in this 

subtype included regulation of eIF2, aerobic ATP synthesis/TCA cycle, chromatin-

modifying enzymes, “response to gamma radiation” (including YAP1, ATR, and ATM), as 

well as an EP300/BRCA1 PPI sub-network (Table S3J). EP300 is a BRCA1 co-activator 

(Pao et al., 2000), and BRCA1 is phosphorylated via the PI3K/AKT pathway, which also is 

required in HER2+ lines (Figure 2C, Tables S2C, S3B). Notably, ATM is essential for 

HER2+ tumors (Stagni et al., 2015), and it also phosphorylates BRCA1 (Cortez et al., 1999; 

Gatei et al., 2000). Preferential sensitivity to loss of DNA damage sensors might explain the 

observed synergy of chemotherapy and Trastuzumab.
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Top enriched pathways and PPIs for basal A lines were dominated by genes for splicing, the 

proteasome and mitosis (Figures 3D–E; Table S3H). Other required functions included the 

COP9 signalosome (CSN) and a PPI sub-network defined by CAND1/NEDD8 (Figure 3E). 

CSN and CAND1/NEDD8 regulate SKP1/CUL1/F-box (SCF) complexes (Flick and Kaiser, 

2013). While the core SKP1/CUL1 complex showed no subtype specificity, several F-box 

genes were selectively essential in basal A lines, including FBXW11/β-TrCP2 (Table S3B). 

FBXL6 and FBXO15 were more essential in basal B or luminal/HER2 lines, respectively 

(Table S3B and data not shown). Hence, F-box proteins might impart subtype-specific 

functions to SKP1/CUL1.

Lack of functional annotation (<50% of genes annotated) resulted in a relative paucity of 

basal B and luminal nodes when compared to basal A- and HER2- nodes (>65% of genes 

annotated, Figure S3D–F). Nevertheless, essential pathways and PPI networks for luminal 

lines included epithelial development, MDM2, PI3K and hormone receptor (ESR1) 

signalling (Figures 3D–E). The latter two are targets of known drugs for luminal breast 

cancer. Less expected “luminal-enriched” pathways/PPIs included redox-related (SOD1, 

SOD2, ENOX1) and mitochondrial (e.g., electron transport chain, mitochondrial ribosome) 

proteins. By contrast, basal B-essentials were enriched for genes related to polarity (PARD3, 

PAR3D), cell-cell junctions and adhesion (CDH2, CLDN1, CLDN4, ITGA4, ITGAV, 

ITGB5), embryonic development, organ morphogenesis, fatty acid metabolism, and T-cell 

immunity (Figures 3D–E). Some of these genes, such as SOX9 (Guo et al., 2012a), KLF4 

(Yu et al., 2011), and ALOX5AP (Kim et al., 2005), have reported roles in breast cancer, 

although not specifically in basal B tumors.

Cis- and trans-essential interactions with common CNAs

There are hundreds of CNAs in breast cancer (Curtis et al., 2012; TCGA, 2012), yet for 

most, the key driver gene(s) is unclear. METABRIC defines 30 regions of copy number gain 

and 15 deletions (Curtis et al., 2012). ISAR, being more sensitive for small amplicons, 

identifies 83 recurrent CNAs (Sanchez-Garcia et al., 2014). We predicted significant 

(FDR<0.2) cis-essential genes (more essential in amplicon+ lines) for 9/83 ISAR regions. 

Four corresponded to genes in a METABRIC amplicon (Figure S4A and Table S4A): EGFR 

(ISAR(I)-34/METABRIC(M)-10), CCND1 (I-52/M-21), ERBB2 (I-70/M-35), and TFAP2C 

(I-81/M-42). The others were unique to ISAR-defined regions (Table S4B): CTSS (I-6), 

ESR1 (I-30), RALGAPA1 (I-62), FOXA1 (I-63), and BCL2 (I-76).

Even for known drivers (or for deletions), targeting the key gene can be difficult. “Trans-

essential” genes can suggest alternative strategies. Combining all METABRIC regions, we 

identified 2,560 trans-essentials, an average of 58 per CNA (range 0–285; Figures 4A and 

S4A; Table S4A). Only 61 (~3%) trans-essentials showed significantly increased or 

decreased expression in sensitive lines (Figure S4B and Extended Experimental 

Procedures); hence, most would not be found by gene expression surveys. Expected trans-

essentials were seen for the CCND1 (CDK4, USP18) (Guo et al., 2012b) and ERBB2 

(ERBB3, CDC37, PIK3CA) amplicons and for CDKN2A deletions (CCND1, CDK6) (Figure 

2B, S4A and Table S4A). It can be difficult to know if a trans-essential is “expected” for 

deletions, especially if the cognate tumor suppressor is undefined. Even so, we saw 
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intriguing associations with “druggable” targets for region 27, containing RB1 (more 

sensitive to MAP2K2 depletion), region 11 (more sensitive to TLK2, BRD4, or ACVR1B 

depletion), and region 40 (more sensitive to PTK6 or MAP2K4 depletion) (Table S4A).

METABRIC region 14 includes MYC, which is generally deemed “undruggable”. Notably, 

MYC was the most essential gene in region 14-amplified lines (Figure 4A), but was not 

differentially essential by FDR, probably because of its requirement in most tumor cells 

(Dang, 2012). Pathway analysis of the 91 region 14 trans-essentials (FDR < 0.2; Table S4A) 

revealed genes for mitosis, DNA replication and RNA metabolism (Table S4C), all known 

MYC functions (Dang 2012). MYC transcriptional targets (Figure 4B) and genes encoding 

MYC-interacting proteins (Table S4D) also were strongly enriched: 46% of MYC trans-

essential genes were MYC transcriptional targets/interactors. We tested two MYC trans-

essentials potentially amenable to drug discovery; indeed, amplified lines were preferentially 

sensitive to MINK1 or USP5 depletion (Figure 4C). We also validated YAP1 and BRCA1 as 

trans-essential for METABRIC regions 35 (contains ERBB2), and 36 (putative driver: 

ZNF652), respectively (Figures S4C–D).

HELIOS integrates CNA, expression, mutation, and essentiality into a single score that 

predicts cis-essential genes (Sanchez-Garcia et al., 2014). The initial HELIOS report, using 

data from our earlier screen, identified and validated 10 potential drivers. Using our 

expanded dataset, the HELIOS score increased for most known drivers and previously 

validated genes (Figure 4D and Table S4E). We also tested two new predictions and found 

that amplicon+ lines were more sensitive to siRNA-mediated depletion (Figure 4E).

Functional genomic clustering reveals groups not captured by expression profiling

Using NMF clustering, we grouped lines based on shared dependencies (“functional 

genomic clustering”; (Marcotte et al., 2012)). Six “functional clusters” (fClusters) were 

observed, two containing lines designated as basal by expression profiling (fCluster-4, -5), 

two luminal/HER2 clusters (fCluster-2, -6), and two (fCluster-1, -3) comprising a mix of 

basal and luminal/HER2 lines (Figure 5A). Thus, as we saw earlier (Marcotte et al., 2012), 

“basal” and “luminal/HER2” lines have distinct patterns of gene dependency. Yet while 

there was little additional separation in our earlier study, with our expanded panel, HER2 

(mainly fCluster-2) and ER+ (fCluster-6) lines largely segregated into distinct fClusters. 

Genes determining the ER+ (fCluster-6), HER2+ (fCluster-2), and basal (fCluster-4) clusters 

(Table S5A) overlapped substantially with luminal-, HER2- or basal- essential genes, 

respectively (Figure 3). fCluster-1 was enriched for genes curated as H3K27-trimethylated, 

neuroactive peptides or as involved in cytokine-cytokine interactions. fCluster-3 was 

enriched for annotations for cell cycle (G1/S and mitosis), DNA replication, and immune 

system genes, whereas fCluster-5 was enriched for genes involved in the immune system, 

lipid metabolism and NGF signaling (Table S5A).

Drug sensitivity and gene essentiality

We also compared gene essentiality and sensitivity data for 90 drugs tested against 84 breast 

cancer lines (Daemen et al., 2013), most of which (69) were included in our panel. Using 

siMEM, we identified genes whose essentiality correlated with sensitivity to mTOR/PI3K/
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ERBB2/AKT or EGFR/MEK/ERK inhibitors. Hierarchical clustering revealed distinct 

positive (red) and negative (blue) correlation clusters associated with drug sensitivity 

(Figure 5B and Extended Experimental Procedures). Reassuringly, genes for PI3K/AKT 

pathway components were required in lines sensitive to the cognate inhibitors. Sensitivity 

also correlated with essentiality of the luminal markers ESR1, FOXA1, and GATA3, 

consistent with the known sensitivity of luminal tumors to these agents. Likewise, 

EGFR/MEK/ERK inhibitor response correlated with sensitivity to EGFR, GRB2, SOS1, 

MAPK1, MAPK3, or MAP2K1 depletion. Interestingly, response to EGFR/MEK/ERK 

inhibitors correlated with dependence on the NF-kB pathway: RELA, REL, and NKAP were 

more essential in such cells. These results comport with reports of NF-kB activation in 

response to EGFR, RAS, RAF, or MEK activation (Pan and Lin, 2013), and suggest that 

NF-kB inhibitors might be effective in basal breast cancer.

Drug sensitivity/essentiality comparisons also identified negative regulatory/tumor 

suppressor pathways. For example, PTEN was more essential in lines that were insensitive 

to mTOR/PI3K/ERBB2/AKT or EGFR/MEK/ERK inhibitors, consistent with the effects of 

PTEN deletion/inactivation (Worby and Dixon, 2014). Likewise, MDM2 and TP53 

essentiality were associated with sensitivity or resistance to MDM2 and Nutlin-3A 

treatment, respectively.

Unsupervised analysis of the whole gene essentiality/drug sensitivity dataset revealed 5 

clusters. Most drugs with a similar mechanism of action fell into the same cluster, and 

pathway analysis confirmed that essentiality clusters were enriched for genes implicated in 

the pathways targeted by their respective agents (Figure S5A, Table S5B–C). Unanticipated 

clusters also emerged. For example, sensitivity to 11 drugs, which included alkylating 

agents, topoisomerase inhibitors, and cell cycle/cell cycle checkpoint inhibitors, correlated 

with essentiality of genes “associated with the H3K27me3 mark” (e.g., PRDM13, NKX2-5, 

HOXC8, PAX7, HES2) and for “neuropeptides and neurotransmitter signalling” (Figure 

S5B, box #2, S5C–D). Notably, we had validated one of these genes, HOXC8, in our siRNA 

assays (Figures 3B–C).

Screen/drug sensitivity data might suggest drug combinations to kill resistant cells and/or 

negative regulators associated with drug resistance. For example, drugs targeting the PI3K/

mTOR pathway (Cluster-1) strongly anti-correlated with BCL2L1 essentiality (i.e., cell lines 

resistant to PI3K/mTOR inhibitors required BCL2L1). Interestingly, drug combinations 

targeting the PI3K/mTOR pathway and BCL-XL are reported for several malignancies 

(Muranen et al., 2012; Rahmani et al., 2013). Another known combination predicted by our 

data is EGFR plus HDAC inhibitors (Zhang et al., 2015). Suggested combinations awaiting 

validation include RAF/MEK and CDK4 inhibitors, EGFR inhibitors with Cluster-5 drugs, 

BET-Is with Cluster-4 drugs, especially epirubicin and vinorelbine, PLK1 inhibitors with 

Nutlin-3A or PI3K/AKT inhibitors or Nutlin-3A with Cluster-5 drugs (Table S5B).

We also used DGIdb to identify essential genes that are potentially “druggable” (Griffith et 

al., 2013). Genes for kinases, phosphatases, and histone modifying enzymes were the most 

frequently essential, although other categories were represented (Figure 5C, Table S5D). 

Inhibitors exist for only a small fraction of most potential targets, especially the histone 
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modifiers; a larger percentage of essential kinases had a known inhibitor (Figures 5C–D, 

S5E).

Additional functional genomic properties of cancer cells

For most genes, essentiality decreased as expression increased (Figure 6A, right); such 

genes are enriched for housekeeping functions (Table S6A). A smaller set of genes became 

more essential with increased expression (Figure 6A, left): 16 of the 20 top-ranked genes in 

this group are known drivers in breast or other cancers (Table S6B). We suspected that other 

genes whose essentiality increased with increased expression might be drivers, and tested 

several using siRNAs (Figures 6B, S6A). Indeed, 11/20 (55%) were more essential in lines 

with increased expression (R>0.3). Genes more essential with increased expression showed 

lower expression overall than genes whose essentiality lessened with increased expression 

(Figure S6B). The former were more variably expressed, though, consistent with the 

behavior of known oncogenes (e.g., ESR1, ERBB2).

“CYCLOPS” (Nijhawan et al., 2012) and “GO” (Solimini et al., 2012) genes show increased 

essentiality upon heterozygous deletion of their cognate genomic regions. We identified 224 

genes (FDR < 0.2) that were more essential with copy number loss (Figure 6C, Table S6C); 

their essentiality also correlated strongly with decrease in their expression (Figure 6D; 

Spearman rho=0.74). These genes overlapped significantly with CYCLOPS and GO genes, 

only five showed homozygous deletion in any line, and their protein products were enriched 

for housekeeping functions (Figure S6C, Table S6C and Supplemental Experimental 

Procedures). Thus, our data validate the CYCLOPS/GO concept and provide many other 

candidate members of this class of genes.

PIK3CA mutations drive resistance to BET-I

BRD4, encoding a BET bromodomain-containing co-activator (Shi and Vakoc, 2014), was 

preferentially essential in luminal/HER2 lines (Figure 7A, Table S3G). Moreover, luminal/

HER2 lines were more sensitive to BRD4 depletion by siRNAs (Figure 7B, S7B), and 

expression of shRNA-resistant BRD4 cDNA abrogated inhibition by BRD4 shRNA (Figure 

S7C).

We tested the BET domain inhibitor (BET-I) JQ1 on a subset of our lines, expecting greater 

sensitivity in luminal/HER2 cells. Cell line GI50s ranged from low nM (<100) to μM (>2.5), 

with lines that showed high JQ1 sensitivity undergoing apoptosis, while resistant lines had 

slower cell cycle progression (Figures S7D–F). However, many luminal/HER2 lines 

sensitive to BRD4 knockdown were JQ1-resistant. By contrast, most basal lines that were 

sensitive to BRD4 knockdown were JQ1-sensitive (Figure 7C and data not shown). In 

contrast to previous studies (Shi and Vakoc, 2014), JQ1 sensitivity did not reflect impaired 

MYC expression: sensitive and resistant cell lines displayed similar decreases in MYC 

mRNA (Figure S7G), and exogenous MYC did not convert JQ1-sensitive lines to JQ1-

resistance (Figure S7H–I).

Instead, integrative analysis revealed a strong correlation between JQ1 resistance and 

PIK3CA mutation (Figure 7C). Over-expression of wild type or mutant PIK3CA conferred 
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JQ1 resistance on JQ1-sensitive SkBR3 cells (Figure 7D), establishing a causal relationship 

between PI3K and resistance. Moreover, A66, a PIK3CA-specific inhibitor, but not 

TGX-221 (PIK3CB-specific), increased the JQ1 sensitivity of resistant cells, as did the 

mTOR inhibitors rapamycin or Torin (Figures 7E–F). The one basal line (SUM159) 

sensitive to BRD4 depletion but JQ1-resistant also has a PIK3CA mutation, and PIK3CA 

inhibitor treatment sensitized these cells to JQ1 (Figure S7J). Finally, combining JQ1 and 

Everolimus enhanced their respective anti-tumor effects (Figure 7G). In concert, these data 

indicate that BRD4 has bromodomain (BrD)-dependent and –independent effects in breast 

cancer cells, and establish PIK3CA mutations as a BET-I resistance mechanism.

Discussion

Most dropout screens analyze relatively few lines of any single cancer histotype. By 

constrast, we provide gene essentiality data for a large set of breast cancer lines with 

genomic, proteomic, and drug response annotation, and an analytic tool, siMEM, that more 

precisely measures differential essentiality. Our results identify and provide initial validation 

of synthetic lethal relationships with expression subtypes and CNAs, yield insight into 

essential pathways that correlate with anti-cancer drug response, and reveal general features 

of functional genomic screens. Illustrating the utility of combining genomic/functional 

genomic data, we identify and validate BRD4 as a luminal/HER2-selective essential gene, 

uncover BET-independent requirements for BRD4 in luminal/HER2 cells, and reveal 

PIK3CA mutations as a potential resistance mechanism to BET-Is in vitro and in vivo.

The breadth of our screen has several advantages. Many have argued that breast cancer lines 

only partly reflect tumor heterogeneity (Hollestelle et al., 2010; Kao et al., 2009; Neve et al., 

2006). But there are at least ten breast cancer subtypes (Curtis et al., 2012; Lehmann et al., 

2011; TCGA, 2012); only a large panel could possibly represent such heterogeneity (Figures 

1, S1). Our screen identified nearly all known breast cancer drivers, linked to the appropriate 

biomarker (Figures 3A, 4A, S4A). The increased power of our dataset also revises the 

identification of putative targets of some breast cancer amplicons and strengthens the 

identification of others by HELIOS (Figure 4D; Table S4E). Thus, if enough cell lines are 

tested, they provide valid surrogates for probing core cancer cell properties, such as 

proliferation/survival.

Conventional algorithms for sh/siRNA screens generate hairpin- and/or gene-level scores 

that summarize multiple measurements, and fail to identify known differential essential 

genes. By contrast, siMEM greatly improves detection of essentials associated with CNAs, 

gene expression, somatic mutations, or cancer subtype without increasing the false positive 

rate. “Hits” suggested by siMEM have a high validation rate (~60–70%) (Figures 3B, 6B), 

and an analogous approach can be applied to any pooled screen (e.g., CRISPR/Cas9 

screens).

Our screen identified “general” and “context-specific” essentials. As expected, general 

essentials are enriched for housekeeping functions, yet some show a gradient of essentiality 

tied to specific genetic parameters. For example, specific splicing factors (data not shown, 

but see (Hsu et al., 2015)) and proteasome genes are preferentially required in basal lines 
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(Table S3F). A splicing inhibitor is in clinical trials (E7107; NCT00459823), and several 

proteasome inhibitors are approved drugs (Dou and Zonder, 2014) and could be repurposed 

for breast cancer therapy.

Our data provide strong confirmation of earlier work suggesting distinct subtype-specific 

vulnerabilities. The pivotal roles of hormone receptors in luminal breast cancer, of ERBB2 

signaling in HER2+ disease, and of EGFR and WNT signalling in basal breast cancer are 

confirmed by our screen hits (Figures 3A, 3D–E, Table S3F–G). We also identify several 

“druggable” targets, including EFNB3/EPHA4, MAP2K4, MAPK13 and IL32, for basal 

breast cancer, the most lethal form of the disease. How these genes promote basal breast 

cancer is unclear. EFNB3/EPHA4 are a ligand/receptor pair that promotes neuronal 

proliferation and survival (Furne et al., 2009; Takemoto et al., 2002). MAP2K4 

phosphorylates and activates MAPK13 (O’Callaghan et al., 2014); MAPK13 and IL32 are 

linked to IL-1 signaling (Netea et al., 2005; Yousif et al., 2013), which also is basal-specific 

in our screen. Basal A cells are preferentially susceptible to CAND1-NEDD8 depletion. A 

NEDD8 inhibitor, MLN4924, is in phase 1 trials (NCT00677170, NCT01862328); TNBC 

patients might benefit from this agent.

Basal B cell lines are claudin-low-like, represent a unique TNBC subset, and have EMT-, 

cancer stem cell-, and mammary stem cell-like gene signatures (Lim et al., 2010), like those 

seen in chemotherapy-resistant cells (Creighton et al., 2009). Basal B lines also showed 

unique essentialities: basal B-essentials are enriched for motility-, immune-related, 

developmental and neuronal-, and cell junction and adhesion genes, several of which 

validate in siRNA experiments (Figure 3B). We also find marked functional similarity 

between basal breast cancer and HGSC (Figure S3C). Our results and the shared genomics 

of these tumors (TCGA, 2011, 2012) argue for similar treatment strategies and drug 

discovery efforts.

Consistent with earlier work (Davoli et al., 2103; Solimini et al., 2012), our results suggest 

that for many amplicons, multiple genes contribute to increased fitness. For some amplicons, 

no clear cis-essential gene was identified. Failure to identify such genes might be technical 

(e.g., insufficient amplicon+ lines). More likely, these amplicons select for multiple weak 

drivers, miRNAs/lncRNAs, or genes dispensable for proliferation/survival, but mediating 

other cancer hallmarks. For other amplicons, the key gene(s) cannot be targeted directly, nor 

can deleted tumor suppressor genes be restored. “Trans-essentials” provide insight into 

pathways perturbed by CNAs and can suggest more tractable drug targets. For example, 

METABRIC region 14, containing MYC, confers dependency on a MYC-regulated 

functional network. Two genes in this network, MINK1 and USP5, are potential drug targets 

and validate by siRNA. Potentially druggable trans-associations also exist for common 

deletions: e.g., RB1-deleted lines are more sensitive to MAP2K2 depletion, whereas 

CDKN2A-deleted lines rely more on KAT6B, ADRBK1, SYK, and DNMT3A.

As expected, genes encoding targets of known anti-cancer drugs are more essential in lines 

sensitive to those agents. But other genes, without known or obvious connections to the 

target pathway, also show essentiality strongly correlated with specific drug sensitivity. 

Marcotte et al. Page 11

Cell. Author manuscript; available in PMC 2017 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Also, gene essentiality can anti-correlate with drug sensitivity. Such genes might mediate 

therapy resistance, and suggest potential combination strategies.

BRD4 was implicated in cancer by studies of NUT midline carcinoma, which often harbors 

a BRD4-NUT translocation (French et al., 2003). Subsequently, BRD4 emerged as a 

potential target for many other neoplasms (Shi and Vakoc, 2014). We identified BRD4 as 

more essential in luminal/HER2 lines (Figures 7A–B, Table S3G). In hematologic 

malignancies, BET-I sensitivity correlates with MYC down-regulation and is antagonized by 

exogenous MYC expression (Shi and Vakoc, 2014). Very recently, mouse basal-like breast 

tumors caused by MYC overexpression and mutant PIK3CA were found to be sensitive to 

combined BET/PI3K inhibition, as was a human basal line, SUM159 (Stratikopoulos et al., 

2015). However, we saw no correlation between JQ1 sensitivity and basal MYC levels or the 

ability of JQ1 to inhibit MYC expression. Nor does forced MYC expression alter JQ1 

sensitivity (Figure S7G–I).

Instead, using our genomic data, we found that PIK3CA mutations are biomarkers of BET-I 

resistance. Moreover, they are functional biomarkers, as treating cell lines or xenografts with 

a BET-I/mTOR inhibitor combination improves efficacy (Figure 7F–G). Our results have 

clear clinical implications, as Everolimus is approved for ER+ breast cancer, and BET-Is are 

in clinical trials. PIK3CA mutations are most frequent in luminal tumors, so such patients 

would likely benefit most from BET-I/mTOR-I combinations. But our results and those of 

Stratikopoulos et al. also suggest a role for BET-Is as single agents in basal tumors. 

Surprisingly, and for unclear reasons, in basal lines, PTEN mutation/homozygous deletion 

predicts BET-I sensitivity (Figure 7C and data not shown).

Finally, as breast cancer lines can be JQ1-insensitive, but BRD4-dependent, BRD4 must 

have (a) BrD-independent function(s). Although the detailed mechanism is unclear, mutant 

PIK3CA confers JQ1-resistance, so PI3K pathway activation can selectively abrogate BrD-

dependent, but not BrD-independent functions of BRD4. Thus, our integrated functional 

genomic approach not only can suggest new treatment strategies for breast tumor subtypes, 

but also reveals new features of breast cancer biology.

Experimental Procedures

For additional details and computational methods, see Extended Experimental Procedures.

Cell Lines

Cell lines were from ATCC, Asterands, DZMS or were available in-house (Table S1).

Genomics/Proteomics

SNP-Arrays—Genomic DNA was amplified with the Illumina Infinium Genotyping kit, 

hybridized to Human Omni-Quad Beadchips, and analyzed on an iScan (Illumina). Data 

were quantified in GenomeStudio Version 2010.2 (Illumina) using Omni-Quad Multiuse_H 

manifest (April 2011 release), containing data from GenomeBuild 37, Hg19.
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RNA-seq—RNA was reverse transcribed using the Illumina TruSeq Stranded mRNA kit. 

Libraries were sized (Agilent Bioanalyzer), normalized and pooled (6 each), and loaded onto 

an Illumina cBot. Paired-end sequencing (50-cycles) was performed on an Illumina HiSeq 

2000.

Targeted Sequencing—DNA for 126 genes (1.264Mbp) mutated at ≥3% frequency in 

breast or ovarian carcinoma was captured using Agilent SureSelect XT, loaded onto the 

cBot and subjected to paired-end sequencing (100 cycles).

miRNA—miRNA expression was assessed by using the nCounter® Human V2 miRNA 

Assay Kit (Cat# GXA-MIR2-48) and a NanoString® counter.

RPPA—RPPAs were generated and analyzed as described (Tibes et al., 2006). For all lines, 

fresh media was added at 80–90% confluency, and cells were harvested 16 hours later.

shRNA/siRNA Experiments

Pooled screens with the TRC-II library were performed as described (Marcotte et al., 2012). 

HCC712, ZR-75-30, MDA-MB-175VII, UACC812, and UACC3199 failed quality control. 

For validation, cells (1,000–3,000) seeded in 96-well plates for 24 hr were transfected with 

Dharmacon SMARTPOOL™ siRNAs (10nM) using Lipofectamine RNAimax (Life 

Technologies). After 7 days, cells were stained with Alamar blue (Life Technologies), which 

measures redox activity and is as a surrogate for cell number. Percent maximum inhibition, 

corrected for transfection efficiency, was determined using siRNAs for the general essential 

RPL9.

Xenografts

MCF7 cells (5×106) were mixed 1:1 with growth factor-reduced Matrigel (BD Biosciences, 

NJ, USA), and injected into mammary fat pads of athymic nude mice (Charles River, MA, 

USA). When tumors were 5×5mm, mice were separated into control and drug-treated 

groups. JQ1 was synthesized (Filippakopoulos et al., 2010). Everolimus was purchased from 

Selleckchem.

RNAseq and screen data are deposited in GEO (Accessions GSE73526 and GSE74702). 

Genomics and proteomics data are available at http://azinsayad.github.io/brca_shrna_data/. 

All code is available by request from A.S. and siMEM code will be posted at https://

github.com/azinsayad/simem.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Genomic/proteomic characterization. A) CNA profiles of breast tumors (top) from TCGA 

and cell lines (bottom). B) NMF clustering of RNAseq data for breast cancer lines. ESR1 

(ER), ERBB2 (HER2), PGR (PR), and AR (AR) expression are represented by black squares. 

Lines were assigned to published subtypes (colored boxes). C) NMF clustering of RPPA 

data. D) Frequency of indicated mutations in cell lines and tumors, grouped into basal and 

luminal/HER2 subtypes. Tumor data are from COSMIC. Also see Figure S1 and Table S1.
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Figure 2. 
siMEM overview. A) Experimental scheme. Samples were hybridized to microarrays and 

dropout was quantified. Hierarchical linear regression summarizes data as a combination of 

initial measurement intensity, baseline trend, and difference in essentiality associated with 

changes in a genomic covariate (light blue vs. dark blue). B) Volcano plot of zGARP (left) 

and siMEM (right) essentiality differences associated with HER2+ lines. Dotted lines show 

FDR cutoff. C) siMEM produces the best p-values for known positives. D) BRAF, PIK3CA 
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or KRAS mutant vs. normal, and expression vs. essentiality analyses of the Achilles dataset 

(N=102). Also see Figure S2, Table S2 and Extended Experimental Procedures.
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Figure 3. 
Subtype-specific essential genes. A) Volcano plot of basal- and luminal/HER2-specific 

essentials. B) Heat map shows % proliferation-inhibition, compared to general essential 

RPL9 (100% inhibition), after pooled siRNA treatment (p-values: 1-sided t test). C) 

Knockdown efficiency (by q-RT-PCR) of siRNAs for genes in (B). D) Subtype-specific 

pathways. Each node represents a process; functionally similar nodes are grouped and 

labeled by enriched function. Nodes are colored according to the subtype in which the 

process is enriched; processes enriched in more than one subtype have multiple colors. Red: 
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basal B; Orange: basal A; Green: HER2+; Blue: luminal. E) PPI networks for subtype-

specific genes. Nodes represent genes, and are multi-colored if present in multiple subtypes; 

edges represent interactions. Also see Figure S3 and Table S3.
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Figure 4. 
cis- and trans-essential genes for CNAs. A) Heat map showing 8q24 amplification 

(METABRIC-14, containing MYC) in cell lines. Red=amplification, blue=deletion. Bar 

graph shows average zGARP score for genes in the amplified region in amplicon+ lines. 

CIRCOS plot depicts top 20 significant genes (by siMEM) in amplicon+ vs –amplicon− 

cells. B) GSEA of trans-essential genes for MYC targets (FDR < 0.0001). C) Validation of 

8q24 trans-essential genes with siRNAs. Y-axis: % maximum inhibition Bar graphs: 

Knockdown efficiency (by qRT-PCR) of siRNAs. D) Correlation between published 
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HELIOS scores (Y-axis) (Sanchez-Garcia et al. 2014) and new scores (X-axis) obtained 

using our screen data. Circled genes deviate from earlier score and represent potential new 

amplified drivers. E) Validation of HELIOS genes with siRNAs. Y-axis: % maximum 

inhibition Bar graphs: Knockdown efficiency of siRNAs. p-values were calculated by 1-

sided t test. Also see Figure S4 and Table S4.
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Figure 5. 
Screen refines classification and pathway identification. A) NMF clustering of screen results 

(zGARP). ESR1, ERBB2, and PGR expression are shown by black squares. Colored boxes 

indicate major published sub-categories. B) Unsupervised analysis of essential genes 

implicated in PI3K/mTOR or EGFR/MEK/ERK pathways. Heat map shows association of 

essentiality for each gene (this study) with sensitivity to drugs targeting these pathways 

(Daemen et al. 2013). C) Fraction of essential genes overlapping with reported “druggable” 

gene categories or gene-drug interactions (DGIdb). D) Top-ranked histone-modifying 
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enzymes deemed essential in our screen, by breast cancer subtype. *Reported gene-drug 

interaction in DGIdb. Black lines represent 50% of lines in which the gene is essential. Also 

see Figure S5 and Table S5.
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Figure 6. 
Additional features of shRNA screens. A) Volcano plot of relationship between essentiality 

and gene expression. X-axis: change in dropout rate per unit increase in expression log-

FPKM; Y-axis: p-value. B) Heat map showing % inhibition of proliferation following 

knockdown by siRNA in cell lines. For each gene, the upper row (blue) represents 

maximum growth inhibition, while the lower row (red) represents mRNA levels of the same 

gene in each line. R=Pearson correlation. C) Vulnerabilities associated with genomic loss 

(CYCLOPS genes). D) Strong agreement (Spearman rho=0.74, p-value < 2.2 × 10−16) 
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between genes more essential with heterozygous loss (FDR < 0.25) and genes whose 

essentiality changes significantly with expression (FDR < 0.25). Also see Figure S6 and 

Table S6.
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Figure 7. 
BRD4 is luminal-essential, and PIK3CA mutations cause BET-I resistance. A) Box plot 

showing BRD4 dropout in each line, by subtype. B) BRD4 siRNAs confirm pooled screen 

results. Averages are maximum percent inhibition (p=0.005, Student’s t-test). C) Effect of 

JQ1 on breast cancer lines. Table (inset) shows number of lines, grouped by JQ1 sensitivity 

(NS=non-sensitive, S=sensitive) and PIK3CA status (mut=mutated, wt=wild-type). Red 

shading shows lines with PIK3CA mutations. Mutant lines were more likely to be JQ1-

resistant (p < 4.7×10−4, chi-square test). Sensitive lines have GI50 < 750nM. *Lines with 
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PTEN mutation/homozygous deletion. D) WT or mutant PIK3CA (H1047R) render JQ1-

sensitive SkBr3 line resistant to JQ1. Inset: Immunoblot showing expression of PIK3CA-

p110α. Arrow indicates the specific band. E) JQ1 cooperates with PIK3CA (A66; 1 μM), 

but not with PIK3CB (TGX; 1μM) inhibitors to decrease MCF7 and T47D proliferation. “0” 

JQ1 represents A66 or TGX alone. F) JQ1 cooperates with mTOR inhibitors (Rapamycin; 

0.5nM, Torin; 50nM) to decrease MCF7 proliferation. “0” represents Rapamycin or Torin 

alone. G) JQ1 and Everolimus cooperatively inhibit xenograft growth. MCF7 cells (2 × 106) 

were injected into mammary fat pads of athymic nude mice bearing a slow release estrogen 

pellet. When tumors were 5×5mm (~21 days), mice were grouped into: 1) control, 2) JQ1 

(50mg/kg/day IP), 3) Everolimus (5mg/kg/day by gavage), and 4) JQ1+Everolimus daily. 

Tumors were measured with calipers every 3–4 days. p value: 1-sided Student’s t-test. Also 

see Figure S7.
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