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ABSTRACT Although progress in Chlamydia genetics has been rapid, genomic modification has previously been limited to point
mutations and group II intron insertions which truncate protein products. The bacterium has thus far been intractable to gene
deletion or more-complex genomic integrations such as allelic exchange. Herein, we present a novel suicide vector dependent on
inducible expression of a chlamydial gene that renders Chlamydia trachomatis fully genetically tractable and permits rapid re-
verse genetics by fluorescence-reported allelic exchange mutagenesis (FRAEM). We describe the first available system of target-
ing chlamydial genes for deletion or allelic exchange as well as curing plasmids from C. trachomatis serovar L2. Furthermore,
this approach permits the monitoring of mutagenesis by fluorescence microscopy without disturbing bacterial growth, a signifi-
cant asset when manipulating obligate intracellular organisms. As proof of principle, trpA was successfully deleted and replaced
with a sequence encoding both green fluorescent protein (GFP) and �-lactamase. The trpA-deficient strain was unable to grow in
indole-containing medium, and this phenotype was reversed by complementation with trpA expressed in trans. To assess repro-
ducibility at alternate sites, FRAEM was repeated for genes encoding type III secretion effectors CTL0063, CTL0064, and
CTL0065. In all four cases, stable mutants were recovered one passage after the observation of transformants, and allelic ex-
change was limited to the specific target gene, as confirmed by whole-genome sequencing. Deleted sequences were not detected
by quantitative real-time PCR (qPCR) from isogenic mutant populations. We demonstrate that utilization of the chlamydial sui-
cide vector with FRAEM renders C. trachomatis highly amenable to versatile and efficient genetic manipulation.

IMPORTANCE The obligate intracellular nature of a variety of infectious bacteria presents a significant obstacle to the develop-
ment of molecular genetic tools for dissecting pathogenicity. Although progress in chlamydial genetics has been rapid, genomic
modification has previously been limited to point mutations and group II intron insertions which truncate protein products.
The bacterium has thus far been intractable to gene deletion or more-complex genomic integrations such as allelic exchange.
Here, we present a novel suicide vector dependent on inducible expression of a chlamydial gene that renders Chlamydia tracho-
matis fully genetically tractable and permits rapid reverse genetics by fluorescence-reported allelic exchange mutagenesis
(FRAEM). We describe the first available system of targeting chlamydial genes for deletion or allelic exchange as well as curing
plasmids from C. trachomatis L2. Furthermore, this approach permits monitoring of mutagenesis by fluorescence microscopy
without disturbing bacterial growth, a significant asset when manipulating obligate intracellular organisms.
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Understanding the contribution of microbial virulence factors
to disease is critical for developing new methods of treating and

controlling infection. Unfortunately, the obligate intracellular nature
of pathogens such as Chlamydia trachomatis presents a significant
obstacle to deconstructing virulence mechanisms. This is of particu-
lar significance to chlamydial infection, as it remains the most fre-
quently reported infectious disease in the United States (1). C. tracho-
matis, responsible for blinding trachoma (serovars A to C) as well as
genital infections (serovars D to K and L1 to L3), has been unreceptive
to common genetic methods until recently (2). Advances in transfor-
mation have enabled introduction and stable maintenance of recom-
binant vectors, while ethyl methanesulfonate (EMS) treatment and
the TargeTron system have successfully produced genomic muta-
tions (3–7). Although progress has been rapid, the tools for chlamyd-

ial manipulation lack the versatility of those available for the most
genetically amenable systems, such as Escherichia coli. EMS treatment
disrupts expression by introducing an in-frame, early termination
codon. Since mutations are limited to nucleotide transitions, only
specific sites have the potential to disrupt translation. Furthermore,
EMS mutagenesis is random and therefore requires laborious screen-
ing (4). The TargeTron system disrupts gene expression by introduc-
ing a group II intron within the target open reading frame (5). This
approach necessitates the use of proprietary algorithms and limits
integration to sites evaluated to be efficient. Although both methods
are invaluable tools for chlamydial genetics, a system of allelic ex-
change by homologous recombination would enable genomic dele-
tions while significantly improving the availability of target sites.

Classical reverse genetics by homologous recombination re-
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quires the introduction of a recombinant vector with desired
modifications, sufficient maintenance for the exchange of nucle-
otides between the plasmid and genome, and subsequent elimina-
tion of the vector from the organism (8–11). Although stable
transformation and homologous recombination in Chlamydia
have been demonstrated, a method of removing vectors after in-
troduction has not been reported (3, 12). In the case of genetically
tractable organisms such as E. coli, transformation vectors com-
monly require only expression of drug resistance and specific or-
igins of replication for isolation and maintenance. Such plasmids
are often lost in the absence of selective pressure. However, chla-
mydial maintenance requires that the transformation vector in-
clude the sequence of the native pL2 plasmid found in most C. tra-
chomatis isolates (3, 12, 13). As a result, Chlamydia bacteria, unlike
E. coli, most often retain such plasmids indefinitely, even in the
absence of any selective pressures (3). Homologous sequences in-
troduced on these vectors may recombine with the genome, but
without a means of removing the original, intact gene now present
on the stable plasmid, changes in phenotype will not occur. Ex-
pression of popular counterselectable markers such as sacB or
ccdB would eliminate all transformed Chlamydia regardless of
mutation status (14, 15). Although vectors lacking the pL2 se-
quence have been successfully introduced into Chlamydia, the
brief presence of such constructs after transformation has resulted
in only one report of allelic exchange with exogenous DNA—a
sequence of 1 kb integrating four nucleotide substitutions re-
stricted to the 16S rRNA region of Chlamydia psittaci, a uniquely
compatible recombination event as it produced chlamydial resis-
tance to both kasugamycin and spectinomycin (12). In order to
utilize the versatility of homologous recombination for gene de-
letion and sequence insertion routinely demonstrated in other
more genetically tractable bacteria, a mechanism to control plas-
mid maintenance is critical.

We demonstrate that by regulating expression of pgp6 found
on the native pL2 plasmid, we were able to alter the stability of the
transformed vector. Using this as a backbone, we targeted and
successfully exchanged trpA for a 2.2-kb cassette encoding both
�-lactamase and green fluorescent protein (GFP). The presence of
the mCherry gene on the vector backbone permitted the real-time
observation of successful mutation, as inclusions expressing only
green fluorescence emerged from dual-fluorescent transformants.
In order to assess the target versatility of this approach, this system
of fluorescence-reported allelic exchange mutagenesis (FRAEM)
was repeated for ctl0063, ctl0064, and ctl0065. All mutagenesis at-
tempts were successful and specific, as confirmed by whole-
genome sequencing. Here, we present FRAEM as a convenient
method of chlamydial reverse genetics with the versatility of those
used in genetically tractable organisms.

RESULTS
pSU6 maintenance by ATc. Despite having unknown function,
expression of pgp6 was targeted for constructing a plasmid with
regulatable stability (16, 17). Of the eight open reading frames
present on pL2, only deletion of pgp6 produces transformants
unable to maintain the plasmid through multiple rounds of infec-
tion. Deletion of other sequences results in no effect (pgp3, pgp4,
pgp5, and pgp7), mixed maintenance (pgp8), or no recoverable
transformants (pgp1 and pgp2) according to previous reports (16).
Although pgp1 and pgp2 may also be viable candidates, the infancy
of chlamydial transformation protocols and relatively low success

rate compared to E. coli made the absence of transformants a less
desirable result than the observable introduction and subsequent
loss of pgp6-deficient constructs. Thus, pSU6 was generated from
pBOMB4-Tet-mCherry by placing pgp6 under tetracycline (Tet)
regulation (Fig. 1), an established system of efficiently regulating
gene expression in C. trachomatis (18, 19). The gfp and bla genes
were also present on pSU6, providing a fluorescence reporter and
�-lactam resistance, respectively, as real-time indicators of the
presence of the plasmid. No additional sequences were added, and
all other pgp open reading frames and corresponding promoters as
present on the native pL2 plasmid were unaltered. All primers
used in this work are listed in Table S1 in the supplemental mate-
rial.

McCoy cell monolayers were infected with C. trachomatis se-
rovar L2 transformed with pSU6 and incubated in medium with
or without anhydrotetracycline (ATc) inducer or penicillin G
(Pen G) selective pressure (Fig. 2A). In order to observe effects
across multiple passages (passage 0 [P0] to passage 2 [P2]), C. tra-
chomatis was harvested, diluted 1,000-fold, and applied to new
monolayers every 48 h postinfection (p.i.). Within the first chla-
mydial developmental cycle (P0), the absence of ATc correlated
with a decreased level of observable green fluorescence, regardless
of the presence of Pen G. By P2, green fluorescence was not visible
in either sample lacking ATc inducer, indicating the loss of pSU6.
Furthermore, in the absence of Pen G, chlamydial inclusions were
present at comparable numbers regardless of ATc induction, sug-
gesting that the loss of pSU6 was independent of chlamydial de-
velopment. Visual observations were corroborated by determin-
ing the copy numbers of chlamydial genomes and pSU6 by
quantitative real-time PCR (qPCR) targeting chlamydial 16S
rRNA and gfp DNA sequences, respectively (Fig. 2B). As expected,
in the presence of ATc, no significant effect on chlamydial genome
or pSU6 copy number was observed through P4, while the absence
of inducer resulted in a decrease in detected pSU6 of almost 4 log
units, regardless of Pen G.

In order to account for a potentially low homologous recom-
bination rate of bla into the genome, thorough elimination of the
suicide vector is essential. In the presence of Pen G, any C. tracho-
matis retaining pSU6 despite the absence of ATc may outgrow

FIG 1 pSU6 vector map. Conditional expression of Pgp6 is accomplished by
transfer of pgp6 from the endogenous coding position to an engineered locus
downstream of a tetracycline-inducible promoter. The remaining pgp genes
are expressed under the control of the native promoters in Chlamydia. Con-
stitutively expressed bla and gfp genes provide drug and fluorescence selection
capability, respectively.
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chlamydial mutants which are either produced in low numbers or
have significant growth defects. Thus, the recoverable inclusion-
forming units (IFU) during each passage were examined (Fig. 2C).
All samples in medium with ATc or lacking Pen G produced in-
fectious progeny throughout the experiment. Only the condition
with Pen G and without ATc failed to produce detectable infec-
tious progeny after P2, suggesting that the loss of pSU6 in con-
junction with drug selection may be sufficient pressure for isolat-
ing chlamydial mutants.

Plasmid elimination by transformation with pSU6. Plasmid
elimination with agents such as ethidium bromide and novobio-
cin has been demonstrated in a variety of organisms including
Chlamydia muridarum (20). However, success in curing pL2 from
C. trachomatis L2 has not been published. During the process of
chlamydial transformation, the loss of all copies of native plasmid
in exchange for the introduced vector were previously reported
(3). Thus, transformation and elimination of pSU6 as a potential
method of curing C. trachomatis L2 was examined. Due to the
efficiency with which Chlamydia bacteria laterally transfer plas-
mids and other genetic material, we attempted to minimize the
potential for reacquiring pL2 from nontransformed Chlamydia by
isolating pSU6 transformants (�pSU6) by limiting dilutions in
the presence of ATc immediately after visual identification (21,
22). C. trachomatis transformed with pSU6 produced inclusions
similar in appearance to those produced by wild-type C. tracho-
matis, with the exception of green fluorescence (Fig. 3A). An ad-
ditional round of limiting dilutions in the absence of ATc was then
applied, resulting in the loss of fluorescence, as well as a unique
inclusion morphology with a central aggregate of Chlamydia sur-
rounded by an apparently vacuous lumen lacking visible motion
(�pSU6). Given that similar inclusions are produced by the nat-
urally occurring plasmid-free strain L2 (25667R), these features
were suggestive of successful plasmid elimination (23). Relative
copy numbers of the chlamydial genome, native plasmid, and
pSU6 were determined by qPCR of the 16S rRNA region, pgp7-
pgp8 junction, and gfp gene, respectively. Since all additional se-

quences required for construction of pSU6 from pL2 are located
between pgp7 and pgp8, oligonucleotide primers surrounding this
junction are unable to amplify from pSU6 during the 30-s qPCR
extension time. Thus, the pgp7-pgp8 amplicon is generated only
from native pL2 plasmid, not pSU6 or any other derivatives de-
scribed in this work. Given that two rRNA operons are present per
L2 genome, wild-type C. trachomatis contained roughly four pL2
plasmids per bacterium (Fig. 3B) (24). Analysis of transformants
indicated the loss of native plasmid and the presence of approxi-
mately one pSU6 plasmid per genome. Limiting dilutions in the
absence of ATc (�pSU6) resulted in samples with undetected lev-
els of either pL2 or pSU6, confirming that pL2 had been success-
fully cured. This presents a novel method for removal of the pL2
plasmid as well as vectors from C. trachomatis L2. Additionally,
this may provide a valuable tool for confirming the loss of pheno-
type after removal of constructs to corroborate gain of phenotype
upon introduction.

trpA deletion by FRAEM. The trpBA operon encodes trypto-
phan synthase capable of utilizing indole for the synthesis of tryp-
tophan (25). Several members of Chlamydia such as C. trachoma-
tis serovars A and C carry mutations in trpBA and are thus
incapable of productive growth in indole-supplemented medium
lacking tryptophan (26, 27). Recently, synthesis of TrpB was also
disrupted in serovar D by random chemical mutagenesis (4). Due
to the thorough characterization of the operon as well as the pre-
vious report indicating that mutation produced nonlethal effects,
trpA was targeted for deletion as proof of principle. To construct
pSU�trpA, an amplicon spanning trpA with additional ~3-kb
flanking sequences was introduced into pSU6 (Fig. 4). The trpA
open reading frame was removed and replaced with an ~2.2-kb
cassette consisting of bla and gfp under the regulation of constitu-
tive promoters. Given that the mutagenesis rate was unknown,
both antibiotic selection and fluorescence were included in order
to discern true homologous recombinants which have exchanged
trpA with the cassette from spontaneously resistant C. trachomatis
which may develop over time (24). The mCherry gene was

FIG 2 pSU6 maintenance by ATc. McCoy cell monolayers were infected with C. trachomatis L2 carrying pSU6 and incubated in medium in the presence (�)
or absence (�) of anhydrotetracycline (ATc) or penicillin G (Pen G). (A) Twenty-four hours p.i., samples were examined for GFP expression (green) and stained
with anti-Hsp60 (red) for visualization of L2 (P0). Forty-eight hours p.i., C. trachomatis L2 was harvested from a replicate sample, diluted 1,000-fold, and used
to infect a fresh monolayer. Inspection 24 h p.i. and reinfection were repeated for additional time points (P1 and P2). Bar � 50 �m. (B) The relative number of
copies of pSU6 and chlamydial genome were determined by qPCR analysis of gfp and the 16S rRNA region, indicating elimination of the vector in the absence
of ATc (data are represented as means plus standard deviations [SDs] [error bars]; n � 3). (C) Recoverable IFU from each time point were determined (data are
represented as means � SDs; n � 3). Samples in medium lacking ATc but containing Pen G (�ATc / �Pen G) produced no detectable infectious progeny after
P2, suggesting that elimination of pSU6 in the presence of antibiotics provides significant selective pressure.
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included in the backbone of the plasmid, providing a real-time,
visual method of separately distinguishing the presence of the in-
tegrating cassette (GFP) and the conditional-suicide vector
(mCherry). This FRAEM approach enabled the identification of
successful mutants by fluorescence microscopy without disturb-
ing chlamydial growth.

In order to ensure maintenance of the plasmid, C. trachomatis
was transformed (P0) and subsequently passaged every 48 h (P1
and P2) in the presence of 50 ng/ml ATc. Four days after transfor-
mation (P1, 36 h p.i.), isolated inclusions were observed, each
expressing both green and red fluorescence (Fig. 5A). Samples
were harvested and used to infect the subsequent passage (P2).
Thirty-six hours p.i., a significant increase in the number of inclu-
sions was observed compared to the same time point of P1. While
most were both red and green, several dim inclusions expressing
only green fluorescence were also identified. The presence of green
fluorescence and the absence of red fluorescence were suggestive
of successful integration of the cassette and loss of the pSU�trpA
backbone, respectively. Thus, transformants were separated and
expanded by limiting dilutions. DNA was extracted from the
�trpA candidate as well as wild-type C. trachomatis and analyzed

FIG 3 Plasmid elimination by transformation with pSU6. C. trachomatis was transformed with pSU6 and isolated by limiting dilutions in the presence of ATc
immediately upon identification of fluorescent inclusions (�pSU6). Transformants underwent an additional round of limiting dilutions in the absence of ATc
(�pSU6). McCoy cell monolayers were infected with each strain. WT, wild type. (A) Forty hours p.i., samples were examined for GFP expression (green), fixed,
and probed for chlamydial Hsp60 (red). Elimination of pSU6 resulted in a loss of green fluorescence as well a unique late-inclusion phenotype with a central
aggregate of Chlamydia surrounded by an apparently vacuous lumen lacking visible motion, similar to that observed of inclusions produced by infection with the
plasmid-free isolate C. trachomatis L2 (25667R) (23). �-Hsp60, anti-Hsp60 antibody. Bar � 10 �m. (B) Relative number of copies of the 16S rRNA region, the
native pL2 plasmid (pgp7-pgp8), and gfp were determined by qPCR (data are represented as means plus SDs; n � 3). Neither plasmid was detected in DNA
extracted from transformants in the absence of ATc, indicating effective curing.

FIG 4 pSU�trpA vector map. pSU6 was modified for deletion of trpA by
insertion of a cassette containing selection markers bla and gfp surrounded by
chlamydial DNA corresponding to ca. 3 kb of genomic sequence flanking trpA.
The constitutively expressed mCherry gene is included as a fluorescent marker
of maintenance of the vector backbone.
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by PCR for changes in the amplicon with primers surrounding
trpA (Fig. 5B). An increase in length of approximately 1.4 kb was
observed, as expected for successful recombination (deletion of
the 762-bp trpA gene and insertion of the 2,165-bp cassette results
in an increase of 1,403 bp). Copy numbers of native pL2 plasmid,
trpA, gfp, and the mCherry gene relative to the 16S rRNA region
were determined by qPCR for the �trpA candidate, wild-type
C. trachomatis, and an additional sample of expanded chlamydial
transformants which had not yet undergone limiting dilutions
(P3) (Fig. 5C). P2 did not provide sufficient DNA for reliable
analysis, so further expansion was required. Neither trpA nor
mCherry gene copies were detected in the �trpA candidate, indi-
cating successful deletion of the target gene as well as elimination
of the pSU�trpA backbone. Exchange of trpA with the cassette
and the presence of a single insertion were confirmed by whole-
genome sequencing.

Contrary to chlamydial transformation with nonrecombining
vectors, transformation with pSU�trpA did not eliminate the na-
tive pL2 plasmid, as indicated by pgp7-pgp8 amplification. The
significant disparity between copies of gfp and the mCherry gene

in the P3 mixed population suggests rapid cassette integration and
elimination of the vector backbone. Although transformants car-
rying the nonrecombining pSU6 plasmid maintained the vector
throughout numerous rounds of expansion, trpA deletion re-
quired maintenance of pSU�trpA through only one developmen-
tal cycle, as indicated by the emergence of green inclusions lacking
red fluorescence only one passage after transformation. Thus, it is
plausible that the brief presence of the allelic exchange vector is
insufficient to cure the native plasmid, unlike the prolonged pres-
ence of nonrecombining vectors throughout numerous replica-
tion cycles.

Utilization of indole by the �trpA mutant. Prior to indole
utilization studies, the mutation was complemented with a copy
of the trpA open reading frame, as is routine with genetically trac-
table organisms. Since resistance to �-lactam antibiotics was in-
troduced during homologous recombination, aadA was included
in the complementation vector, permitting the use of spectinomy-
cin as the selective pressure for isolating transformants. Expres-
sion of complementary trpA was simplified by use of the constitu-
tive Neisseria meningitidis promoter utilized in pGFP::SW2 due to
the complex nature of trpBA regulation by trpR (3, 28). Wild-type,
the �trpA mutant, and the �trpA mutant complemented with
pCOMtrpA were probed for TrpA and Hsp60 (Fig. 6A). TrpA was
not detected in the deletion mutant, while complementation re-
stored expression.

C. trachomatis was grown in medium containing either trypto-
phan or indole for direct utilization or conversion by tryptophan
synthase, respectively. Infection appeared comparable among all
strains when grown in the presence of tryptophan (Fig. 6B). How-

FIG 5 Deletion of trpA. (A) C. trachomatis was transformed with pSU�trpA
and passaged every 48 h for two rounds (P1 and P2) in the presence of 50 ng/ml
ATc. Green fluorescence and red fluorescence were used as indicators of the
presence of the integrating cassette and the vector backbone, respectively. Ob-
servation of inclusions expressing exclusively green fluorescence in P2 sug-
gested successful homologous recombination and vector elimination. Bar �
10 �m. (B) DNA extracted from the �trpA candidate was analyzed by PCR
with primers surrounding the trpA target site. An increase in amplicon length
of approximately 1.4 kb was observed, as expected for successful recombina-
tion (deletion of 762-bp trpA and insertion of a 2,165-bp cassette results in an
increase of 1,403 bp). (C) Copy numbers of native pL2 plasmid (pgp7-pgp8),
trpA, gfp, and the mCherry gene relative to the 16S rRNA region were deter-
mined by qPCR for the �trpA candidate, wild-type C. trachomatis, and an
additional sample of expanded chlamydial transformants which had not yet
undergone limiting dilutions (P3) (data are represented as means plus SDs;
n � 3). P2 provided insufficient DNA for reliable analysis. trpA and the
mCherry gene were not detected in the �trpA mutant, indicative of successful
recombination, while the native pL2 plasmid was detected in all samples.

FIG 6 Utilization of indole by �trpA. (A) Wild-type, the �trpA mutant, and
the �trpA mutant with pCOMtrpA were probed for TrpA and Hsp60 as a
loading control. Deletion and complementation of trpA eliminated and re-
stored TrpA levels, respectively. (B) HeLa cells infected with wild-type, the
�trpA mutant, and the �trpA mutant carrying pCOMtrpA were grown in
medium containing either tryptophan or indole. Forty-eight hours p.i., the
samples were fixed and stained with Chlamydia-specific antilipopolysaccha-
ride (red). All samples produced inclusions in the presence of tryptophan.
However, only wild-type and the �trpA mutant carrying pCOMtrpA devel-
oped inclusions in the presence of indole. Bar � 10 �m. (C) Forty-eight hours
p.i., C. trachomatis was harvested from replicate samples, and recoverable IFU
were determined (data are represented as means plus SDs; n � 3). The detec-
tion of infectious progeny from only the wild-type bacteria and the �trpA
mutant carrying pCOMtrpA when grown in indole indicated that the deletion
of trpA prevented utilization of the indole substrate for chlamydial develop-
ment.
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ever, the �trpA mutant was unable to develop inclusions when
forced to utilize indole. Complementation restored the appear-
ance of inclusions. Forty-eight hours p.i., C. trachomatis was har-
vested, and recoverable IFU for each strain were determined (Fig.
6C). Wild-type, the �trpA mutant, and the complemented �trpA
mutant produced comparable numbers of infectious progeny in
the presence of tryptophan. However, with only indole present,
the �trpA mutant was incapable of productive growth. While
complementation resulted in restored production of infectious
progeny, wild-type levels were not achieved. This was not unex-
pected, as proper, wild-type regulation of trpBA was not restored
by complementation with trpA under artificial, constitutive ex-
pression.

Target versatility. Previously reported allelic exchange in
C. psittaci provided significant insight into the potential for ma-
nipulation of chlamydial genetics. Insertion of point mutations at
the 16S rRNA region while using an unstable transformation vec-
tor demonstrated the efficiency of homologous recombination in
Chlamydia (12). In this work, we attempted to increase the vol-
ume of integrated genetic material by regulating the stability of the
transformation vector. The ability to insert a complete drug resis-
tance gene would remove requirements restricting targets to
unique point mutations which provide antibiotic resistance. The
deletion of trpA and insertion of two open reading frames dem-
onstrated that, with the use of a suicide vector, targets need not be
localized to specific genomic points, provided sequence homology
of the construct and genome are sufficient for recombination.
However, the possibility remained that the trpA region of C. tra-
chomatis possesses sequence uniquely susceptible to allelic ex-
change.

To evaluate the target versatility of this approach, FRAEM, as
described for trpA, was repeated for deletion of open reading
frames ctl0063, ctl0064, and ctl0065 (966 bp, 1,194 bp, and
1,176 bp, respectively). While little concerning CTL0065 is
known, CTL0063 and CTL0064 are type III secretion system ef-
fectors translocated into the host cell upon infection (22, 29). As
was the case with pSU�trpA, transformation of pSU�ctl0063,
pSU�ctl0064, and pSU�ctl0065 resulted in deletion of the respec-
tive targets. The rate of emergence of green fluorescent inclusions
from the dual-fluorescent population was comparable among all
transformants and comprised the majority of isolates recovered
after limiting dilutions. PCR analysis of DNA extracted from
green inclusions with primers surrounding each site indicated the
predicted band shifts resulting from exchange of the target se-
quence for the cassette (Fig. 7A). Each recombination event was
specific and independent, as confirmed by whole-genome se-
quencing of �ctl0063, �ctl0064, and �ctl0065 mutants. Samples
were probed for CTL0063, CTL0064, CTL0065, TrpA, and Hsp60
to confirm loss of protein for anticipated targets (Fig. 7B). Al-
though sequencing confirmed that nucleotide manipulation was
specific and did not interfere with adjacent open reading frames,
homologous recombination at ctl0063 produced a polar effect,
resulting in the loss of both CTL0063 and CTL0064. This was not
unexpected, as ctl0063 and ctl0064 are cotranscribed (22). The
increase in nucleotides separating ctl0064 from the shared pro-
moter of ctl0063 upon insertion of the dual cassette likely dis-
rupted transcription of the downstream open reading frame.
Although this poses a limitation unique to manipulating cotrans-
cribed sequences, complementation of deletions remains effective
in confirming the cause of phenotypic changes in chlamydial mu-

tants produced by homologous recombination. The presence of
target sequences ctl0063, ctl0064, ctl0065, and trpA and the relative
levels of the native pL2 plasmid were determined by qPCR
(Fig. 7C). Only the specific target sequence of each deletion mu-
tant was not detected, and in all cases, the native pL2 plasmid was
maintained, as additionally confirmed by whole-genome se-
quencing. The similarities shared throughout the process of mu-
tagenizing all four sequences suggest the potential for application
of FRAEM to a variety of targets.

DISCUSSION

Gene inactivation via mutagenesis is considered essential for de-
finitively assigning function and fulfilling the molecular Koch’s
postulates (30). However, application of this experimental crite-
rion to the study of Chlamydia has proved challenging, as tradi-
tional molecular-genetic techniques utilized for genetically trac-
table organisms such as E. coli have been difficult to adapt to the
chlamydial system. In order to circumvent this impasse, novel
approaches including chemical mutagenesis by exposure to EMS
or gene disruption with group II introns were developed for use
with Chlamydia. While these approaches demonstrate tremen-
dous progress in chlamydial genetics, these methods are not with-
out limitations. Aside from the highly laborious screening re-
quired of random chemical mutagenesis and the use of
proprietary algorithms for the design of group II introns, both
methods are restricted to disruption of open reading frames in
order to truncate protein products. Neither provides a means to

FIG 7 Target versatility. (A) �ctl0063, �ctl0064, �ctl0065, �trpA, and wild-
type C. trachomatis were analyzed by PCR with primers immediately sur-
rounding ctl0063, ctl0064, ctl0065, and trpA. Within each mutant, only the
amplicon surrounding the predicted target indicated an increase in size. (B)
�ctl0063, �ctl0064, �ctl0065, �trpA, and wild-type C. trachomatis were probed
for CTL0063, CTL0064, CTL0065, TrpA, and Hsp60 as a loading control. Due
to cotranscription of ctl0063 and ctl0064, the �ctl0063 mutation produced a
polar effect on protein levels of CTL0064 (22). �ctl0064, �ctl0065, and �trpA
eliminated only the predicted target protein. (C) The number of copies of the
16S rRNA region, the native pL2 plasmid (pgp7-pgp8), ctl0063, ctl0064, ctl0065,
and trpA relative to those in the wild-type C. trachomatis were determined by
qPCR analysis of �ctl0063, �ctl0064, �ctl0065, �trpA, and wild-type C. tracho-
matis DNA (data are represented as means plus SDs; n � 3). Only the predicted
target sequence of each mutation was not detected, while pL2 was detected at
comparable levels from all samples.
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completely delete genes or the flexibility of exchanging sequences
for modified constructs granted by traditional molecular-genetic
techniques such as allelic exchange.

In this work, we demonstrated that by controlling expression
of chlamydial pgp6, we have generated a suicide vector enabling,
for the first time, regulation of plasmid stability, the curing of the
native pL2 plasmid, targeted genomic sequence deletion and al-
lelic exchange, and the simultaneous insertion of multiple genes
into the C. trachomatis L2 genome. This will enable more-nuanced
genomic modifications such as region deletions and exchange of
genes for those with modified domains as well as promoters. Fur-
thermore, the use of fluorescent markers permits the observation
and identification of successfully generated mutants without sac-
rificing the bacterial population for DNA extraction and screen-
ing—a significant bottleneck when attempting to isolate specific
mutants from heterogenic communities of obligate intracellular
pathogens.

Previously, a variety of viable chlamydial mutants were pro-
duced through random chemical mutagenesis (7). In addition to
these mutants, here we present the successful deletion of four tar-
get genes including two known type III secretion system effectors
while maintaining viable progeny. Although this suggests the
presence of numerous available targets in C. trachomatis, disrup-
tion of essential genes is of particular concern when handling the
minimalist chlamydial genome. Genetic manipulations that abol-
ish infectivity are tantamount to lethal mutations. Thus, in addi-
tion to targets that interfere with basic replication, any targets that
disrupt infectivity or invasion would not be feasible for investiga-
tion using EMS or TargeTron systems. Even the assessment that
such targets are essential may not be confirmed by these methods
as, when targeting such genes, there is no indication of lethality
besides the absence of recoverable mutants, an ambiguous result
that may be the product of lethal mutation or technical failure.
Here, we demonstrate that during FRAEM, successful transfor-
mation acts as a precursor to the generation of mutants. In all
cases, green fluorescent recombinant C. trachomatis bacteria were
consistently identified one passage after the observation of trans-
formants. Therefore, an absence of mutants after multiple rounds
of passaging transformants has the potential to act as a method of
indicating lethality. This may be confirmed by allelic exchange of
the native gene for one constructed under regulation of an induc-
ible promoter. The essential gene may still be characterized by
exchange with alleles with specific domain modifications. Addi-
tionally, mutations that do not disrupt replication but abolish
infectivity would theoretically continue to produce progeny for a
single replication cycle. Such green fluorescent, noninfectious el-
ementary bodies would be observable within a mature inclusion
and available for examination upon host cell lysis.

As has been previously reported, we also used spectinomycin as
a second selective pressure in C. trachomatis (31). The potential
for generating isolates with multiple mutations will continue to
rise with the number of available selective pressures in Chlamydia.
The ability to replace the drug resistance gene within the targeting
sequence of the suicide vector grants this approach the flexibility
to target additional sites within a previously mutagenized genome.
Furthermore, due to the high rate of lateral transfer and genomic
recombination, it is likely that mutations of different genes pres-
ent in distinct chlamydial isolates can be combined into the ge-
nomes of progeny by simultaneously applying multiple selective
pressures during coinfection. In the future, the isolation of strains

with multiple mutations may provide substantive benefits for the
dissection of chlamydial functions utilizing multiple or redundant
components. The examples of genomic manipulation presented
in this work demonstrate the potential of the suicide vector and
FRAEM as tools for advancing chlamydial research while estab-
lishing the genetic tractability of C. trachomatis.

MATERIALS AND METHODS
Cell cultures and organisms. C. trachomatis serovar L2 (LGV 434) and
derivative mutants were cultivated and examined for indole utilization in
HeLa 229 cell monolayers (CCL-2.1; ATCC). McCoy cell monolayers
(CRL-1696; ATCC) were used for all additional assays. Except where spec-
ified, host cells were routinely maintained at 37°C in an atmosphere of 5%
CO2 and 95% humidified air in RPMI 1640 containing 2 mM L-glutamine
(Gibco) supplemented with 10% (vol/vol) heat-inactivated fetal bovine
serum (Gibco). Elementary bodies were purified from HeLa cells by cen-
trifugation through MD-76R (diatrizoate meglumine and diatrizoate so-
dium injection USP; Mallinckrodt Pharmaceuticals) density gradients
(DG purified) as previously described (32).

Cloning. pBOMB4-Tet-mCherry was kindly provided by Ted Hack-
stadt (Laboratory of Intracellular Parasites, Hamilton, MT) (18). pSU6
was constructed by removing pgp6 from pBOMB4-Tet-mCherry by di-
vergent PCR amplification and religation, followed by exchange of the
mCherry gene with pgp6 amplified from C. trachomatis L2 genomic DNA
by insertion/deletion PCR as previously described (33). Template for am-
plification of the dual-fluorescence/drug resistance cassette was assem-
bled by inserting gfp amplified from pBOMB4-Tet-mCherry into pUC19
downstream of bla by insertion/deletion PCR, producing pUC19G. In
order to construct the suicide vector backbone for deletion of target genes,
gfp in pSU6 was replaced with the mCherry gene amplified from
pBOMB4-Tet-mCherry by insertion/deletion PCR, producing pSUmC.
aadA amplified from Gateway pDONR223 (Invitrogen) was introduced
into the HindIII restriction site of pUC18, resulting in pUC18A. Regions
spanning trpA, ctl0063, ctl0064, and ctl0065 with additional ~3-kbp flank-
ing arms were amplified from C. trachomatis L2 genomic DNA and in-
serted into pUC18A by insertion/deletion PCR. Target gene open reading
frames were removed by divergent amplification, and the linearized PCR
product was ligated to a 2.2-kbp amplicon spanning bla and gfp from
pUC19G in order to produce homologous recombination targeting se-
quences with cassettes providing both fluorescence and drug resistance.
These targeting sequences were fused to pSUmC by insertion/deletion
PCR, generating pSU�trpA, pSU�ctl0063, pSU�ctl0064, and
pSU�ctl0065. pCOMa was constructed by introducing aadA from
pDONR223 and the mCherry gene with the Neisseria meningitidis pro-
moter from pGFP::SW2 into pBOMB4-Tet-mCherry by insertion/dele-
tion PCR, thereby removing the anhydrotetracycline (ATc)-inducible
mCherry gene and tetR (3). gfp was then replaced with trpA amplified
from C. trachomatis L2 genomic DNA by insertion/deletion PCR, produc-
ing pCOMtrpA. All primers were custom DNA oligonucleotides from
Integrated DNA Technologies (see Table S1 in the supplemental mate-
rial). Q5 high-fidelity DNA polymerase and Quick Ligation kits (New
England Biolabs) were used for all PCR amplifications and ligations, re-
spectively.

Transformation and FRAEM. C. trachomatis L2 was transformed and
isolated as previously described with modifications (22). pCOMtrpA was
transformed with 500 �g/ml spectinomycin in lieu of penicillin G sodium
salt. During transformation with suicide vector-based constructs,
50 ng/ml ATc was added to the medium to prevent premature loss of
plasmid. After successful transformation of gene deletion constructs, the
observation of inclusions expressing exclusively green fluorescence was
used as a cue to begin isolating clonal populations by limiting dilutions in
the absence of drugs, as previously described (22). DNA was extracted
from wells containing C. trachomatis-infected monolayers (34), and rela-
tive counts of the 16S rRNA region, ctl0063, ctl0064, ctl0065, trpA,
mCherry gene, gfp, and the native pL2 plasmid were determined by quan-
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titative real-time PCR using the Bio-Rad CFX96 real-time system, iTaq
Universal SYBR green supermix (Bio-Rad), and appropriate primers (see
Table S1 in the supplemental material). Traditional PCR was employed to
amplify target regions for identification of band shifts (Table S1). C. tra-
chomatis mutants were DG purified, and DNA was extracted and analyzed
by whole-genome sequencing (ACGT) (35).

Immunostaining and microscopy. Western blot analysis of CTL0063,
CTL0064, CTL0065, TrpA, and Hsp60 was performed as described previ-
ously (4, 22, 29). Anti-TrpA was kindly generated by Grant McClarty
(University of Manitoba) and kindly provided by Harlan Caldwell (NIH/
NIAID). Progeny counts were determined by staining recoverable IFU as
previously described (36). Infected host cells were probed with anti-
Hsp60 and anti-LPS for visualization of C. trachomatis. All images were
acquired by epifluorescence microscopy using a 40� objective on an
Olympus CKX41 inverted microscope equipped with an Olympus DP12
camera.

Indole rescue. The ability of C. trachomatis strains to utilize indole as
a substrate to synthesize tryptophan was performed as previously de-
scribed (26, 27). Briefly, HeLa cell monolayers were maintained in Dul-
becco modified Eagle medium (DMEM) (Gibco). For analysis of chla-
mydial growth in indole, medium was replaced with custom medium
DMEM without L-tryptophan (UCSF Cell Culture Facility) with 100 �M
indole (Sigma) 20 h prior to infection. All media were supplemented with
10% (vol/vol) heat-inactivated fetal bovine serum (Gibco).

Whole-genome sequencing data accession number. Sequences re-
ported in this paper have been deposited in the NCBI Sequence Read
Archive under accession number PRJNA298309.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.01817-15/-/DCSupplemental.

Table S1, PDF file, 0.1 MB.
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