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Abstract: A stereoselective one-pot synthesis of spiropyrazo-
lones through an organocatalytic asymmetric Michael addition
and a formal Conia-ene reaction has been developed. Depend-
ing on the nitroalkene, the 5-exo-dig-cyclization could be
achieved by silver-catalyzed alkyne activation or by oxidation
of the intermediate enolate. The mechanistic pathways have
been investigated using computational chemistry and mecha-
nistic experiments.

F rom its basic inception in the late seventies, the Conia-ene
reaction has turned into a viable synthetic tool for organic
chemists by enabling the facile formation of five- or six-
membered carbo- and heterocycles."! More recently, asym-
metric procedures have emerged which further exemplify the
synthetic utility of this well-known pericyclic reaction.
Basically, all of these procedures rely on similar strategies,
either applying a cooperative heterobimetallic system with
a chiral ligand in the coordination sphere of the harder
metal® or by using a metal which enables the concurrent
activation of the alkyne and the enol moiety together with
a chiral ligand.”

Our group has become interested by the combination of
transition-metal and organocatalysis for the asymmetric
synthesis of annulated heterocycles.! Although we originally
focused our investigations on gold catalysis,”! we have been
recently intrigued by silver catalysis and its largely untapped
potential in sequential and relay catalysis."® Ag!salts
represent an inexpensive alternative to other carbophilic
transition metals commonly used for the electrophilic activa-
tion of alkynes such as gold or platinum.”) Moreover, unlike
cationic gold(I) complexes, silver salts can be easily combined
with organocatalysts including primary amines and squara-
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mides, without mutual catalyst deactivation or deteriorating
reaction rates'” As a consequence, there is no need for
further additives or harsher reaction conditions in order to
retrieve the active species of the metal catalyst.

Following this approach, we reported on the asymmetric
synthesis of pyrano-annulated pyrazoles originating from
alkyne-tethered nitroolefins and pyrazolones.[™ Given the
ambident nucleophilicity of pyrazolones, we wondered if the
formation of 4-spiropyrazolones was possible through the
subsequent addition of the enol hydrazide to the metal-
activated alkyne after the initiating Michael addition of the
pyrazolone to the nitroolefin. We envisioned that such an
addition would be feasible by increasing the distance between
the Michael acceptor moiety and the alkyne (Scheme 1b).

Indeed, the planned strategy turned out to be a convenient
one-pot procedure for the complementary synthesis of five-
membered 4-spiropyrazolones, which have been recently

a) Previous work by Lu et al.: Phosphine-catalyzed [4+1] annulation
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Scheme 1. General outline of the strategy employed herein and pre-
vious related work (H-Do denotes hydrogen-bonding donor).
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distinguished as efficient phosphordiesterase inhibitors
(Scheme 1c¢).'"Yl Interestingly, most literature-known organo-
catalytic syntheses are limited to the generation of six-
membered spiro derivatives.'>"*! There is only one prece-
dence by Lu and co-workers who employed a phosphine-
catalyzed [4+1] annulation using pyrazolones and allenoates
(Scheme 1a)." However, this procedure suffers from high
catalyst loadings and it is limited to pyrazolones with bulky
substituents (R' =aromatic; R?=rBu). Moreover, the reac-
tion has only been probed for a single allenoate, and it is
unclear whether further substituents on the spirocycle could
potentially be introduced.

Our optimization studies showed that the best results
were achieved by reacting pyrazolone and nitroalkene in
chloroform at —40°C in the presence of 1 mol% of a di-
hydroquinine-derived squaramide DHQN-SA1 and 3 mol %
of Ag,O (see the Supporting Information for optimization
tables; see Scheme 2 for the structure of DHQN-SA1). The
efficiency of the reaction appeared to be also influenced by
the solubility of substrates and the intermediates, as well the
stability of the Michael adduct in solution.

With the optimized reaction conditions in hand, different
substrates were probed to demonstrate the general applic-
ability of the sequential reaction (Scheme 2).1"!

In general, excellent yields and enantioselectivities along
with good to excellent diastereoselectivities were obtained for
differently substituted pyrazolones (Scheme 2; 3a, 3b, 3e-h).
Some pyrazolones as well as the corresponding Michael
adducts showed a limited solubility in CHCl,, so that either
different solvents had to be applied or the reaction had to be
conducted at higher temperatures. Thus, lower yields and
selectivities were detected for these examples. The developed
procedure was also amenable to differently substituted nitro-
alkenes with terminal alkynes resulting in the formation of
spiropyrazolones in high yields and excellent stereoselectiv-
ities. In general, the electronic nature of the substituent did
not influence the outcome of the reaction, however, bulky
nitroolefins led to lower yielding reactions (Scheme 2;
products 31 and 3n). The application of nitroalkenes with
internal alkynes bearing aliphatic substituents was also
feasible, although higher catalyst loadings had to be used to
achieve comparable results (30, 3p).

Interestingly, we found that the cyclization for the
intermediate Michael adducts originating from nitroolefins
which contain internal alkynes with an additional phenyl
substituent occurred without the presence of metal salts as
catalysts (Table 1). Thus, it was feasible to obtain the
corresponding spiropyrazolones in good to excellent yields
and stereoselectivities. It should be noted though that these
reactions were conducted at room temperature because the
Michael addition was not feasible at lower temperatures.

The absolute configuration of the obtained spiropyrazo-
lones 3 and 4 as well as the formation of the Z diastereomer
were confirmed by X-ray diffraction analysis of suitable
crystals from derivatives 3h and 4a (Figure 1; see also the
Supporting Information)."!

To gain insight into the mechanism and origin of the
selectivity, we turned to computational studies. Following the
initial Michael addition step, the generated intermediate Sa
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Scheme 2. Substrate scope for the sequential catalysis. [a] The reaction
was performed in toluene at room temperature. [b] The reaction was
performed at room temperature. [c] In the presence of 10 mol % Ag,0.
General reaction conditions: 1 (0.33 mmol), 2 (0.3 mmol), DHQN-SA1
(1 mol %), Ag,O (3 mol %), CHCl; (1.2 mL), —40°C to RT.
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could potentially be neutral or reside as an anionic species
(enol or enolate, respectively; see Figure 2). We considered
both possibilities and studied the pathways for ring closure in
an exo and endo fashion, applying the CPCM (DCM) MO06/
def2-TZVP//B3LYP/6-31G(d) level of theory."®' Our data
suggest that the neutral, uncatalyzed pathway has a prohib-
itively high barrier (AG* =29.3 kcalmol !, relative to 5a") to
take place under the applied reaction conditions."!
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Table 1: Substrate scope for the nitroalkene bearing an internal alkynes
with a phenyl substituent.”

1 mol% ONJQ 2
__DHGN-sA1 'y N
©/< [(N R? CHCl, (025 M), RT Q@N
7~Ph
R1
4
4 R' R? Yield [%]® d.rid ee [%]
a Me Ph 99 10:1 90
b Et Ph 83 >20:1 93
c iPr Ph 74 >20:1 92
d Ph Ph 95 6:1 91
e Me 2-Cl-C¢H, 73 10:1 82
f Me 4-Me-C4H, 89 10:1 99
gt Me Me 59 20:3 86

[a] Reaction conditions: 1 (0.33 mmol), 2 (0.3 mmol), DHQN-SAT1

(3 mol%), CHCl; (1.2 mL), RT, 1-2 h. [b] Yield of 4 after flash
chromatography. [c] Determined by '"H NMR spectroscopy. [d] Deter-
mined by HPLC using a chiral stationary phase. [e] The formation of
small amounts of an additional diastereomer or regioisomer was
detected.
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Figure 2. Calculated reaction pathway for the deprotonated intermedi-
ate under silver(l) catalysis. Calculated at the CPCM (DCM) MO06/def2-
TZVP// B3LYP/6-31G(d) (LANL2DZ for Ag) level of theory. Free
energies in kcalmol™".

The anionic pathway is characterized by a lower activation
free energy barrier (AG* =21.7 kcalmol '), favoring the 5-
exo-dig cyclization by AAG™ =4.9 kcalmol'. However, the
process suffers from being highly endergonic (AG,,=
20.5 kcalmol™) and thermodynamically strongly disfavor-
ed.(see the Supporting Information for more details). In
contrast, in the presence of Ag®",” the same 5-exo-dig
cyclization is calculated to become thermodynamically
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strongly favored (AG,,=—17.5kcalmol™"), and exhibits
a significantly lower activation barrier (AG,,=17.3 kcal
mol~'; see Figure 2).2!]

A special case is the phenyl-substituted substrate 1 (R' =
H, R*=Ph), that we experimentally found to react even
under silver-free conditions, albeit more slowly. This silver-
free process was found to occur only in the presence of
oxygen, strongly suggesting that a radical pathway upon
oxidation may also be possible. In accordance with this, we
calculated a relatively facile and slightly exergonic cyclization
of the radical derived from the Michael addition intermediate
(5b*; AG* =11.1 kcalmol ) at the CPCM (DCM) M06/def2-
TZVP//ROB3LYP/6-31G(d) level of theory. On the other
hand, for the unsubstituted substrate 1 (R'=H, R*=H),
which did not yield any product under Ag-free aerobic
conditions, the analogous process is predicted to be signifi-
cantly less favored, both kinetically (AG*™ =20.0 kcalmol ')
and thermodynamically (AG,,=+9.0 kcalmol™), likely
therefore favoring a nonproductive side reaction under
these conditions (see the Supporting Information for details).

Consequently, the sequential procedure can be described
as a combination of a squaramide-catalyzed Michael addition
and a silver-catalyzed Conia-ene reaction. Similar to our
previous work,® the organocatalyzed asymmetric reaction
may proceed through the formation of a ternary complex in
which the nitroalkene undergoes electrophilic activation
by hydrogen-bond formation to the squaramide scaffold
) [22,23]

(Figure 3).

Figure 3. Proposed transition state for the organocatalytic Michael
addition.

In summary, we have developed a one-pot procedure for
the asymmetric synthesis of five-membered spiropyrazolones
starting from readily available pyrazolones and alkyne-
tethered nitroalkenes. The syntheses of the desired products
proceed in high yields and stereoselectivities under mild
reaction conditions at comparatively low catalyst loadings.
Considering that different substituents on the nitroolefin and
pyrazolone substrates are tolerated, this method circumvents
the formerly known limitations of similar spiropyrazolone
syntheses.

Experimental Section

A suspension of nitroolefin la (57 mg, 0.33 mmol, 1.1 equiv),
pyrazolone 2a (52 mg, 0.3 mmol, 1.0 equiv), DHON-SA1 (1 mol %),
and Ag,0 (3mol%) in CHCl; (1.2 mL) was stirred at —40°C until

www.angewandte.org

dte

Chemie

1799


http://www.angewandte.org

GDCh
~—

complete conversion of the substrates was achieved as indicated by
TLC monitoring. The mixture was allowed to warm to room
temperature and was stirred for an additional two hours. The
spiropyrazolone 3a was obtained after flash chromatography on
silica (eluent: n-pentane/Et,0O) as a colorless solid (104 mg, 99 %).
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