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Synopsis

Yeast mtDNA is compacted into nucleoprotein structures called mitochondrial nucleoids (mt-nucleoids). The principal
mediators of nucleoid formation are mitochondrial high-mobility group (HMG)-box containing (mtHMG) proteins. Al-
though these proteins are some of the fastest evolving components of mt-nucleoids, it is not known whether the
divergence of mtHMG proteins on the level of their amino acid sequences is accompanied by diversification of their
biochemical properties. In the present study we performed a comparative biochemical analysis of yeast mtHMG pro-
teins from Saccharomyces cerevisiae (ScAbf2p), Yarrowia lipolytica (YIMhb1p) and Candida parapsilosis (CpGcflp). We
found that all three proteins exhibit relatively weak binding to intact dsDNA. In fact, ScAbf2p and YIMhb1p bind quantit-
atively to this substrate only at very high protein to DNA ratios and CpGcflp shows only negligible binding to dsDNA. In
contrast, the proteins exhibit much higher preference for recombination intermediates such as Holliday junctions (HJ)
and replication forks (RF). Therefore, we hypothesize that the roles of the yeast mtHMG proteins in maintenance and
compaction of mtDNA in vivo are in large part mediated by their binding to recombination/replication intermediates.
We also speculate that the distinct biochemical properties of CpGeflp may represent one of the prerequisites for
frequent evolutionary tinkering with the form of the mitochondrial genome in the CTG-clade of hemiascomycetous
yeast species.
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INTRODUCTION

such evolutionary distant species as humans and Saccharomyces
cerevisiae [2]. A deficiency in a histone-encoding gene, or even
an imbalance in their expression is often fatal, or can accelerate

The compaction of DNA into chromosomes enables not only its
accommodation into the confines of the cell, but also provides
a means for spatial regulation of gene expression and protection
from DNA damage. Given its importance, it is not surprising
that the compaction of DNA into nucleosomes is mediated by a
complex of highly conserved proteins called histones [1]. Their
extremely high level of conservation is exemplified by the fact that
only eight of 102 amino acids differ between the H4 histones of

aging [3,4], further underlining the importance of these proteins
in mediating principal functions in DNA maintenance and gene
expression [5].

The necessity for DNA compaction is not limited to the eu-
karyotic nucleus, as it also extends to bacterial cells as well as
DNA-containing organelles, namely chloroplasts and mitochon-
dria. In the latter, the DNA is compacted into nucleoprotein struc-
tures called mitochondrial nucleoids (mt-nucleoids) [6—11]. This

Abbreviations: Cp, Candida parapsilosis; D-loop, displacement loop; ds, double-stranded; EMSA, electrophoretic-mobility shift assay; HJ, Holliday junctions; HMG, high-mobility group;
mt, mitochondrial; nHJ, nicked Holliday junction; RF, replication forks; Sc, Saccharomyces cerevisiae; ss, single-stranded; TFAM, transcription factor A, mitochondrial; t-loop, telomeric
loop; Y1, Yarrowia lipolytica.
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compaction is in part mediated by proteins containing two DNA-
binding domains known as an high-mobility group (HMG)-box
[12]. The best-characterized members of this group of proteins
(mitochondrial HMG-box containing proteins; mtHMG proteins)
are ScAbf2p [13-15] and mammalian mitochondrial transcrip-
tion factor A (TFAM) [16-20]. Apparently, during the evolution
of eukaryotic cells, the host genome-encoded mtHMG proteins
replaced the polypeptides that served as the major nucleoid com-
ponents in the original a-proteobacterial endosymbiont [21]. Yet,
although it seems that the presence of an HMG-box is a universal
feature of mitochondrial compaction proteins in all eukaryotes,
their overall amino acid sequences exhibit very low similarity.
In fact, mtHMG proteins seem to represent one of the most di-
vergent groups of mitochondrial proteins [22]. Thus, in contrast
with histones, it is very difficult to identify them by simple bioin-
formatic tools and most of the mtHMG proteins were identified
using proteomic analyses of purified mt-nucleoids [22-25].

The dissimilarities between mtHMG proteins can be explained
either by the fast evolutionary divergence of the common ancestor
or by acquisition of new features. Perhaps the heterogeneity at
the level of amino acid sequences in the mtHMG proteins cor-
responds to different biochemical roles in mtDNA maintenance
and segregation, or possibly differences in mtDNA base compos-
ition and topology. To explore this question we have performed
a comparative biochemical analysis of mtHMG proteins from
distantly related species. For this purpose, yeast species from
the subphylum Saccharomycotina represent an ideal group of or-
ganisms. They exhibit a high degree of biodiversity [26], their
mtDNAs differ in size, base composition and topology [27], and
mtHMG proteins were identified in a number of species separated
by hundreds of millions of years of evolution [15,22-24,28-30].
However, the only biochemically characterized yeast mtHMG
protein is Abf2 of S. cerevisiae [13—15,31-35]. It was shown that
ScAbf2p prefers negatively supercoiled DNA over circular or lin-
ear DNA and that, in cooperation with a DNA topoisomerase, it
introduces negative supercoils into a topologically relaxed, co-
valently closed circular dSDNA molecule [15,32]. Its binding
to mtDNA is nonrandom, which may be accomplished by the
phased distribution of short stretches of poly(dA) indicating its
role in genome organization and site-specific regulation of tran-
scription or DNA replication [32]. Optical trapping of single
DNA molecules extended by flow and visualized by fluorescence
microscopy allowed determination of the binding constant of
Abf2 (K, = 2.57+0.74 x 107 M~ 1) [31] (but see also [35]),
and relative small forces (<0.6 pN) stabilizing the condensed
DNA-protein interactions [31]. AFM revealed that at high con-
centrations of Abf2, the DNA is compacted into relatively loosely
packaged 190 nm structures [31,33] indicating that Abf2 is in-
deed the bona fide mtDNA-packaging protein. This conclusion
was also reached based on the results of an in organello ChIP-
on-chip assay demonstrating that ScAbf2p binds to most of the
mitochondrial genome with a preference for GC-rich gene se-
quences [36].

Although these studies provided important information about
the DNA-binding properties of ScAbf2, they also left several
important questions unanswered. First, the in vitro studies were

mostly performed on intact dsDNA substrates, whereas yeast
mitochondria contain topologically different forms of DNA gen-
erated as a result of various types of transactions including replic-
ation, recombination and repair [37-40]. It is known that HMG-
box containing proteins recognize some of these structures with
high affinity [12]. However, information about the binding of
yeast mtHMG proteins to DNA substrates such as Holliday junc-
tions (HJ) or replication forks (RF) is lacking. Second, the com-
paction of DNA is induced at relatively high ScAbf2p to DNA-
binding site ratios (20 to 1) [31,33], whereas in the organelle
there is one molecule of ScAbf2p per 27 bp of DNA (size of the
binding site) [15] (see also below). And third, basically all bio-
chemical data on mtHMG proteins are derived from the studies
of ScAbf2p. As indicated above, the mtHMG proteins repres-
ent the fastest evolving component of mt-nucleoids [22] and it
is currently unknown if this divergence in amino acid sequence
translates into differences in biochemical properties.

To address these questions we have performed a comparative
analysis of mtHMG proteins from three distinct yeast species
(Figure 1). Namely, we selected ScAbf2p from S. cerevisiae as
the best-characterized protein thus allowing comparison of our
results with those published by other authors. Y/IMhblp from
Yarrowia lipolytica [23] was chosen because this species belongs
to basal lineages of Saccharomycotina and phylogenetically is
very distant to S. cerevisiae. Therefore, we could compare bio-
chemical properties of two proteins with very divergent amino
acid sequences, whose only common feature is the presence of
two HMG-boxes. Finally, CpGceflp is the mtHMG protein from
Candida parapsilosis, the yeast species with a linear mitochon-
drial genome [22,41]. A detailed characterization of this protein
enabled us to address the question of how biochemical proper-
ties of mtHMG proteins may be associated with the evolutionary
emergence of the linear mitochondrial genome forms, frequently
occurring in species from the CTG-clade of Saccharomycotina
encompassing C. parapsilosis.

MATERIALS AND METHODS

Microbial strains and growth conditions

Escherichia coli DHS«a (F~, 80dlacZAM15, A(lacZYA-argF)
U169, deoR, recAl, endAl, hsdR17 (rk~, mk™ ), A, thi-1, gyrA96,
relAl, ginV44, nupG) (Life Technologies) was used for the amp-
lification of plasmid constructs. E. coli BL21 Star™(DE3) (F~,
ompt, hsdSB, rB~mB~, gal, dcm, rnel31) (Life Technologies)
was used for production of recombinant proteins (ScAbf2noMP,
YIMhb1noMP, CpGceflnoMP). Bacterial cultures were grown in
LB medium (1 % (w/v) bacto peptone (Difco), 0.5 % (w/v) yeast
extract (Difco), 1% (w/v) NaCl, pH 7.5) containing 100 pg/ml
ampicillin.

DNA manipulations
Enzymatic manipulations with DNA, cloning procedures and
DNA labelling were performed according to the instructions
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Figurel1 Yeast mtHMG proteins

Domain prediction in Abf2, Gefl and Mhb1 proteins is based on previous reports [15,22,23,30]. MTS — mitochondrial
targeting sequence (not present in the mature protein). Note that although SMART (http://smart.embl-heidelberg.de) and
InterProScan (http://www.ebi.ac.uk/interpro/) searches did not identify HMG-1 box in CpGcflp, the corresponding region
appears to be weakly conserved with HMG-1 box detected in its orthologues from Candida lusitaniae, Candida subhashii,

Debaryomyces hansenii and Meyerozyma guilliermondii.

Table 1 List of oligonucleotides
1, preparation of pGEX-6P-2 derived vectors. 2, preparation of DNA
substrates used in EMSA experiments.

Name sequence 5'> 3’ Application
ScABF2noMP_F AAGGCTTCCAAGAGAACGCAGC 1
YIMHB1noMP_F AAGGAGGCTGCCACTAAGACC 1
pGEX6P2noMP_R ~ GGGCCCCTGGAACAGAACTT 1
CpGCF1noMP_F TCAACCGCCAAAACCACTC 1
CpGCF1noMP_R TTAGATTGTGAATTTGTACTCTTGT 1
ScATP9_15_D GGAGCAGGTATTGGT 2
ScATP9_15_C ACCAATACCTGCTCC 2
ScATP9_25 D GGAGCAGGTATTGGTATTGCTATCG 2
ScATP9_25_C CGATAGCAATACCAATACCTGCTCC 2
ScATP9_50_R ACACCATTAATTAAAGCTGC 2

provided by the vendors. The oligonucleotides (Table 1) were
synthesized by Microsynth. The PCRs were performed in 10—
50 pul volumes using Dream7ag DNA polymerase (Life Technolo-
gies) or Phusion Hot Start II High fidelity DNA polymerase (Life
Technologies) and contained all four dNTPs (final concentration
200 uM each), the corresponding primers (final concentra-
tion 1 M), and either 100 ng of genomic DNA or mtDNA or
10 ng of plasmid DNA. The PCR fragments were purified from
agarose gels using a QIAquick Gel Extraction kit (Qiagen) or
Zymoclean Gel DNA recovery kit (Zymo Research).

Construction of plasmid vectors

For the expression of recombinant versions of mtHMG proteins
lacking the cleavable mitochondrial import sequence (noMP) in
fusion with GST a series of pGEX-6P-2 (GE Healthcare) de-
rived plasmids was constructed as follows. Plasmids pGEX-
6P-2-ScABF2noMP and pGEX-6P-2-YIMHBInoMP were pre-

pared by inverse PCR to eliminate the first 26 amino acids for
ScAbf2p and 14 amino acids for Y/Mhblp, corresponding to
cleavable mitochondrial import sequence. In the reaction, primers
pGEX6P2noMP_R and ScABF2noMP_F or YIMHB 1noMP_F
(Table 1) were used and previously prepared plasmids pGEX-6P-
2-ScABF?2 or pGEX-6P-2-YIMHBI [23] were used as templates.
For the construction of the plasmid pGEX-6P-2-CpGCFInoMP
the CpGCF1 ORF lacking the first 33 amino acids, which repres-
ent cleavable mitochondrial import sequence, was amplified by
PCR from the genomic DNA of C. parapsilosis strain CBS604
using primers CpGCF1noMP_F and CpGCF1noMP_R (Table 1).
The PCR product was inserted into the vector pGEX-6P-2 (GE
Healthcare) linearized with Smal. All plasmid constructs were
verified by restriction enzyme mapping and DNA sequencing
(Microsynth) of the inserted fragments.

Expression and purification of recombinant
mtHMGp from E. coli

Recombinant mtHMG proteins without the mitochondrial import
presequence were purified from bacterial cells as described pre-
viously for full length YIMhb1 protein [23]. The presence and
purity of proteins were verified by 12 % SDS-PAGE stained with
Coomassie Brilliant Blue R-250.

DNA substrates and electrophoretic-mobility shift
assay (EMSA)

For electrophoretic-mobility shift assay (EMSA) experiments
aimed at characterizing the length of the binding site for
mtHMG proteins (Figure 2) oligonucleotides SCATP9_15_D and
ScATP9_25_D (Table 1), derived from the S. cerevisiae mito-
chondrial gene atp9, were radioactively labelled using T4 poly-
nucleotide kinase (Life Technologies) and [y3?P]ATP. The la-
belled oligonucleotide was then mixed with non-labelled com-
plementary oligonucleotide (SCATP9_15_C or ScATP9_25_C,
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Table 1) in a molar ratio of 1:3. The mixtures were incub-
ated at 95°C for 5 min and cooled slowly to room temperature
to allow DNA annealing. The unincorporated [y**P]ATP was
removed from the DNA by gel filtration using Probe Quant
G-50 MicroColumns (GE Healthcare). The 50 bp long DNA
substrate derived from the afp9 gene was amplified by PCR
from mtDNA of S. cerevisiae strain W303-1A using primers
ScATP9_15_D and ScATP9_50_R (Table 1) and terminally end-
labelled using T4 polynucleotide kinase. Fluorescently labelled
DNA substrates for EMSA were prepared as described previ-
ously [42,43]. The structures of the DNA probes are schemat-
ically depicted in the corresponding figures. The GC content of
the probes ranged between 40 % (50 bp probe) and 53 % (15 bp
probe), which is higher than the GC content in afp9 coding
sequence (33%).

Indicated amounts of purified recombinant proteins
ScAbf2noMP, YIMhb1noMP or CpGceflnoMP were mixed with
the individual radioactively or fluorescently labelled DNA sub-
strate (3 nM) and incubated for 10 min at 30°Cin 10 ul of a buffer
containing 20 mM Tris/HCI pH 7.5, 1 mM EDTA/NaOH pH 8.0,
50 mM NaCl, 100 pg/ml BSA. Samples were electrophoretic-
ally separated in 5 or 8 % (w/v) polyacrylamide gels in 0.5x
TBE buffer (45 mM Tris/borate, 1 mM EDTA/NaOH pH 8.0) at
4°C. Note that the loading buffer contained only a final concen-
tration of 5% (v/v) glycerol, as we observed that the presence
of bromophenol blue and xylene cyanol blue almost completely
abolished the binding of mtHMG proteins to DNA. Radioact-
ively labelled DNA substrates were visualized after exposing the
gels to storage phosphor screens (Kodak) for 24-72 h using a
Personal Molecular Imager FX (BioRad). Fluorescent DNA sub-
strates were visualized directly using imager reader FLA-9000
Starion (Fuji) and quantified using MultiGauge V3.2 software
(Fuji).

Electron microscopy

The DNA-binding reactions for EM were performed in 50 ul of
HEN buffer (20 mM HEPES/NaOH pH 7.5, 1 mM EDTA/NaOH
pH 8.0, 50 mM NaCl) containing 2 ng/ul of the substrate DNA
and 15 ng/ul of purified ScAbf2p. Plasmid pGLGAP and pre-
paration of the RF and HJ substrates were described elsewhere
[44,45]. The reactions were carried out at room temperature for
15 min, followed by addition of 10 ul of 1.2 % (v/v) glutaralde-
hyde and incubation at room temperature for additional 6 min.
To remove the unbound proteins and fixative, the samples were
diluted to 50 ul in HEN buffer and passed over 2 ml columns
of 6% agarose beads (ABT Inc.) equilibrated with TE buffer
(10 mM Tris/HCl, pH 7.4, 0.1 mM EDTA/NaOH). Aliquots of
the fractions containing the complexes were mixed with a buffer
containing spermidine and adsorbed on to copper grids coated
with a thin carbon film glow-charged shortly before sample ap-
plication. Following adsorption of the samples for 3 min, the grids
were dehydrated through a graded ethanol series and rotary shad-
owcast with tungsten at 10 ~7 torr [46]. Samples were examined
in an FEI T12 TEM equipped with a Gatan 2k x 2k SC200 CCD
camera.

RESULTS

Yeast mtHMG proteins differ in their affinity to
dsDNA

To initiate the biochemical characterization of mtHMG proteins,
we expressed recombinant genes encoding the corresponding
protein without the N-terminal mitochondrial targeting sequence
in fusion with GST using the pGEX-6P-2 vector. To obtain native
versions of the proteins, the fusion proteins purified from E. coli
were treated with PreScission protease to remove the GST affinity
tag (Figure 2A). The concentrations of the proteins were then
adjusted to the same value and their affinity to dsSDNA assessed
by EMSA.

The proteins were first tested for their ability to bind dsDNA
of various lengths (15-50 bp) derived from the S. cerevisiae atp9
gene (Figure 2B). Although none of the proteins was able to bind
the shortest (15 bp) DNA fragment, the 25 bp DNA was almost
quantitatively shifted by ScAbf2p. YIMhb1p exhibited very weak
binding and CpGcflp did not bind this probe at all. The 50 bp
DNA fragment was bound by all three mtHMG proteins. Both
ScAbf2p and YIMhblp formed two DNA-—protein complexes,
possibly corresponding to one and two protein molecules per
molecule of DNA, respectively. CpGceflp formed only a single
complex with DNA, although its mobility corresponded to the
slower migrating form of DNA bound by Y/Mhblp. Although
the nature of this complex is unclear (see Discussion), it is evident
that the affinities of the mtHMG proteins to dsDNA as well as the
lengths of their corresponding DNA-binding sites differ, and that
the CpGeflp exhibits the lowest affinity towards intact dsDNA.

ScAbf2p exhibits a high preference for
replication/recombination intermediates

The results presented in Figure 2B indicate that to obtain quantit-
ative binding of mtHMG proteins to dsDNA, even in the case of
ScAbf2p (which exhibits the strongest binding), a relatively high
protein to DNA-binding site ratio (50-100 to 1) is required. A re-
latively high ratio of ScAbf2p to binding sites was also required
for a complete compaction of DNA by ScAbf2p as visualized
by AFM [31,33]. Namely, to completely compact a linear DNA
(pBR322) containing 175 binding sites, almost 4000 molecules of
ScAbf2p were needed (a ratio of 22 ScAbf2p to 1 DNA-binding
site) [31], and similar results were obtained by another group
[33]. At such high ratios of protein to DNA, contamination of
the native protein with denatured molecules or truncated species,
either of which may induce a general aggregation or collapse of
the DNA, becomes a significant concern.

In vivo, the ratio of ScAbf2p to DNA is much lower than what
has been employed in the previous biochemical studies. Diffley
and Stillman [15] originally estimated the amount of ScAbf2p
to be 250000 molecules per cell, but more recent assessments
of the cellular amount of Abf2p resulted in two orders of mag-
nitude lower numbers, namely 3810 [47] and 860 [48] molecules
of Abf2p per cell, respectively. If there are 50-100 molecules of
85 kbp mtDNA per cell and the length of the binding site is 27 bp
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Figure 2 Purified yeast mtHMG proteins differ in their ability to bind dsDNA of various lengths

(A) Purified mtHMG proteins were visualized by Coomassie staining of gels after their separation by 12 % SDS-PAGE. (B)
The proteins (at indicated concentrations) were incubated with 3 nM of 15 bp, 25 bp or 50 bp radioactively labelled dsDNA
substrates and the samples were separated in polyacrylamide gels as described in Materials and methods. B free

DNA probe; C, DNA—protein complexes.

(Figure 2B; [15]), there would be 160000-320000 binding sites
per cell and thus even when the highest estimate of Abf2p mo-
lecules is taken into account, the stoichiometric ratio of ScAbf2p
to DNA substrate in vivo is 1 to 1 (when considering the lower
estimates, the ratio would drop dramatically). Under these con-
ditions, the binding of ScAbf2p to dsDNA is 3-5-fold lower
(Figure 2B) and the level of compaction is almost negligible
[31,33]. Indeed, when we visualized the binding of ScAbf2p to
plasmid DNA by EM at a protein to DNA-binding site ratio of 1
to 1 we observed only 5-10 protein particles per DNA molecule
(Figure 3A). Therefore, we reasoned that intact dSDNA may not
be the best substrate for this protein. Rather, ScAbf2 may prefer
DNA forms resulting from various types of DNA transactions
such as replication and recombination. This hypothesis was sup-
ported by the fact that many nuclear mtHMG proteins exhibit a
preference for recombination intermediates [12] and yeast mito-
chondria possess a DNA recombination system involved in both
DNA replication and repair [49]. We therefore tested the ability
of ScAbf2p to bind RF or HJ by EM. Indeed, we found that the
binding of protein to DNA occurred almost exclusively at the RF
(Figure 3B) or at the junction (Figure 3C). These results promp-
ted us to compare the binding of all three mtHMG proteins to
various DNA substrates by EMSA.

Comparative analysis of yeast mtHMG proteins
reveals differences in their binding preferences to
various DNA substrates

To compare the DNA-binding properties of the mtHMG proteins
we tested 10 different DNA substrates, namely intact dsSDNA (see
also Figure 2B), HJ, RF, 3’ Flap, 5’ Flap, single-strand (ss), 3’ and
5" overhang (OH), Y-form, nicked and intact HJ (nHJ a HI)
and displacement loop (D-loop) DNAs (Figure 4). The similar-
ities and differences between the proteins are best illustrated by
the first four substrates (Figures 4A and 4B). ScAbf2p exhib-
ited the strongest binding to each of these structures with intact

dsDNA and the 3’ Flap substrates being the least preferred. The
difference in binding between the three proteins was most evident
on intact dsDNA. To shift 50 % of the probe 30 nM of ScAbf2p
was sufficient, whereas 120 nM of Y/IMhblp was needed, and
CpGcflp did not shift 50 % of dsDNA even at the highest tested
concentration (Figure 4B). On the other hand, RF containing
DNA, and especially HI DNAs were bound very efficiently by
all three mtHMG proteins even at lower protein concentrations
(Figures 4A and 4B). It is of note that CpGceflp, which bound
dsDNA and 3’ Flap substrates very poorly, was almost as efficient
in binding to the HJ DNA as ScAbf2p (Figure 4B). This demon-
strates that the low affinity of CpGeflp to dsDNA and 3’ Flap
DNA is not a result of the protein being nonfunctional, but rather
reflects its intrinsic biochemical preference for certain types of
DNA substrates. The binding of the proteins to other DNA sub-
strates, including ssDNA, 5" Flap, Y-form, 3’ OH and 5 OH
substrates was similar as to dsSDNA, whereas the nHJ and D-loop
DNAs were bound as efficiently as the HI DNA (Figure 4C).

Intriguingly, CpGceflp exhibits the largest difference in its abil-
ity to bind recombination intermediates (HJ, nHJ, D-loop DNAs)
compared with dSDNA and RF DNA. At the protein concentration
of 120 nM, CpGecflp exhibits an 8-fold higher affinity towards
HJ compared with 3’ Flap DNA (Figure 5A). Therefore, we have
performed competition experiments, where the protein is incub-
ated simultaneously with both dsDNA and HJ DNA. Whereas
the former is basically unrecognized, there is a relatively robust
binding of the protein to the HJ substrate (Figure 5B).

DISCUSSION

Our results point out several important properties of yeast
mtHMG proteins. First, intact dsDNA is a relatively poor
substrate. ScAbf2p exhibited the highest apparent affinity for
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Figure 3 ScAbf2 protein exhibits a binding preference for RF and HJ
15 ng/ ul of purified ScAbf2p were incubated with 2 ng/ul of pGLGAP (A) RF (B) or HJ (C) substrates for 15 min at room
temperature. The samples for EM were prepared as described in Materials and methods. The bars represent 50 nm.

dsDNA; however, to achieve a quantitative binding, high protein
to DNA ratios were needed (Figure 2B). Whereas Y/Mhbl1p ex-
hibited similar binding to the 50 bp long dsDNA as ScAbf2p,
it bound very weakly to 25 bp dsDNA. This might be caused
by a longer binding site of Y/Mhblp compared with ScAbf2p.
The binding of CpGceflp to dsDNA was very weak for all sub-
strates even at the highest protein to DNA ratios (Figures 2B
and 5). In case of the 50 bp probe the shift by the CpGcflp cor-
responds to the supershift observed by YIMhblp and ScAbf2p
suggesting that protein dimers are bound to the probe. The pres-
ence of a coiled-coil domain in CpGceflp might be responsible
for the formation of oligomeric complexes, but this possibility

needs to be tested experimentally. The role of dimerization in
DNA binding and compaction was studied in detail in case of the
mammalian mtHMG protein (TFAM) and is still a matter of de-
bate. Two crystal structures of TFAM bound to the heavy strand
promoter or to a nonspecific mtDNA sequence showed evidence
of TFAM dimerization [50]. On the other hand, a more recent
study demonstrated that dimerization is not required for TFAM-
induced compaction of mtDNA [51] underlining the importance
of further investigation of interactions of mtHMG proteins with
DNA.

Even though ScAbf2p might bind to some sites on mtDNA
with higher preference, it was found to bind to most of the
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EMSA of yeast mtHMG proteins with various DNA substrates reveals both similarities and differences in their

(A) The proteins (at indicated concentrations) were incubated with 3 nM of the fluorescently labelled DNA substrates
(dsDNA, 3’ Flap, HJ and RF DNA), whose predicted structures are indicated on the left side of each panel. Stars indicate
the position of the fluorescent dye. B free probe; C, DNA—protein complexes. (B) The percentage of the shifted DNA
fragments was quantified using Multi Gauge V3.2 software (Fuji). The results represent an average of at least three
independent experiments. (C) Analysis of the binding of yeast mtHMG proteins to ssDNA, 3’ OH, 5 OH, 5’ Flap, Y-form,
nHJ and D-loop DNA was performed as in Figure 4A. R free probe; C, DNA—protein complexes.

genome in vivo [36]. Taking into account the ratio of ScAbf2p to
DNA in vivo (at most one molecule of the protein per one 27 bp
binding site, but possibly much lower (see above)) our results
indicate that the role of yeast mtHMG proteins in the compaction
of mtDNA might not be as straightforward as suggested by pre-
vious studies. This conclusion is supported by the fact that cells
lacking ScAbf2p [9], YIMhbl1p [23] or the Gcflp orthologue of
Candida albicans (CaGceflp) [29], exhibit morphologically dif-
ferent, yet still functional mt-nucleoids. This can be explained
by the existence of distinct mtDNA-compaction factors acting in
parallel with the mtHMG proteins. Some of the candidates (such
as Acolp, Ilv5p) were identified in S. cerevisiae [7,52,53]; how-
ever, the means by which these proteins mediate compaction of
mtDNA are far from understood.

The second general important property of the yeast mtHMG
proteins we observed is their preference for DNA structures gen-
erated during replication, recombination and/or repair (Figures 3
and 4). This biochemical property is common for proteins of
the HMG-1/HMG-2 subfamily that were shown to bind distor-
ted structures such as HIJ, cis-platinum adducts or base bulges
[54]. This is also true for mammalian mtHMG protein TFAM
that was demonstrated to exhibit 10-fold higher affinity for HJ
[55] as well as RNA four-way junctions [56] compared with the
linear dsDNA. Although it was shown that an R-loop formed in
the human mitochondrial replication origin contains a Holliday-
like structure [57], the level of DNA recombination in mam-
malian mitochondria is (at best) relatively low [58] and thus
the physiological role of high-affinity binding of TFAM to HJ
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CpGcefip exhibits the most dramatic difference in binding to dsDNA and 3’ Flap compared with HJ and RF

(A) Quantification of the binding of CpGcflp to four different substrates using data from Figure 4. (B) CpGcflp was
incubated in the reaction mixture containing both dsDNA and HJ DNA and the samples were separated by electrophoresis
in polyacrylamide gel as described in Materials and methods. P1, free dsDNA probe; P2, free HJ probe; C, DNA-protein

complexes.

structures is not clear. A recent elegant study of Kukat et al.
[51] revealed that TFAM-mediated nucleoid formation in vitro
is a multistep process initiated by TFAM aggregation and cross-
strand binding. It is possible that yeast mtHMG proteins also
employ similar mechanisms of mtDNA compaction. However, in
contrast with their mammalian counterparts, yeast mitochondria
exhibit a high level of recombination DNA intermediates [37-
40]. In fact, recombination seems to be a principal mechanism
of yeast mtDNA replication [39]. The high incidence of recom-
bination intermediates in yeast mitochondria combined with our
results demonstrating a preference of yeast mtDNA proteins for
such DNA structures indicate that these structures may represent
their main substrates in vivo. Indeed, the abf2A mutants of S.
cerevisiae [59,60] and knockdown gcfl ~ strains of C. albicans
[29] exhibit a decrease in the level of mtDNA recombination in-
termediates. Conversely, overexpression of the ABF2 gene in S.
cerevisiae results in an increased level of recombination inter-
mediates and destabilization of mtDNA [59]. In addition, both
abf2A and mhbl A mutants of S. cerevisiae and Y. lipolytica,
respectively, are more prone to mutations [23,61]. This may be
the result of both deprotection of mtDNA and/or a decreased
capacity of recombination-dependent DNA repair. Although all
these results indicate that binding of mtHMG proteins to various
DNA structures is important for mtDNA transactions in yeasts,
the molecular details of their participation in these processes are
still largely unknown.

The observation of Kucej et al. [36] that in vivo Abf2p binds to
most of the mitochondrial genome with a preference for GC-rich

gene sequences can also be interpreted in light of our results.
First, the ChIP-on-chip assay was performed on a population of
cells and could not address the distribution of ScAbf2p at the level
of single mtDNA molecules. Second, GC-clusters are hot-spots
of mtDNA recombination in S. cerevisiae mitochondria [62], so
it is possible that the preferential binding to these regions was
caused by recombination undergoing at these sites.

Taken together, it is likely that the compaction of mtDNA by
yeast mtHMG proteins is achieved via a combination of cross-
strand binding of intact DNA (as demonstrated for TFAM; [51])
and binding to DNA recombination/replication intermediates that
are abundant in yeast mitochondria. It was shown that the nuc-
lear protein Sclxrl, a paralogue of ScAbf2p, binds and bends
intrastrand DNA cross-links induced by platinum [63] and thus
participates in the repair of these DNA lesions. When HJ or
RF DNAs were used as substrates for mtHMG proteins, we ob-
served the formation of several distinct species of DNA—protein
complexes, some of which may contain oligomeric forms of the
protein and/or compacted DNA (Figure 4). It is possible that these
DNA structures serve as signals for binding of mtHMG proteins
followed by their oligomerization accompanied by compaction
of DNA and/or recruitment of other components of mt-nucleoids.
Considering the high amount of recombination intermediates in
yeast mitochondria, it would be interesting to investigate how
they, in concert with mtHMG proteins, participate in the form-
ation of mt-nucleoids and how the mode of binding of mtHMG
proteins to various substrates is affected by interactions with other
nucleoid-associated proteins, as well as their posttranslational
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of mitochondrial genomes in selected yeast species
The phylogeny was calculated from concatenated multiple

Phylogenetic tree illustrating the distribution of various types of mtHMG proteins and variability of the form

sequence alignments of mtDNA-encoded proteins (i.e.

Atp6-8-9-Cob-Cox1-2-3-Nad1-2-3-4-4L-5-6-Rps3) by the maximum likelihood algorithm and LG (Le-Gascuel) amino acids
substitution model implemented in the PhyML program [80]. Bootstrap values (out of 100 replicates) are shown above the
corresponding branches. Aspergillus niger from the subphylum Pezizomycotina was used as an outgroup. Mitochondrial
genome forms were classified as described previously [76] and are illustrated by pictograms (open circles — circular; lines

with open circles at the ends — linear with terminal hairpins (i.

e. type 1 linear and multipartite type 1 linear); lines with

series of arrowheads — linear with array of tandem repeats (i.e. type 2 linear); line with closed circle at the ends — linear

with a protein covalently bound to 5" termini (i.e. type 3 linear).

the present study are shown in bold.

The species whose mtHMG proteins were investigated in

modifications such as phosphorylation and proteolytic cleavage
[64-66].

One of the main motivations for the present study was to ad-
dress the question of whether the high degree of amino acid
divergence among the yeast mtHMG proteins corresponds to dif-
ferences in their biochemical properties. On one hand, the pro-
teins seem to be similar in their ability to complement (although
to a different extent) the abf2 A mutation in S. cerevisiae [22,23].
Also, they all exhibit a preference for recombinational interme-
diates compared with intact dsDNA. On the other hand, their
relative affinities for various substrates differ, especially when
comparing ScAbf2p and YIMhblp with CpGcflp. In contrast to
its counterparts, CpGceflp hardly binds dsDNA, whereas its bind-
ing to RF and especially H] DNA is comparable to the other two
mtHMG proteins (Figures 4A and 4B). Of note is the inability
of CpGceflp to bind to 5 OH containing DNA under the condi-
tions tested (Figure 4C) as this structure is present at the ends of
linear mtDNA of C. parapsilosis [41] and therefore is relatively
frequent in vivo. Apparently, the ss/double-stranded (ds) junction
does not seem to be a preferred site for CpGeflp. Moreover, the
5" OH terminus of mtDNA of C. parapsilosis is covered by

the mitochondrial telomere-binding protein (mtTBP) [67-69] and
it is also engaged in the formation of telomeric loops (t-loops)
[70], and thus the junction would probably not be accessible for
binding in vivo.

Although, based on its biochemical properties, CpGeflp
does not seem to be present at the terminal regions of the
linear mtDNA of C. parapsilosis in vivo, the dramatic dif-
ferences between its ability to bind recombination intermedi-
ates (HJ, nHJ, D-loop DNA) compared with dsDNA and RF
DNA (Figure 5A) indicate that it is an important player em-
ployed by C. parapsilosis mitochondria to maintain mtDNA in
general and mitochondrial telomeres in particular. When ana-
lysed by 2D agarose electrophoresis, preparations of mtDNA
of C. parapsilosis contain a large variety of recombination
intermediates indicating that recombination plays an import-
ant part in mtDNA replication [40]. Moreover, maintenance
of mitochondrial telomeres composed of tandemly repeated
sequences is mediated by telomeric circles (t-circles), whose
formation is dependent on the recombination machinery [71—
73]. Their replication via a rolling-circle mechanism gener-
ates an array of telomeric sequences that can reintegrate back
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into the main mtDNA molecules via homologous recombination
[71,73]. Moreover, we have shown previously that mtDNA of C.
parapsilosis forms t-loops where 5" OH invades into the ds region
of the telomere [70]. All these features highlight a crucial role of
CpGcflp in DNA recombination and thus in the maintenance of
C. parapsilosis mtDNA as well as its telomeres.

Finally, it is of note that ScAbf2p and Y/Mhb1p are biochem-
ically more similar to each other than to CpGceflp, although S.
cerevisiae and Y. lipolytica are phylogenetically more distant
than either species is to C. parapsilosis (Figure 6). It is pos-
sible that this observation can be explained by differences in
the evolutionary dynamics of mitochondrial genome architec-
ture in the corresponding phylogenetic branches. Although S.
cerevisiae and Y. lipolytica are separated by about 500 million
years [26], they belong to groups of species mostly possessing a
circular-mapping mitochondrial genome, whose mode of main-
tenance is likely quite similar. This would explain the similarity
in biochemical properties of ScAbf2p and YIMhb1p. On the other
hand, C. parapsilosis is a member of a CTG-clade of the sub-
phylum Saccharomycotina exhibiting a wide repertoire of forms
of mitochondrial genomes ranging from circular-mapping to lin-
ear molecules with defined telomeres such as tandem repeats,
hairpins, or covalently attached proteins [27,74—76]. The con-
version between various forms seems to be quite frequent, often
occurring in strains of the same species [77,78]. It is possible
that distinct biochemical features of the Gcfl protein described
in the present study represent one of the prerequisites allowing
such frequent evolutionary tinkering [79].
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