Skip to main content
. 2016 Jan 4;113(3):662–667. doi: 10.1073/pnas.1514717113

Table 1.

Multiple linear stepwise regressions explaining synchrony (âC) patterns from changing growth–climate relationships (correlation coefficients; r) and climate variability (standard deviations of climate factors; SD) over 1930–2009

Synchrony Initial variable Initial r2 Initial MSE Final stepwise model Final r2 Final MSE
Siberia Correlation with climate factors (rTempAPR, rTempJUN)
rTempAPR 0.63** 0.020 âC = 0.26 ‒ 0.29 rTempAPR 0.63** 0.020
Correlation with climate factors and variability (rTempAPR, rTempJUN, SDTempAPR, SDTempJUN)
SDTempJUN 0.63** 0.020 âC = ‒0.47 + 0.28 SDTempJUN + 0.10 SDTempAPR 0.75*** 0.013
Spain Correlation with climate factors (rTempFEB, rPrecMAY, rPrecJUN, rSPEIMAY, rSPEIJUN)
rSPEIJUN 0.43* 0.003 âC = 0.18 + 1.03 rSPEIJUN ‒ 0.93 rPrecJUN + 0.08 rTempFEB 0.75*** 0.002

Codes for the variables are as in Figs. 4 and 5 (Upper) for Siberia and Spain, respectively. MSE, mean squared error.

*

P < 0.05; **P < 0.01; ***P < 0.001.