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Abstract

Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and have diverse 

functions during development and organogenesis. BMPs play a major role in skeletal development 

and bone formation, and disruptions in BMP signaling cause a variety of skeletal and extraskeletal 

anomalies. Several knockout models have provided insight into the mechanisms responsible for 

these phenotypes. Proper bone formation requires the differentiation of osteoblasts from 

mesenchymal stem cell (MSC) precursors, a process mediated in part by BMP signaling. Multiple 

BMPs, including BMP2, BMP6, BMP7 and BMP9, promote osteoblastic differentiation of MSCs 

both in vitro and in vivo. BMP9 is one of the most osteogenic BMPs yet is a poorly characterized 

member of the BMP family. Several studies demonstrate that the mechanisms controlling BMP9-

mediated osteogenesis differ from other osteogenic BMPs, but little is known about these specific 

mechanisms. Several pathways critical to BMP9-mediated osteogenesis are also important in the 

differentiation of other cell lineages, including adipocytes and chondrocytes. BMP9 has also 

demonstrated translational promise in spinal fusion and bone fracture repair. This review will 

summarize our current knowledge of BMP-mediated osteogenesis, with a focus on BMP9, by 

presenting recently completed work which may help us to further elucidate these pathways.
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1. Introduction

Bone morphogenetic proteins (BMPs) are members of the transforming group factor-beta 

(TGF-β) superfamily. This group of homologous signaling proteins has a diverse number of 

functions and plays an important role in embryogenesis, organogenesis, cell proliferation 

and stem cell differentiation [1-5]. For example, BMP7 is involved in proper kidney, eye, 

and limb development; BMPs 4, 7 and 15 are important for proper reproductive tissue 

development; BMPs 2, 3 and 7 contribute to cartilage regeneration; and BMPs 12 and 13 are 

required for normal tendon healing [6-12]. BMPs also play a major role in skeletal 

development, bone formation and mesenchymal stem cell (MSC) differentiation [13,14].

MSCs are adult stem cells found in the bone marrow and like all other types of stem cells, 

have the unique ability to self-renew and to differentiate into various mesodermal cell 

lineages, osteoblastic, chondrocytic, myocytic and adipocytic, as well as non-mesodermal 

tissues, such as cardiac muscle and skin [11,13,15-18] (Figure 1). The differentiation of 

these multipotent stem cells towards an osteoblastic fate depends on numerous signaling 

pathways, including BMP transduction. The osteoinductive ability of BMPs was discovered 

when it was found that demineralized bone could induce de novo bone formation and that 

BMPs were responsible for this observed osteogenesis [19,20]. Disruptions in BMP 

signaling have subsequently been shown to result in a variety of skeletal and extraskeletal 

anomalies [21,22]. At least 15 different BMPs have been identified in humans to date.

BMP9, also known as growth differentiation factor 2 or GDF-2, is a relatively poorly 

characterized member of the BMP family first isolated from fetal mouse liver cDNA 

libraries. BMP9 is expressed at high levels within the developing mouse liver and acts to 

stimulate hepatocyte proliferation [23]. It also acts to induce and maintain the cholinergic 

phenotype within basal forebrain neurons, inhibit hepatic glucose production, inhibit 

enzymes of lipid metabolism, maintain metabolic homeostasis of iron and synergize in the 

generation of hematopoietic progenitor cells [24-26].

BMP9 is among the most osteogenic BMPs and promotes the osteoblastic differentiation of 

mesenchymal stem cells (MSCs) both in vitro and in vivo [11,13,27-30]. We have 

demonstrated that BMP9 regulates a distinct set of downstream targets likely playing a role 

in osteoinduction, and these targets will be discussed later in this review [11,27-30]. While 

BMP9 has been demonstrated as one of the most osteogenic BMPs, little is known about the 

detailed mechanisms responsible for its functions. This review aims to summarize our 

current knowledge of BMP9-mediated osteogenesis, which may help us to further elucidate 

these pathways.
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2. Axial Skeletal Development and MSCs

Mesenchymal stem cells undergo several stages of maturation during their proliferation and 

differentiation along the osteoblastic lineage. MSCs initially form preosteoblasts, which 

proliferate near the surface of bone and secrete alkaline phosphatase, an early marker of 

osteogenesis [11,31-33]. Preosteoblasts further mature into osteoblasts, which are involved 

in initial extracellular matrix maturation and mineralization. Osteoblasts ultimately form 

osteocytes, which are mature, terminally differentiated cells embedded in an extracellular 

matrix responsible for mechanical support and regulating the mineralization of bone [34,35]. 

These stages of osteogenic proliferation and differentiation are characterized by the 

expression of various markers, including cell-cycle associated genes during the proliferative 

phase, the early osteoblastic marker alkaline phosphatase and late markers osteocalcin and 

osteopontin [36].

From MSCs, bone can form in one of two ways, either by endochondral or intramembranous 

ossification [36]. The majority of bones in the human skeleton are formed via endochondral 

ossification, whereby MSCs first differentiate into chondrocytes and secrete a cartilaginous 

matrix. This matrix subsequently undergoes osteoblast-facilitated ossification to form bone 

[37-39]. Flat bones, which mainly comprise the axial skeleton, are formed by 

intramembranous ossification and do not have a cartilaginous precursor scaffold. Instead, 

MSCs differentiate directly into osteoblasts, which secrete an osteoid matrix to form bone 

[37,38]. The bone formed by both of these processes is a highly vascularized tissue which 

undergoes constant remodeling, necessitating a balance between hematopoietic-derived 

osteoclasts, which break down bone, and mesenchymal-derived osteoblasts, which rebuild 

bone [36,40,41]. Thus, bone maintenance and remodeling depends, in part, on the proper 

formation of osteoblasts from MSCs, a highly regulated and complex process in which the 

BMP signaling pathway plays a critical role.

3. BMP Knockout Phenotypes

The BMP signaling pathway plays many crucial roles in bone formation and is involved in 

multiple stages of the developmental process, including osteoblast differentiation, mesoderm 

patterning, bone formation, and craniofacial and limb development. Knockout of specific 

BMPs or mediators of BMP signal transduction often leads to phenotypes which 

demonstrate the critical importance of BMP signaling in skeletal development.

BMP signaling is required for the differentiation of multipotent mesenchymal cells into 

osteochondroprogenitor cells, which are capable of forming both chondrocytes and 

osteoblasts. BMP signal transduction is also necessary for the proper functioning of 

differentiated osteoblasts, enabling them to appropriately secrete the matrix upon which 

bone formation occurs [31]. This is especially important during development, when the axial 

skeleton forms from cellular condensations of mesenchymal cells, which proceed to form 

bone via the previously described process of endochondral ossification. The first genetic 

evidence that BMPs have a role in bone morphogenesis was natural loss-of-function 

mutations of BMP5, resulting in short ear phenotype and brachypodism [22,42]. Subsequent 
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studies have supported the crucial role of BMP signaling in both cartilage and bone 

formation during endochondral ossification [43-46].

To investigate the functions of BMP2 and BMP4 in the growth plate, chondrocyte-specific 

BMP2 and BMP4 conditional knockout mice and BMP2/BMP4 conditional double 

knockout mice were developed [47]. Deletion of BMP2 and BMP4 or BMP2 alone resulted 

in a severe chondrodysplastic phenotype, while deletion of BMP4 alone had minor effects 

on cartilage development. Double knockout and BMP2 knockouts demonstrated 

disorganization of chondrocytes within the growth plate, decreased cell proliferation, poor 

differentiation and increased apoptosis. BMP2 up-regulated protein expression of the 

essential osteogenic regulator Runx2. These findings demonstrate that BMP2, but not 

BMP4, is critical in chondrocytic differentiation and hypertrophy within the growth plate 

during endochondral bone formation.

BMPs have been shown to regulate endochondral ossification by promoting chondrocyte 

proliferation and inducing chondrocyte hypertrophy [48-50]. Loss of the inhibitory Smad, 

Smad6, in mice causes defects in axial and appendicular skeletal development [48]. Smad6 

double knockouts demonstrate posterior transformation of the cervical vertebrae, 

ossification centers within lumbar vertebrae and incomplete sternal band fusion. These mice 

feature delayed hypertrophic differentiation and mineralization during gestation. However, 

by late gestation, the hypertrophic zone within the growth plate demonstrated an increased 

pool of proliferating, hypertrophic chondrocytes likely caused by increased BMP 

responsiveness in the Smad6 knockout mutants. Smad6 thus appears to be necessary to limit 

BMP signaling during endochondral bone formation.

Smad1 is a critical immediate downstream mediator of BMP receptor transduction [51,52]. 

Chondrocyte-specific and osteoblast-specific Smad1 conditional knockout mice were bred to 

assess postnatal bone formation [51]. Chondrocyte-specific deletion of the Smad1 gene 

resulted in delayed calvarial bone development. Osteoblast-specific deletion resulted in 

partial inhibition of BMP signaling and an osteopenic phenotype, with impaired osteoblastic 

proliferation and differentiation. These findings demonstrate the critical role of Smad1 and 

BMP signal transduction in postnatal bone formation.

Several studies have also investigated mediators and inhibitors of BMP signal transduction. 

Noggin is a well-established antagonist of BMPs, and overexpression of noggin results in 

osteopenia [53-56]. Other studies have also shown that bone and skeletal development are 

decreased when BMP antagonists are overexpressed in osteoblasts [45,57]. While complete 

inactivation of noggin results in death in utero, noggin conditional knockout mice 

demonstrate decreased weight, shortened femoral length and osteopenia [53]. Although bone 

formation was found to be increased in 3-month-old mice, adult female mice did not exhibit 

increased bone formation or remodeling. Noggin-deficient mice also exhibit enlarged 

growth plates and joint fusions [48,58]. These findings indicate that either BMP excess can 

have a detrimental effect on bone or that noggin has BMP-independent roles in skeletal 

homeostasis.
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In mice with conditional knockout of BMP receptor type IA (BMPRIA), an unexpected 

increase in bone mass was observed in mouse embryos, neonates and adults [59-61]. Adult 

bone demonstrated severely decreased resorption due to reduced RANKL-OPG-induced 

osteoclastogenesis [53]. Expression levels of both bone formation and resorption makers 

were decreased. In another study, mice with osteoblasts expressing a dominant-negative, 

non-functional BMP receptor (BMPRIB) exhibited a decrease in bone mineral density, bone 

volume, and bone formation [62]. Thus, BMP signaling is important both for the initial 

formation of chondrocytes and cartilage, as well as the subsequent formation of bone. These 

findings demonstrate the importance of BMP signaling in regulating the balance between 

bone formation and resorption.

Unlike the axial skeleton, which forms from cellular condensations of mesenchymal cells, 

the craniofacial skeleton and its associated cartilaginous elements are formed from the 

neural crest. This group of pluripotent cells forms in the dorsal neural tube and subsequently 

migrates to various areas of the developing embryo, including the skull, differentiating into 

bone, cartilage, and connective tissue of the head and neck. BMP signaling has been found 

to play a role in proper neural crest cell formation, migration, and differentiation, with 

BMP2, 4, and 7 specifically expressed during craniofacial skeletal development [63,64]. The 

importance of BMP signaling in craniofacial development is highlighted by multiple studies 

[65,66]. In one study, when Alk2, a type I BMP receptor, was conditionally deleted from a 

murine neural crest population, subsequent craniofacial malformations occurred, including 

cleft palate, hypotrophic mandible, and reduced ossification of the frontal bone [67].

BMPs are also expressed in the developing limb bud, where they play a role in proper limb 

formation and contribute to limb patterning along three different axes: anterior-posterior, 

dorsal-ventral, and proximal-distal. The apical ectodermal ridge is a structure located at the 

distal ectodermal tip of the limb bud and is especially important for proximal-distal limb 

patterning. It has been shown that BMP2, 4, and 7 are expressed in the AER, as well as in 

underlying mesenchymal cells, where these signaling cascades are likely involved in proper 

limb development [2,22]. Since BMP2 and BMP4 are embryonic lethal, conditional 

knockouts were created to remove BMP2 and BMP4 from the limb bud mesenchyme [68]. 

A threshold level of BMP signaling was found to be required for the onset of 

chondrogenesis, and chondrogenic condensations were not formed in limbs deficient in both 

BMP2 and BMP4. When condensations did form, however, chondrogenic differentiation 

proceeded normally in the absence of BMP2 and BMP7 or BMP2 and BMP4. Additionally, 

the combined knockdown of BMP2 and BMP4 from the limb bud resulted in lack of bone 

marrow cavity formation, as well as inability to form trabecular or cortical bone. Decreased 

expression of osterix, an osteoblast-specific gene, was also observed, showing that 

osteoblast differentiation was also decreased in this knockout model [68]. These findings 

demonstrate the importance of BMP2 and BMP4 in proper limb formation.

Other BMP knockout models also highlight the importance of this signaling cascade in 

proper bone and skeletal development. BMP7 mutants have multiple skeletal defects, as well 

as kidney and eye defects [69,70]. However, BMP6 mutations only result in minor sterna 

defects [71]. BMP11 mutations result in defects of anterior-posterior axial skeletal 

patterning [72]. Meanwhile, BMP3 inactivation results in increased bone density [73]. 
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Although BMP2 and -4 mutant embryos die in utero before limb phenotypes can be 

determined, deletion of BMP7 embryos display polydactyly with incomplete penetrance and 

otherwise normal limbs [5,69,70,74]. These many studies highlight the critical importance of 

BMPs and mediators of BMP signal transduction in skeletal development and homeostasis 

(Table 1).

4. BMPs and Osteogenesis

While the specific molecular mechanisms underlying BMP-mediated osteogenesis are not 

well-characterized, studies have demonstrated that BMPs play a critical role in osteogenic 

differentiation; overexpression of osteogenic BMPs with adenoviral, retroviral and 

recombinant systems have induced bone formation in animal studies [75-95] (Table 2). 

Exposure of MSCs to osteogenic BMPs results in increased expression of osteoblast-specific 

markers, including the early osteogenic marker alkaline phosphatase (ALP), the late 

osteogenic markers osteocalcin and osteopontin, connective tissue growth factor (CTGF), 

inhibitor of DNA binding (Id) and Cbfa1/Runx2 [11,18,28-30,96-98].

Among the osteogenic BMPs, BMP2 and BMP7 were the first to be studied in depth. 

Adenoviral-mediated delivery of BMP2 to MSCs and other nonosteogenic cells increases 

osteogenic activity in vitro, lending support to the role of BMP2 in osteoblastic 

differentiation [76,86, 99,100]. C3H10T1/2 cells overexpressing AdBMP2 exhibited 

increased ALP activity, mineralization and mRNA expression of bone-specific proteins 

including type I collagen, osteopontin and osteocalcin [86,99]. AdBMP2-transfected bone 

marrow osteoprogenitor cells formed bone when seeded onto biodegradable polymer 

scaffolds as assessed by increased ALP activity, type I collagen production and 

mineralization [100]. BMP7 has also demonstrated the ability to induce osteogenesis. 

AdBMP7-transduced C2C12 myoblasts and muscle-derived progenitor cells differentiated 

into osteoblasts as assessed by ALP activity and matrix mineralization [81]. Furthermore, 

adipose-derived adult stem cells transduced with AdBMP7 differentiated into osteoblasts, 

eventually formed bone [101].

Both BMP2 and BMP7 have the ability to induce osteogenesis in vivo. Several studies have 

shown that MSCs and other progenitor cell types transduced with BMP2 or BMP7 induces 

bone formation in various animal models [75,76,78,79,81,83-86,88,89,91,99-102]. AdBMP2 

injected directly into the thighs of rats led to bone formation at the injection sites as 

observed with CT, digital radiography and planar radionuclide scintigraphy [102]. When 

AdBMP7-transduced human and rat fibroblasts were subcutaneously implanted in mice, 

these normally non-osteogenic cells differentiated into osteoblasts and induced bone 

formation [83].

Non-adenoviral vectors, including recombinant BMP2 (rhBMP2) and rhBMP7, also induce 

bone formation [82, 95,103-108]. Treatment of C3H10T1/2 cells with rhBMP2 increased 

ALP activity [105]. In a canine ulnar segmental defect model, rhBMP7 treatment initiated 

new bone formation and led to defect repair and complete bony union [103]. rhBMP2 has 

shown a similar ability to repair bony defects in animal models [73].
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The results from these studies demonstrating the osteoinductive properties of BMP2 and 

BMP7 have increased the clinical utilization of recombinant BMPs. In degenerative lumbar 

disc disease patients, use of rhBMP2/collagen within a lumbar spine interbody fusion cage 

achieved better fusion rates than use of autologous bone graft [109]. Treatment with 

rhBMP2 at the fracture site improved healing of patients with open tibial fractures [110]. 

rhBMP2 and rhBMP7 have subsequently been used to augment bone healing with improved 

fusion rates compared to autografts and fewer associated complications 

[83,91,93,94,99,100,102,104,111-114].

While BMP2 and BMP7 were initially identified by their ability to promote osteogenesis, it 

was unknown then if they were the most osteogenic BMPs. Subsequent studies have shown 

that osteogenic BMPs include 2, 4, 6, 7 and 9 [1,3,11,16,18,37,39,115-117]. Previously, the 

recombinant form of each BMP was unavailable and the osteogenic activity of all BMPs 

could not be analyzed. However, using adenoviral-mediated gene delivery into MSCs, we 

conducted a comprehensive analysis of the in vitro and in vivo osteogenic activity of 14 

BMPs [11,13, 15-18]. We demonstrated BMP2, BMP6 and BMP9 as the most osteogenic 

BMPs, with BMP9 inducing the most potent osteogenic activity both in vitro and in vivo 

[11,13,18].

The osteogenic potential of BMP6 has been described both in vitro and in vivo [118-128]. 

AdBMP6-transduced equine bone marrow MSCs demonstrated enhanced osteoblastic 

differentiation with increased ALP activity, matrix mineralization and expression of 

osteogenic marker genes similar to AdBMP2 [128]. In a rabbit model, autologous bone 

marrow-derived osteoprogenitor cells exposed to an rhBMP6-containing extracellular matrix 

induced bone formation and enhanced spinal fusion [125]. In a rabbit ulnar osteotomy 

model, AdBMP6 accelerated bone formation and mineralization, leading to orthotopic bone 

formation when injected into the calf muscles of mice [118,124].

BMP9 has demonstrated potent osteoinduction in many studies including our comprehensive 

analysis of the osteogenic capacity of BMPs [13,18], but it remains one of the least studied 

and most poorly characterized BMPs. Further investigation may show that BMP9 provides a 

better therapeutic avenue for the augmentation of bone regeneration than the BMPs 

currently used in the clinical setting.

5. BMP9 Induces Osteogenic Differentiation

Many investigations have described the osteogenic properties of BMP9, implicating its role 

in osteoblastic differentiation and bone regeneration. Adenoviral-mediated overexpression 

of BMP9 in C3H10T1/2 cells increased ALP activity and calcium deposition at significantly 

higher levels than BMP2 or BmP7 treatment groups. [11,45,66]. BMP3, a known inhibitor 

of BMP2 and BMP7-mediated osteogenesis, did not inhibit BMP9-mediated bone 

formation, suggesting that BMP9-mediated osteogenesis may occur via a distinct 

mechanism from other osteogenic BMPs [13].

Non-adenoviral delivery of BMP9 has also demonstrated potent osteoinduction of MSCs 

[129-131]. Direct sonoporation of rhBMP9 into mouse quadriceps muscles caused the 

formation of ectopic bone [131]. Nucleofection of human MSCs (hMSCs) with BMP9 
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caused bone formation at four weeks post-injection in vivo and significantly increased 

calcium deposition in vitro [129]. Treatment of MC3T3-E1 preosteoblastic cells with a 

peptide derived from BMP9 (pBMP-9) induced downstream phosphorylation of Smad 

uninhibited by noggin, a known extracellular antagonist of BMP2 and caused a dose-

dependent increase in ALP activity, Runx2, Osterix, type 1 collagen and osteocalcin [132].

In vivo studies have confirmed BMP9 as a potent inducer of bone formation. BMP9-

transduced C2C12 cells injected into the quadriceps muscles of mice demonstrated 

significant orthotopic bone formation [13,14,115]. AdBMP9 directly injected into the 

quadriceps muscles of mice and rats increased osteoid and mature lamellar bone formation 

in BMP9-treated group compared to BMP2-and 7-treated groups, demonstrating that that 

skeletal muscle may harbor multipotent MSCs or osteoblastic progenitor cells [79,84,133]. 

Furthermore, the BMP9-induced ectopic bone was histologically determined to be the result 

of normal physiologic endochondral mechanisms.

BMP9 has demonstrated efficacy in non-union bone fracture repair and inducing spinal 

fusion in animal models [134,135]. Percutaneous paraspinal injection of AdBMP9-

transduced hMSCs resulted in successful spinal fusion [134]. Non-union fracture was 

created in the radii of mice and filled with a collagen sponge electroporated with BMP9 

plasmid; new bone was formed bridging the defect gap [135]. A defect in the radius of 

rabbits filled with an implant consisting of bone cement and AdBMP9 demonstrated more 

rapid callus and more bone formation compared to control and BMP2 treatment groups 

[136].

BMP9-induced bone formation demonstrates a distinct ossification pattern from other 

BMPs. In mice injected with AdBMP2 and 9-transduced C2C12 cells, increased bone 

maturation and marrow elements were seen in the BMP9-treated group [13]. When 

AdBMP9 was injected into the quadriceps muscles of mice and rats, primitive chondroblasts 

secreting a loose extracellular matrix was seen by six days, chondroblasts by nine days, 

areas of hypertrophic chondrocytes histologically similar to the epiphyseal end plate by 12 

days, woven bone between days 12 and 19 and mature lamellar bone by three months [94]. 

These studies illustrate that the process of BMP9-induced osteogenesis resembles the 

sequential physiologic phases of endochondral ossification which occur during the repair of 

bony fractures. While the specific mechanisms of BMP9-mediated osteogenesis remain to 

be defined, it appears that the BMP9-mediated osteogenic pathway is unique from that of 

other members of the BMP family and may provide a more effective, physiologic therapy 

for bone regeneration.

6. Canonical BMP Signaling Pathway

While the specific mechanisms governing for BMP9-mediated osteogenesis are largely 

unknown, much work has been done to elucidate the signaling pathways of the BMP family. 

And while many characteristics of BMP9 signaling are similar to other members of the BMP 

family, identification of the unique aspects of BMP9 signal transduction will allow us to 

better understand and utilize is potent osteogenic properties.

Beederman et al. Page 8

J Biomed Sci Eng. Author manuscript; available in PMC 2016 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6.1. BMP Ligands, BMP Type I and Type II Receptors Are Required for BMP Signaling

Like other members of the TGF-β superfamily, mature BMPs are secreted as a long 

precursor protein containing N-terminal pro-region that is cleaved prior to secretion. 

However, the mature BMP9 protein retains this N-terminal pro-region, which does not 

inhibit the function of BMP9 and may actually stabilize it following secretion [5,21,22, 

137-142].

The BMP signaling pathway is initiated upon BMP ligand binding to a heterodimeric Type 

I/Type II BMP transmembrane serine/threonine kinase receptor (BMPR1 and BMPR2); both 

must be active for signal transduction (Figure 2) [143,144]. Type II receptors are 

constitutively active and serve to phosphorylate and activate BMPR1 upon BMP ligand 

binding [145]. The phosphorylation site on Type I receptors is located near the C-terminal 

intracellular domain in a glycine-serine rich region termed the GS domain [3,143].

While seven different type I receptors have been identified, only three type I receptors, 

ALK1, ALK5 and endoglin, are considered potential BMP9 type I receptors [137,146-148]. 

In fact, BMP9 has a poor affinity for BMPR-IA, a receptor that generally transduces BMP 

signaling [137]. Dominant negative mutations of the seven type I receptors demonstrated 

that only ALK1 and ALK2 mutants effectively inhibit BMP9-mediated osteogenic 

differentiation and bone formation [66]. ALK1 and 2 directly interacted with BMP9, and 

silencing of ALK1 and 2 inhibited BMP9-induced osteogenic differentiation of MSCs both 

in vitro and in vivo. These results strongly suggest that ALK1 and ALK2 are the type I 

BMPRs responsible for BMP9-mediated osteogenic signaling.

Type II BMP receptors are thought to be largely responsible for the osteogenic activity of 

BMPs, and four have been identified [45]. Dominant negative (DN) mutations introduced in 

two of these receptors, BMPRII and ActRII, decreased BMP9-induced ALP activity, 

expression of downstream Smad 6 and Smad 7, bone mineralization in vitro and ectopic 

bone formation in vivo [45]. These results strongly suggest that BMPRII and ActRII are the 

type II BMP receptors responsible for BMP9-mediated osteogenic signaling.

6.2. Smad-Dependent Signaling Is Required for BMP Osteogenic Signaling

BMP binding to receptor heterodimers triggers one of two signaling pathways: Smad-

dependent and Smad-independent. For the purpose of understanding the role of BMPs in 

osteogenesis, we will specifically focus on the Smad-dependent signaling pathway. There 

are 3 classes of Smads, all of which are important for BMP signal transduction [149]. 

Receptor-Smads (R-Smads) interact directly with activated type I receptors, while Common-

Smads (co-Smads) form complexes with activated R-Smads to then regulate gene expression 

in the nucleus. Inhibitory Smads (I-Smads) negatively regulate BMP signaling, inhibiting 

signal transduction at several points in the pathway.

The R-Smads, Smad1, Smad5 and Smad8, are activated upon binding and phosphorylation 

by the Type I receptor at a conserved sequence in the C-terminus termed the Ser-Ser-Val/

Met-Ser sequence, or SSXS motif. Along with this conserved sequence, R-Smads have two 

additional regions of homology at the N and C-terminal ends, the Mad homology (MH) 1 

and MH2 domains, both of which are crucial for proper signal transduction [3,150]. The 
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MH1 domain directly interacts with DNA sequences, while the MH2 domain interacts with 

BMPR1. Additionally, the MH2 domain can bind to other Smads and has a role in 

transcriptional activation. These domains are conserved across co-Smads and I-Smads. 

Upon activation, the phosphorylated R-Smad dissociates from BMPR1 and forms a complex 

with Smad 4 [143,151,152]. Smad 4 is the sole Co-Smad and is common to all BMP 

signaling pathways. In the nucleus, the R-Smad/Co-Smad heterodimer complexes with 

various transcription factors, co-activators and corepressors to modulate gene expression.

The BMP signaling pathway is negatively regulated by I-Smads, Smad 6 and Smad 7. These 

Smads typically reside in the nucleus and migrate to the cytoplasm and plasma membrane 

upon BMP activation, acting at various points along the BMP pathway to inhibit signal 

transduction [1,151,153-157]. Smad7 binds to activated BMPR1, preventing R-Smads from 

becoming activated. Smad7 also interacts with E3 ubiquitin ligase proteins, Smurf1 and 

Smurf2, targeting the BMP receptor for proteasomal degradation. Unlike Smad 7, Smad 6 

can bind directly to R-Smads, thus competing with Smad 4 and ultimately preventing proper 

heterodimer complex formation.

Activation of Smads was found to be necessary for BMP9-mediated osteogenic 

differentiation of MSCs [158]. Phosphorylated Smad 1/5/8 levels were simultaneously 

increased in BMP9-treated MSCs, while knockdown of Smad 4 resulted in reduced 

formation of Smad heterodimers and nuclear translocation of Smad 1/5/8; knockdown of 

Smad4 also inhibited BMP9-induced ALP activity and calcium deposition. The p38 

inhibitor SB203580 decreased BMP9-induced Smad signaling in MSCs, while the ERK1/2 

inhibitor PD98059 stimulated Smad signaling. Together, these findings suggest that 

activation of the Smads pathway is critical in BMP9-induced osteogenesis.

7. Mediators of BMP9-Induced Osteogenic Signaling

Recent studies have identified various mediators thought to contribute to the potent 

osteogenic effects of BMP9. Among these mediators are Id genes, connective tissue growth 

factor (CTGF) and Hey1. Each of these three genes is among the most up-regulated 

following BMP9 stimulation of MSCs [24,26,139].

Balanced regulation of Id expression is important in lineage-specific MSC differentiation

Id genes are inhibitors of the binding of basic helix-loop-helix (bHLH) transcription factors 

[159-161] and function by dimerizing with bHLH proteins; these heterodimers are unable to 

bind DNA and regulate transcription. Id-1, -2 and -3 are among the most significantly up-

regulated genes upon BMP9 stimulation [30]. However, both knockdown and 

overexpression of these three Id genes diminished BMP9-induced osteogenic differentiation. 

BMP9-mediated Id expression was also shown to be dependent on Smad4 signaling.

Balanced regulation of CTGF expression is important in BMP9-induced osteogenic 
differentiation

Connective tissue growth factor (CTGF) is a member of the CCN (Cyr61, CTGF and Nov) 

family of secreted cysteine-rich multimodular proteins [162-167] and has a major role in 

bone formation and embryogenesis [168]. Upon BMP9-stimulation of MSCs, CTGF was 
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among the most up-regulated genes, especially during early stages of differentiation [28]. 

Similar to Id genes, both knockdown and overexpression diminished BMP9-mediated 

osteogenic differentiation.

Hey 1 Expression Enhances BMP9-induced osteogenic differentiation via Runx2

Hey 1 (also known as Hesr1, HRT1, CHF2 and HERP2) is a nuclear protein of the Hairy/

Enhancer of split-Related (HERP) family of basic helix-loop-helix transcriptional repressors 

and is a direct target of the Notch pathway [14]. Constitutive Hey 1 expression synergized 

with BMP9-induced osteogenic differentiation in vitro and in vivo [169], while Hey 1 

silencing decreased osteogenic differentiation. Hey1 and the essential osteogenic 

transcription factor Runx2 synergized in BMP9-induced osteogenic differentiation, whereas 

Hey 1 silencing decreased Runx2 expression. Following knockdown of Hey 1, exogenous 

Runx2 expression rescued defective osteogenic signaling, strongly suggesting that Runx2 is 

a downstream mediator of Hey 1 signaling.

8. Major Signaling Pathways Crosstalk With BMP9 Signaling

Several major signaling pathways with wide-ranging functions participate in BMP9-

mediated osteogenesis, and many of these pathways are critical in the differentiation of other 

cell lineages. The following section describes recent studies illustrating the crosstalk 

between BMP9 signaling and these other important pathways. A brief description of each of 

these signaling pathways will be followed by a summary of results from recent studies.

TGF-β1 is one of the most abundant members of the TGF-β superfamily, regulating bone 

formation, osteoblast proliferation and mineralization while increasing the strength and 

flexibility of bone [170-173]. TGF-β1 and BMPs both regulate the late phases of 

differentiation and mineralization of bone [138,174-176].

Growth hormone (GH) plays a critical role in postnatal growth [177-184]. GH signaling 

pathway begins when GH binds GHR, triggering receptor tyrosine kinase activity and 

activation of JAK/STAT and other pathways [178,179,184]. IGF-2 is a member of the IGF 

signaling system, playing a critical role in prenatal growth and development [185]. IGF-2 

signaling activates the phosphatidylinositol-3-kinase (PI3K)/AKT pathway or the mitogen-

activated protein kinase pathway (MAPK) [186].

Wnts are a family of secreted proteins critical in osteoblastic differentiation and skeletal 

development [16, 116,187-193]. Upon Wnt binding the Frizzled (Frz) and LRP-5/6 co-

receptors, distinct signaling pathways including the canonical Wnt pathway are activated 

[194]; mutations in LRP-5 adversely affect skeletal development and bone mass deposition 

[195].

MAPKs are protein kinases critical in regulation of gene expression, mitosis, metabolism, 

motility, survival, apoptosis and differentiation [21,158,196-199]. Members of the MAPK 

family become activated by BMPs in response to a variety of extracellular stimuli leading to 

diverse effects in cellular responses [198-201]. Hypoxia inducible factor 1 Alpha (HIF1α) is 
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a regulator of angiogenesis during many developmental processes, including skeletal 

development [64,202].

Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a critical regulator of 

adipogenesis and osteogenesis [203,204]. PPAR-γ binds fatty acid derivatives to induce 

differentiation of preadipocytes into terminal adipocytes, and PPAR-γ2 is the predominant 

iso-form expressed in adipose tissue [81,159,161]. Retinoic acids (RAs) play a crucial role 

during embryonic development and in the maintenance of vital organs [38,39]. RAs are 

ligands for two families of receptors, the RA receptors (RAR) that bind all-trans-RA 

(ATRA) and the Retinoid X Receptors (RXR) that bind 9-cis-RA (9CRA) [205,206]. RA 

binding to RAR/RXR causes heterodimerization and eventual transcriptional regulation 

[206].

Effects of Crosstalk Pathways on BMP9-Induced Osteogenic Differentiation

TGF-β1 has a biphasic effect on BMP9-induced osteogenic differentiation of 
MSCs—In BMP9-transduced MSCs, low concentrations of recombinant TGF-β1 (rhTGF-

β/1) synergistically induced expression of ALP and matrix mineralization, while high 

concentrations of TGF-β1 inhibited BMP9-induced osteogenic activity [175].

GH synergizes with BMP9 via activation of the JAK/STAT/IGF1 pathway to 
induce osteogenesis—After over-expression of BMP9 in MSCs, GH was one of the 

most up-regulated transcripts [158]. Exogenous GH synergized with BMP9 to induce early 

and late osteogenic markers. Co-stimulation of long-bone explants with GH and BMP9 

resulted in significant expansion of the growth plate, and co-stimulation of MSCs with 

BMP9 and GH formed mature ectopic bone masses; these synergistic effects of BMP9 and 

GH were inhibited by JAK/STAT inhibitors.

BMP9 signaling crosstalks with IGF-2 via PI3K/AKT signaling\—While 

endogenous IGF-2 levels are relatively low in MSCs, exogenous expression of IGF-2 

potentiates BMP9-induced expression of early and late osteogenic markers [207]. 

Conversely, PI3K inhibition diminished IGF-2 potentiation on BMP9-mediated 

osteogenesis. IGF-2 augmented BMP9-induced ectopic bone formation and BMP9-mediated 

endochondral ossification in perinatal limb explants.

The canonical Wnt/β-catenin pathway interacts with Runx2 as a critical 
mediator of BMP9-mediated osteogenic signaling—Wnt3a and BMP9 synergized 

to induce ALP activity in MSCs, while the Wnt antagonist FrzB inhibited BMP9-induced 

ALP activity [194]. BMP9 stimulation of MSCs recruits β-catenin and Runx2 to the 

osteocalcin promoter, whereas knockdown of β-catenin decreased expression of early and 

late osteogenic markers [194]. BMP9-induced ectopic bone formation and matrix 

mineralization in vivo were inhibited by FrzB overexpression or β-catenin knockdown [194].

p38 and ERK1/2 have opposing regulatory effects in BMP9-induced 
osteogenic differentiation of MSCs via Smad signaling—BMP9 simultaneously 

promotes phosphorylation and thus activation of Smads, p38 and ERK1/2 [158]. p38 and 

ERK1/2 acted in opposition to regulate BMP9-mediated osteogenic differentiation via 
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interactions with Smads. In vivo, inhibition of p38 significantly decreased BMP9-induced 

osteogenic differentiation, while inhibition of ERK1/2 significantly increased BMP9-

induced osteogenic differentiation [208].

HIF1α synergizes with BMP9-induced osteogenic differentiation of MSCs—
Exogenous overexpression of HIF1α synergistically increased BMP9-induced osteogenic 

differentiation of MSCs. Conversely, inhibition of HIF1α diminished BMP9-induced 

osteogenic signaling. BMP9 directly induced HIF1α expression in MSCs via Smad1/5/8 

signaling [209]. HIF1α activated both angiogenic and osteogenic signaling pathways in 

MSCs. Osteogenic factors, including BMP9, may induce the convergence of osteogenic and 

angiogenic signaling in MSC differentiation, thereby enhancing the efficiency of bone 

formation and development.

PPAR-γ is an important regulator of BMP9-mediated osteogenesis—
Overexpression of PPAR-γ2 in BMP-9-stimulated MSCs promoted both osteogenic and 

adipogenic differentiation, with mutually exclusive commitment to either lineage [18]. 

Conversely, knockdown of PPAR-γ2 in BMP9-stimulated MSCs showed significant 

decreases in osteogenic differentiation and matrix mineralization.

Retinoic acids synergistically enhance BMP9-mediated osteoinduction of 
MSCs—Both ATRA and 9CRA induced expression of BMP9, activated BMPRSmad 

transcription activity and increased expression of early and late osteogenic markers; these 

effects were synergistic when combined with overexpression of BMP9 [210]. RAs 

combined with BMP9 promoted expansion of the hypertrophic chondrocyte zone in neonatal 

mouse limb explants, and RARs synergized with BMP9 to induce trabecular bone formation 

and osteoid matrix production in vivo.

9. Other Functions Of BMP9

BMP9 is known to be a potent osteogenic factor, but it also influences several other 

pathways including cancer development and angiogenesis. While some studies have shown 

BMP9 to restrict tumor growth through diverse mechanisms [211-213], other studies have 

shown BMP9 to promote cancer progression [214]. BMP9 inhibited cell migration and 

induce apoptosis of osteosarcoma via the PI3K/ALT pathway [212] slowed tumor growth of 

colon adenocarcinoma via inhibitory effects on angiogenesis via the ALK1 receptor and 

endoglin coreceptor [211]. Conversely, BMP9 induced in vivo angiogenesis within 

pancreatic tumors [214]. The effects of BMP9 on angiogenesis remain controversial as well, 

with some studies demonstrating a pro-angiogenic effect [215,216] and others an anti-

angiogenic effect [146,217-219]. It is evident that the effects of BMP9 on angiogenesis and 

cancer progression remain to be fully elucidated.

BMP9 also modulates neurogenesis, hepatocellular regeneration, adipogenesis, 

chondrogenesis and myogenesis. Several studies have demonstrated BMP9 to promote the 

cholinergic phenotype neurologically [220-223]. BMP9 also acts as a hepatic insulin-

sensitizing substance and may play a role in hepatocellular regeneration [224,225]. BMP9 

promotes adipogenesis [18] and also upregulates Sox9 expression to induce chondrogenic 
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differentiation [226,227]. While BMP9 promotes MSC differentiation along osteogenic, 

adipogenic and chondrogenic lines to varying degrees, it inhibits the myogenic phenotype 

[29]. Overall, BMP9 has diverse effects beyond osteogenesis.

10. Concluding Remarks and Future Directions

The investigations discussed here demonstrate the critical role of BMPs, particularly BMP9, 

in the osteogenic differentiation of MSCs. The findings discussed here strongly support the 

notion that BMP9 may provide a more effective clinical strategy for the augmentation of 

bone regeneration and healing than other BMPs. Furthermore, studies demonstrating that 

BMP9-mediated osteogenesis resembles the physiologic phases of bone healing occurring 

during fracture repair make the prospect of clinical translation quite promising. With several 

diverse signaling pathways enhancing BMP9-mediated osteogenesis, further elucidation of 

these specific pathways will allow for the development of improved therapies. Over the last 

decade, there has been a substantial increase in the therapeutic use of recombinant proteins 

and medications targeting small molecules acting in various signaling pathways. With this, it 

is imperative that the mechanisms underlying BMP9-mediated osteogenesis become fully 

elucidated to allow for the development of much-needed clinical therapies.
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Figure 1. 
Schematic representation of lineage-specific differentiation of mesenchymal stem cells 

(MSCs). MSCs are pluripotent progenitor cells with the ability to differentiate along 

multiple lineages, including osteogenic, chondrogenic, adipogenic and myogenic lineages. 

Differentiation of MSCs along these unique lineages is an exquisitely coordinated process 

with critical regulators responsible for each lineage. Regulators and indicators of lineage-

specific differentiation are depicted.
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Figure 2. 
Schematic representation of BMP signal transduction. Upon BMP ligand binding to Type II 

BMP receptors, Type I BMP receptors are cross-phosphorylated, recruiting R-Smads 

(Smads 1/5/8) to the intracellular domain of the Type I receptor and initiating signal 

transduction via phosphorylation. Activated R-Smads then form a heteromeric complex with 

Co-Smads (Smad 4) before translocating to the nucleus to regulate gene expression. 

Inhibitory Smads (Smads 6/7) reside in the nucleus, migrate to the cytoplasm and negatively 

regulate BMP signaling by inhibiting signal transduction at several points along the 

pathway. The Type I and Type II receptors thought to be involved in BMP9 signal 

transduction are highlighted.
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Table 1

Examples of BMP-induced osteogenesis in MSCs.

Treatment Experiment setting Experiment metric Experimental results Reference

BMP2 to BMP15 
(14 BMPs)

In vitro

ALP activity BMP2, 6, and 9 induced ALP activity 
in C3H10T1/2 pluripotent cells.

Cheng et al. 
2003; Kang et 

al. 2004

Osteocalcin expression
BMP2, 4, 6, 7, and 9 led to increased 
ALP activity in C2C12 preosteoblastic 
cells and TE-85 osteoblastic cells.

Alizarin Red S

BMP2, 6, and 9 were able to 
significantly induce osteocalcin 
expression and mineralization in 
C3H10T1/2 cells.

Mouse Bone formation

BMP6 and BMP9-transduced C2C12 
cells induced the most osteogenesis 
was not inhibited by BMP3, a negative 
regulator of bone formation.

Kang et al. 
2004

BMP2

In vitro

ALP activity Mesenchymal stem cells transduced 
with AdBMP2 showed increased 
osteoblastic differentiation and were 
able to form bone in vitro, with 
increased ALP activity, Alizarin Red S 
osteocalcin, COL1a1, and bone 
sialoprotein

Cheng et al. 
2001

Alizarin Red S

Northern blot analysis

Rabbit Bone formation
AdBMP2-transduced cells were able to 
form bone when injected into the L5/6 
intertransverse spinal space

BMP6

In vitro

ALP activity

AdBMP6-transduced equine 
mesenchymal stem cells showed 
increased ALP activity and 
mineralization. Zachos et al. 

2006

Von Kossa staining mRNA 
microarray

AdBMP6 also induced increased 
expression of genes associated with 
osteoblastic differentiation.

Mouse Bone formation
AdBMP6 subcutaneously injected into 
athymic nude was able to induce rapid 
ectopic bone formation.

Jane et al. 
2002

BMP7

In vitro

ALP activity C2C12 murine myoblast cells 
transduced with AdBMP7 
differentiated into osteoblasts, 
displaying increased ALP activity and 
osteoblast-like morphology. These 
cells did not develop a myogenic 
phenotype.

Francheshi et 
al. 2000

Cell morphology

Mouse Bone formation
Subcutaneous and intramuscular 
injections of AdBMP7 induced ectopic 
bone ossicle formation in mice.

BMP9 + TGF-β1 In vitro

ALP activity Low concentrations of rhTGF-β1 
synergistically increase ALP activity, 
matrix mineralization, gene expression 
and protein expression of osteopontin, 
osteocalcin and COL1a2 on 
BMP-9mediated osteogenic 
differentiation.

Li et al. 2012

Alizarin Red S

RT-PCR & Western blot

Smad pathway activation
TGF-β1 combined with BMP9 exhibits 
lower BMPR-Smad receptor activity 
than BMP9 alone.
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Treatment Experiment setting Experiment metric Experimental results Reference

BMP9 + GH

In vitro and ex vivo

ALP activity

GH potentiates BMP9-induced ALP 
activity, osteopontin/osteocalcin, 
expression and calcium deposition in 
MSCs

Huang et al. 
2012

Osteocalcin/Osteopontin expression JAK/STAT inhibitors blunt BMP9-GH 
synergy

Alizarin Red S
GH enhances BMP9-induced 
endochondral ossification in cultured 
limb explants

Mouse Ectopic bone formation GH augments BMP9-induced ectopic 
bone formation with more mature bone
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Table 2

Skeletal phenotypes of several members of the BMP signaling pathway.

Deleted gene Cells affected Skeletal phenotype Reference

BMP2; BMP2 + 4 Chondrocytes
Chondrodysplasia, disorganized chondrocytes in growth plate, 
defects in chondrocyte proliferation, differentiation, increased 
apoptosis

Shu et al. 2011

BMP2 + 4 Limb bud 
mesenchymal cells

Failure of chondrogenic condensations to form normally, no 
formation of bone marrow cavity, trabecular or cortical bone Bandyopadhyay et al. 2006

BMP3 All cells Increased bone density Daluiski et al. 2001

BMP5 All cells Short ear, brachypodism King et al. 1994

BMP6 All cells Minor sternal defects Solloway et al. 1998

BMP7 All cells Hindlimb polydactyly, defects in rib cage, skull Luo et al. 1995

BMP11 All cells Anterior-posterior axial skeletal patterning defects McPherron et al. 1999

Alk2 Neural crest cells Craniofacial malformations, including cleft palate, hypotrophic 
mandible, reduced ossification of frontal bone Dudas et al. 2004

BMPR1A Osteoblasts Increased bone mass, decreased bone resorption, reduced 
osteoclastogenesis Kamiya et al. 2008

BMPR1B Osteoblasts Decreased bone mineral density, bone volume, and bone 
formation Zhao et al. 2002

Smad6 All cells
Axial and appendicular skeletal defects, posterior transformation 
of the cervical vertebrae, bilateral ossification centers in lumbar 
vertebrae, incomplete sternal band fusion,

Estrada et al. 2011

Smad1 Chondrocytes Delayed calvarial bone development

Smad1 Osteoblasts Osteopenia, impaired osteoblast proliferation and differentiation Wang et al. 2011

Noggin Osteoblasts Decreased weight, shortened femoral length, osteopenia Canalis et al. 2012
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