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Operational resilience: concepts, 
design and analysis
Alexander A. Ganin1,2, Emanuele Massaro1,3,†, Alexander Gutfraind4, Nicolas Steen1, 
Jeffrey M. Keisler5, Alexander Kott6, Rami Mangoubi7 & Igor Linkov1

Building resilience into today’s complex infrastructures is critical to the daily functioning of society and 
its ability to withstand and recover from natural disasters, epidemics, and cyber-threats. This study 
proposes quantitative measures that capture and implement the definition of engineering resilience 
advanced by the National Academy of Sciences. The approach is applicable across physical, information, 
and social domains. It evaluates the critical functionality, defined as a performance function of time set 
by the stakeholders. Critical functionality is a source of valuable information, such as the integrated 
system resilience over a time interval, and its robustness. The paper demonstrates the formulation on 
two classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled networks. 
For both models synthetic case studies are used to explore trends. For the first class, the approach is 
also applied to the Linux operating system. Results indicate that desired resilience and robustness levels 
are achievable by trading off different design parameters, such as redundancy, node recovery time, and 
backup supply available. The nonlinear relationship between network parameters and resilience levels 
confirms the utility of the proposed approach, which is of benefit to analysts and designers of complex 
systems and networks.

The daily functioning of modern society is necessarily challenging, and traditional risk-based approaches to 
managing critical infrastructure are often criticized for their inability to address widely unknown and uncertain 
threats1–3. Risk-based approaches require developing threat scenarios, evaluating system vulnerabilities and quan-
tifying consequences associated with specific failures of system components. In the case of an unknown threat 
space, developing realistic scenarios proves to be an additional challenge. Moreover, it may be difficult to justify 
investing in hardening system components based on hypothetical and uncertain threats4. Weaknesses and the 
potentially misleading nature of risk quantification approaches, for example in cyber systems, have been pointed 
out by a number of researchers5,6.

Building resilience into infrastructure networks7 has been proposed as the key to protecting against the del-
eterious effect of system disruption due to natural disasters8,9 as well as infrastructure and engineering systems’ 
failures10–13. Not surprisingly, numerous interpretations of resilience have sprouted, testifying to the richness of 
the concept but also presenting challenges for its measurement and application1. Yet recent publications and guid-
ance documents14,15 coalesce around the definition of resilience provided by the National Academy of Sciences 
(NAS)16: Resilience of a system is its ability “to plan and prepare for, absorb, respond to, and recover from disas-
ters and adapt to new conditions”. An important feature of resilience captured in this definition is the temporal 
dimension: the ability to recover and retain critical system functionality in response to a wide range of threats, 
both known and unknown. The assessment of resilience should therefore identify the critical functionality of a 
system and evaluate the temporal profile of system recovery in response to adverse events. Resilience manage-
ment should comparatively evaluate cross-domain alternatives designed to enhance the system’s ability to (i) plan 
for adverse events, (ii) absorb stress, (iii) recover, and (iv) predict and prepare for future stressors in order to adapt 
to their potential threats.
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Even though definitions of resilience as a system property are commonly reported in the literature (see details 
in Supplement S1, table S1.1), resilience assessment has been implemented in structured but largely qualitative 
or semi-quantitative ways17. Insightful studies quantify resilience with metrics associated with different domains 
and subsequently integrate them into a risk-based evaluation or resilience index. For example, Bruneau et al.18 
identified four dimensions of resilience of interest to the seismic community: technical, organizational, social, 
and economic. Measures of resilience–robustness, rapidity, resourcefulness, and redundancy–were then aggre-
gated in order to minimize a function of the probability of system failures, the consequences arising from such 
failures, and recovery time19. Another qualitative but quantifiable approach sets forth a taxonomy for metrics that 
accommodates both change and interaction among physical, informational, and human domains20. The approach 
applies the taxonomy to cyber threats, energy systems and coastal infrastructure9,20,21. Such work provides insight 
and guidance for developing quantitative resilience measures that correspond to the qualitative identification 
of systemic issues and gaps. Unfortunately, it provides only limited insight into the management and control of 
the interconnected networks that constitute the entire system. Simultaneously, the field of network science has 
focused on the challenge of understanding the structure, dynamics and vulnerability of multi-layer systems across 
multilayer networks22–26.

This paper proposes a methodology for quantifying a system’s resilience that captures the very concept of engi-
neering resilience advanced by the NAS27,28 stated above. We make use of the critical functionality (CF) (which has 
been referred to before as functionality function8, performance29,30, quality18,31,32), defined as a metric of system 
performance set by the stakeholders, to derive an integrated measure of resilience. One example for CF, among 
many possible ones, is the percentage of nodes that are functioning. Another is the ratio of a network’s actual flow 
to its maximum capacity.

We note that, in addition to resilience, CF is rich in valuable information, and can be the source of many 
quantitative performance metrics, such as robustness, which we also briefly discuss. For application domains, our 
focus in this paper are the following two classes of models: i) multi-level directed acyclic graphs (DAG)33, and  
ii) interdependent coupled networks34. While the second class of networks is the subject of intense interest35, the 
first class of networks, often overlooked by analysts, is of interest in many fields, from biology (gene regulatory 
networks) to computer science (software dependencies)36–38. Infrastructure systems, to a certain extent, can also 
be represented by DAGs. For instance, in food supply chains the top level nodes may model the original manu-
facturers, while the bottom level nodes correspond to the final demand. Other infrastructure examples include 
certain sequential electrical circuits for combinational logic39, data processing graphs40, etc. In this paper we 
approximate the Linux, specifically Ubuntu 12.04, code system, as a DAG and estimate its resilience. We selected 
these examples to test and illustrate the approach because they are realistic as well as easily characterized, espe-
cially given the availability of data for Ubuntu. The approach is equally applicable to more general networks that 
are characterized in flexible ways while still being amenable to such resilience analysis methodology.

Because obtaining analytical results for most realistic cases is an intractable task, even for homogeneous 
networks, our approach is simulation based. We do, however, obtain analytical results in the Methods section 
for a simple yet illuminating special case of the first model, where only nodes without redundant active supply 
links may be unable to supply service. This case sheds light on the relationship between redundancy and system 
resilience.

Resilience: An Analytical Definition
A network is modeled as a graph G(N, L) with a set of nodes N connected by links L. Before considering network 
models, the proposed concept of resilience for complex networks is described generally. The specification of N 
and L includes characteristics relevant to resilience, such as capacity, location, and weight of each node and link. 
Let C be the set of temporal decision rules and strategies to be developed in order to improve the resilience of 
the system during its operation. From a computational viewpoint, the parameters and algorithms defined by C 
depend on the particular model being implemented.

Ultimately, the system must maintain its critical functionality Κ at each time step t, where Κ maps its states or 
parameters to a real value between 0 and 1. This mapping may, for instance, be linear
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where {N, L} is the set of all nodes and links, wi (t; C) ∈  [0, 1] is a measure of the relative importance of node or 
link i at time t, and πi (t; C) ∈  [0, 1] is the degree to which a node is still active in the presence of an attack. An 
alternate interpretation defines πi (t; C) as the probability that node or link i is fully functional. More complex, 
nonlinear and detailed definitions of critical functionality mappings are also possible. Finally, we introduce the 
class of adverse events (or potential attacks on targeted nodes) E. For instance, in the case of a random attack on 
two nodes, E is the set of all attacks on all possible node pairs.

Resilience, denoted by R, is a composite function of the network topological properties and their temporal 
evolution parameters defined for a certain critical functionality and a class of adverse events E:

= ( , , , ) ( )N L C ER f 2

Note that not all targeted nodes are necessarily afflicted. For a non-afflicted attacked node, we thus have πi =  1 
over the entire time interval of interest. We evaluate R over a certain time interval [0, TC] where TC is the control 
time41 which can be set a priori, for instance, by stakeholders or estimated as the mean time between adverse 
events. In continuous time, we define R as
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where |E| is the cardinality of set E, and Κnominal(t) is the critical functionality of the system in the case where no 
external events occur (Fig. 1). Equation (3) allows evaluation of the normalized dynamical performance of the 
system before (plan/prepare), during (absorption), and after an attack (recovery and adaptation); it intends to 
capture the definition advanced by the NAS given in the introduction. For computational convenience, the above 
equation is given in discrete time by
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In most cases, we normalize to Κnominal(t) = 1. Consequently, a normalized measure of resilience may be given by
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We note that equation (1) embraces a large class of performance measures found in the literature. For instance, in 
addition to equation (5), we can also consider the measure

Μ = ( , , )
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The above measure is referred to as the Robustness8,42. Alternatively one may define (1 – M) as the Risk1.
Due to the very complex nature of networked systems and the large number of variables defining their states, 

it is not possible to consider all events in the set E and obtain a closed-form expression for R, even if all design 
parameters are made homogeneous across nodes, links, and time. We therefore rely on a simulation based 
approach. Each simulation represents a possible scenario of the networked system’s evolution. For each simula-
tion, we calculate the average value of the critical functionality Κ(t, N, L, C) at every time step (equation 1), and 
from there, the resilience (equation 4 or equation 5) over the interval of interest.

The approach proposed builds upon and extends the works of others8,18,29,30,32. The main issue encountered 
when dealing with the estimation of resilience based on the simulation of the system performance curves is that 
those curves in the general case vary depending on the adverse events modeled. The current approach to resolve 
this issue is to extend the techniques of probabilistic risk analysis to resilience analysis. This extension provides 
the weighted average performance curve with weights representing the probabilities of the adverse events.

By contrast, in our approach, we would like to argue that the resilience of the system should not be tied to the 
probabilities of the adverse events to occur. Again, according to the NAS resilience is the ability to plan, absorb, 
recover, and adapt16. Inspired by this definition, we instead simulate the damage to the system from a certain 
adverse event (regardless of the probability that the event occurs) and define resilience for that particular damage. 
For simplicity of decision making, however, we suggest considering a certain class of adverse events. For instance, 
in a networked system we might define one class of adverse events as a case when functionality of 4 to 5 nodes is 
reduced by 40–50% (instead of defining a particular adverse event reducing the functionality of specific 4 nodes 
by 50%).

We illustrate the approach with two simple models: multi-level DAGs and interdependent coupled networks. 
We assume that homogeneous nodes and links comprising the network have only two possible states: active and 
inactive, meaning wi (t), πi (t) ∈  {0, 1} in equation (1). To simplify the explanation, we focus on node failures, 

Figure 1. Resilience and critical functionality concepts as advanced by the NAS. The system’s resilience is 
evaluated as the integral of the critical functionality’s (K) dependency on time.
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though the concept may be extended to include links. If we denote the number of active nodes in the system at 
time t by A(t) and the total number of nodes in the system by N, then the critical functionality simplifies to

( ) = ( )/ ( )K t A t N 7

We first consider a hierarchical multi-level DAG model (Fig. 2) with Λ levels of nodes43,44. We investigate how 
redundancy probability pm, switching probability ps, and the recovery time TR, tradeoff parameters at the disposal 
of the system designer, influence the resilience of a supply-demand multi-level DAG across levels, nodes, links, 
and time, how they affect the absorption and recovery phases of a network’s resilience profile, and how they 
address the optimization of network design, for a variety of attack scenarios. We also distinguish between cases 
where switching is instantaneous and delayed by one time step. Further description of the model is provided in 
the Methods section (subsection 1).

Two applications of the DAG model will serve to illustrate the quantitative resilience measure introduced, as 
well as the method for evaluating it: 1) synthetic random hierarchical multi-level supply-demand directed acyclic 
graphs, and 2) the Linux system, specifically Ubuntu 12.04, software network. The first is a useful, if approximate, 
representation of networks found in many applications36–38,45. The second realistically represents an existing and 
widely used network.

The second model is derived from the model introduced by Buldyrev et al.34 and developed by Parshani et 
al.46. They consider a system comprised of two coupled undirected networks (A and B). A certain fraction of 
nodes in network A depends on nodes in network B (qA) and vice versa (qB). If node n in network A depends on a 
node m in network B then node m can only depend on node n (or not depend on nodes in network A at all) (see 
Methods, subsection 3). Without loss of generality we consider scenarios where networks A and B have the same 
node degree distribution. We present results for Erdos-Renyi and scale-free random networks with 800000 nodes 
(N) and average degree (< k> ) of 2.5, and slope factor (in the scale-free case) of 2.25. Networks are generated 
following the algorithm presented by Catanzaro et al.47.

We consider a case with a single adverse event that destroys a number of nodes in the network. For simplicity, 
the adverse event happens at the time step t = 0. We shall refer to the result of the adverse event as the initial dam-
age. In case of the DAG model we denote the number of nodes that become inactive (i.e., are deactivated) in level 
i between time steps t and t +  1 as Ii

t. Thus, values Ii
0 represent the number of nodes made inactive upon the 

occurrence of the adverse event. In case of the coupled networks model we denote the fraction of nodes rendered 
inactive in network A as pdestr with the assumption that the adverse event doesn’t affect network B.

Results
Model 1 – Directed acyclic graphs. Synthetic graphs.  We consider a network composed of N = 1000 
nodes in four levels: N0 = 32, N1 = 87, N2 = 237, N3 = 644. We first look at the special case where the switching is 
instantaneous with probability ps = 1. Assuming the overall damage to each level is small compared to the total 

Figure 2. Network generation and modeling of an adverse event. The hierarchical area is first defined, then 
links are established according to the Bernoulli trial probability law, with parameter pm. During the operation, 
if a node with a redundant link or links is made inactive, it can switch with probability ps at each time step 
following attack time t. After the repair time period of TR steps elapses following the attack, the initially 
destroyed nodes are restored.
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number of nodes in the level, the approximation derived in the Methods section (subsection 2) may be used. 
Figure 3 provides comparisons between the analytical calculations based on that approximation for this case and 
simulation results averaged over 2000 samples. We note that this case provides insight into the impact of link 
redundancy on both critical functionality and resilience over the time interval of interest, as we show in the first 
two scenarios of Fig. 4.

Examples of resilience profiles for different cases that vary in their initial damage, switching probability and 
recovery time are given in Fig. 4. Case 1 is a scenario where only one node in the upper level is initially disabled. 
This scenario represents, for instance, an accident at a power plant. It follows that the event set E consists of all 
possible one-node attacks in the upper level. Critical functionality suffers minimally; it reduces from 1 to 0.97 at 
its lowest. Its integral, resilience, consequently suffers minimally as well: R = 0.983. By contrast, for a more serious 
attack, such as in case 2, in which five nodes at every level are disabled (such an attack might represent a large 
earthquake in a certain area); both critical functionality and resilience suffer. Critical functionality can be as low 
as 0.8 (a considerably less robust system) for a protracted number of time steps, and resilience is reduced to 0.893.

For case 3, 10 nodes are disabled, all from the top level, and the switching probability is reduced to ps = 0.25. 
The robustness, or the critical functionality at its lowest, is more drastically reduced to 0.4, yielding an overall 
resilience value of 0.728. Case 4 is similar to case 3, except that the switching is delayed, i.e., if node i has become 
disabled at time t*, then the first attempt to switch is made at time t* for case 3, and at time t* +  1 for case 4.

The dependency of resilience on parameters pm and ps is given in Fig. 5(a) with the recovery time held constant 
at TR = 0.5TC. The figure shows that both parameters are compatible and combinable; they can be smoothly traded 
off to maintain a desired level of resilience. The designer here has the opportunity to select the combination of pm 

Figure 3. Special case: analytical (solid curve) vs computational (cylinder and extension bars) solution. 
Comparison between the analytical solution and the computational experiments in the limiting but insightful 
special case in which switching is instantaneous when an additional link is available, meaning that ps = 1, under 
three different scenarios. Initial damage numbers for each layer are ordered as follows: , , ,I I I I0

0
1
0

2
0

3
0. For 

instance, the initial damage in scenario 1 is: =I 10
0 , = = =I I I 01

0
2
0

3
0 . This special case reveals the impact on 

resilience of redundancy levels, as represented by the probability pm. The cylinder represents the 25–75 
percentile range.

Figure 4. Resilience profiles for different scenarios in synthetic graphs. Results are shown for the 
redundancy probability parameter pm =  0.01. Initial damage numbers for each layer are ordered as follows: 
, , ,I I I I0
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values for scenarios 1–4 is the minimum value for each curve: 0.966, 0.787, 0.453, and 0.395 respectively.
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and ps that is least costly. Additionally, increasing pm and ps simultaneously has an observable additive effect on 
resilience. Beyond certain level, however, investment in redundancy yields minimal return. For instance,  Fig. 5(a) 
shows that doubling the probability pm from 0.1 to 0.2 leaves the resilience unchanged for ps >  0.3.

In addition, there is strong synergy between pm and ps; increasing both factors together produces a rapid 
increase in resilience, but increasing only one or the other variable will cause the resilience metric to plateau. This 
can be observed in Fig. 5(a) by reading the resilience values shown across the phase diagram curves.

Figure 5 (b) illustrates that similar tradeoffs are possible between the maximum node recovery time TR, and 
the switching probability ps. The redundancy parameter pm is held constant at 0.01. When the recovery time is 
relatively short, TR <  0.1TC, resilience values close to 1 may be obtained even for values of ps as small as 0.05. 
Resilience is strongly affected by the recovery time, TR (Fig. 5(b)). This temporal factor determines the character-
istics of the recovery phase and has a greater impact on the calculated resilience than does the potential increase 
in redundancy. This is particularly true when the switching probability ps is low, as Fig. 5(b) demonstrates.

Supplement S2 (Figures S2.1–S2.6) displays additional results for both types of parameter dependencies. Cost 
and speed of design and implementation can now guide the ultimate choice from among the infinite possibilities 
of parameter combinations.

Model 1 – Directed acyclic graphs. Linux software network.  The Linux software network exemplifies 
the structure of complex multilevel software systems and is also important in its own right. This software operates 
in an estimated 95% of all supercomputing systems48, and the majority of the smartphones in use (in the form 
of the Android operating system). Packages in Linux are linked in a formally defined hierarchy of dependencies 
between individual software units. In this hierarchy, a package can only be installed if all required higher level 
packages have previously been installed. Some redundancy is possible when multiple packages provide the same 
functionality. Figure 6 shows a subnetwork of the packages network consisting of 117 nodes out of 36,902 possi-
ble nodes in the entire network. The graph data were obtained using Advanced Packaging Tool49 on a standard 
installation of the Ubuntu 12.04 system.

Many modern cyber threats exploit vulnerabilities in software packages. Disabling a targeted software package 
leads to the failure of many services that are dependent on it. Even worse, the recovery might be protracted as a 
result of corrupted user data, thus requiring manual repair and cleanup. For example, an attack on the Apache 
web server might cause it to fail and subsequently send corrupted or maliciously designed data to backend data-
bases50. Consequently, services dependent on Apache would experience data corruption, and if Apache crashes, it 
would be disabled as well. While the damaged server might be restarted relatively quickly, recovery from such an 
attack would involve checking the data, causing serious additional delays.

We evaluate the resilience of the Linux packages network in the presence of both random and guided attacks. 
Critical functionality and resilience profiles for guided attacks on several particularly important packages are 
given in Fig. 7(a). These packages are: xauth, libstdc+ + 6, libc6, and gcc-4.6-base. Notably in these four cases 
there are four sets of adverse events E. Each of these sets contains only one event that successfully causes a par-
ticular node to be destructed. It is seen that the level of damage depends on which packages are targeted.

For random attacks (Fig. 7(b)), we consider another set of adverse events, consisting of 36,902 events. In this 
case, resilience is significantly higher than in the case of guided attacks due to the low importance of many of the 
nodes that failed from the attacks, thus yielding R = 0.99975 and M = 0.999.

Model 2 – Interdependent networks. Synthetic graphs.  We summarize the results for the second 
model in Fig. 8. Panels (a) and (b) show the dependency of the critical functionality of a system of two interde-
pendent Erdos-Renyi (ER) networks on time for 2 distinct cases of the recovery resources available expressed 
as the number of the backup agents (Nb). As it is evidenced by Fig. 8 depending on the value Nb there is a sharp 
distinction between two cases: in Fig. 8(a) the system is unable to recover and the critical functionality oscillates 

Figure 5. Resilience as a function of design parameters. (a) Resilience (value shown on curves, σ  ∈  [3.1E-3; 
2.0E-2]) dependencies on switching probability at each time step, or ps, and redundancy parameter pm, for a four 
level hierarchical network where the initial number of destroyed nodes at each level is =I 160

0 , = = =I I I 01
0

2
0

3
0  

respectively, and recovery time is held constant at TR =  0.5TC, and (b) resilience (σ  ∈  [5.9E-4; 4.3E-2]) 
dependencies on ps and TR for = = = =I I I I 50

0
1
0

2
0

3
0  with constant pm =  0.01 (color bar indicates the value of 

the resilience).
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between 0 and about 0.5 - to random duration of cascading recovery and failure processes eventually the ampli-
tude of the oscillations of the mean value of CF decreases; in Fig. 8(b) the backup supply to 0.4 N nodes in net-
work A allows reaching a stable state (after removal of the backup supply) and following further system recovery.

In scale-free (SF) networks (Fig. 8(d,e)) the results for < k>  = 2.5 and N =  800000 show a much larger disper-
sion than in Erdos-Renyi networks. In particular some of those networks suffer a much smaller drop in critical 
functionality in response to the adverse events modeled. This obviously is a consequence of the infinite disper-
sion in degrees distribution in SF networks (though in our case the dispersion is finite due to the finite number 
of nodes). Another distinct specific trait of the SF networks with small value of average degree is the fact that 
whether the network fully recovers or not is strongly dependent on the stochastic nature of the cascading failure 
process. In particular, it is obvious from Fig. 8(d) that the success of recovery is determined by whether the most 
important hubs were affected during the deactivation process. If those hubs are not affected the damage is rela-
tively small, otherwise the damage causes a large drop in critical functionality and recovery within the control 
time is not possible.

Finally panels (c) and (f) in Fig. 8 show the phase diagrams of the dependency of the resilience (calculated as 
the integral of the CF over the control time) on the model parameters pdestr and Nb. Notably the critical function-
ality practically drops to zero when only 20% of the nodes are initially destroyed in network A (pdestr). Parshani 
et al.46 demonstrated that if pdestr is more than 0.2545 the network experiences the first order transition leading to 
a state with almost no active nodes. We have reproduced their results for the Erdos-Renyi networks and con-
firmed that if pdestr is less than the threshold of 0.2545 the transition doesn’t occur. However due to minor modifi-
cations we made to the network generation algorithms aimed at connecting all the nodes in a single giant 
component (GC) in the beginning of the process, we observe decrease in the threshold value pdestr, causing the 
first order transition, to about 0.15–0.2. After the drop of the critical functionality (due to the cascading failure) 
on the step TR the recovery process starts. The recovery is successful only if Nb is about 0.4 N or higher. Finally if 
the whole network A is destroyed as a result of the adverse event (pdestr = 1) then the recovery cannot start due to 

Figure 6. Subnetwork of the Linux hierarchical packages network. 

Figure 7. Resilience profiles for the Linux network. (a) Guided attacks, and (b) random attacks. It is clear 
that guided attacks are considerably more damaging. Moreover, not all guided attacks are equally damaging; 
as shown in (a), attacks on xauth are less damaging than on libstdc+ + 6. Most damaging are attacks on libc6 
and gcc-4.6-base. The robustness (M) values for scenarios 1–4 in the panel (a) are 0.982, 0.655, 0.130, and 0.129 
respectively, while for the case in the panel (b) M =  0.999.
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the absence of the GC(A). Results for scale-free networks show similar tendencies although they are notably 
much more disperse in the region ∈ . . , ∈ . .N p[0 1; 0 6] [0 05; 0 85]b destr . We interpret this as the consequence 
of the divergence of the standard deviation of the degree distribution in scale-free networks with γ ∈ ( )2; 3 .

Conclusion
We have presented a detailed approach for implementing the National Academy of Sciences definition of resil-
ience as a function of design tradeoff parameters, as illustrated in the study with multi-level directed acyclic 
graphs and interdependent networks. The approach allows evaluation of resilience across time, and not just as 
a single quantity. Designers can thus analyze the effect of parameter choice and design emendations on overall 
network resilience and robustness. Focusing on multi-level directed acyclic graphs and interdependent networks, 
we have demonstrated how network parameters can be traded off to obtain a desired resilience and other per-
formance measures’ level. Future work will extend to multiplex systems, and other real life networks. An impor-
tant long term challenge is to model adaptation, which is part of the response cycle that follows restoration and 
includes all activities that enable the system to better resist similar adverse events in the future.

Methods
Absorption and recovery algorithms in the DAG model. A hierarchical multi-level DAG (Fig. 2) has 
Λ levels of nodes43,44. Each layer is comprised of Ni nodes (i = 0, …, Λ – 1). The links represent a supply–demand 
relationship. A link starts at a supplier node and ends at a demander node. Thus, every link in the network is 
directed. For every level, we identify a set of services that all nodes in a particular level supply. Then, for every 
service supplied in the network, we define whether or not it depends on other services and a (possibly empty) list 
of the dependencies. The levels are ordered in such a way that links only go from a higher level i to a lower level j.  
With this convention, i <  j, or, the higher the level, the smaller the index. Additionally, no links can be formed 
between nodes in the same level. We also disallow cycles in the network by imposing the following constraint: a 
node cannot depend on any of the services provided by any of the other nodes in its level or on any of the services 
provided in any of the lower levels. Initially, all dependencies are resolved, and every node has one incoming 
link from one or more upper levels on which it depends for the supply of its services. Furthermore, for every 

Figure 8. Representative profiles of the dynamics of K and resilience in networks with N = 800000. Panels 
(a,b) show results for ER networks with pdestr = 0.5, Nb =  0.35N and Nb =  0.4N respectively. Panels (d,e) show 
results for SF networks with pdestr =  0.5, Nb = 0.1N and Nb =  0.62N respectively. In the panels (a,b,d,e) the solid 
line corresponds to the mean value of K over 100 simulations. Gray area corresponds to the region K ±  σ (K) 
(where σ  is the standard deviation). The plot in the panel (d) also shows simulations where critical functionality 
restores to 1. It follows that the success of the restoration algorithm depends for the most part only on the results 
of the cascading failure (rather than the random selection of the nodes with the backup supply): in cases when 
the important hubs are active after the cascading failure recovery is more likely. Finally panels (c,f) display 
phase diagrams of the resilience dependencies on both Nb and pdestr parameters. In both ER and SF networks the 
recovery process is stochastic and very sensitive to the backup supply available.
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dependent node and each of its required services, we introduce a list of potential suppliers. The probability that 
a node has a link from each of the potential suppliers is pm. Said another way, a node has many links supplying 
a given service but only one of those links is enabled initially (known as real), while the others are contingent 
backup links (known as virtual), should they exist.

To model an adverse event, we introduce an ability to destruct a node for a time period TR, as was recently 
done by Majdandzic et al.41. A destructed node is inactive and is therefore unable to supply services until it recov-
ers. Another possible cause of deactivation is an unresolved dependency, that is, the absence of a real link to a 
node supplying a required service. This can happen when the only supply node available for a service is either 
destructed or its upstream supplier is destructed. We shall refer to the nodes with an unresolved dependency as 
disabled nodes. Note that a node can be disabled, destructed, or both at a given time. Once a node becomes inac-
tive, all of its dependencies, connected through their real links, are subject to deactivation unless they have other 
real links providing all of their required services (Fig. 2).

We assume that a node is eligible to switch links, that is, to turn a virtual or contingent link into a real one, if 
virtual links for all of the node’s unresolved dependencies exist and the node is not destructed. At every time step 
during which the node is both disabled and eligible to switch, switching happens with probability ps. Switching 
can be either instant (the first attempt to switch is made at the same time step the node has become disabled) or 
delayed (the node with an unresolved dependency remains disabled for at least one time step).

Analytical approximation for the special case of the DAG model. In this section we derive equa-
tions describing the number of active nodes in the special case where the switching is instantaneous with proba-
bility ps = 1 while the initial damage is small compared to the total number of nodes in the network.

Let us denote by Λ the number of levels in the network and by Ni the number of nodes in level i (i = 0, …, Λ – 1).  
We can find the probability that a node in level i has only one service provider in level j as follows:

= ( − ) ( )
( − )f p1 8j m
N 1j

For the case where the number of deactivated nodes at each time step is small enough or in which pm = 0, we may 
assume that only the nodes with one link for a relevant service are disabled as a result of the inactivation of their 
supplier (thus neglecting the cases in which the node has more than one supplier of a service and all of them are 
deactivated).

The average number of active nodes in level i at time step t (Ai
t) is given by the formula:
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Considering the Taylor expansion of 1/(1 – x), we have for small values of x: 1/(1 – x) ≈  1 +  x.
Then, on average between steps t and t +  1, we disable the following number of nodes in level i:
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After the recovery period of TR time steps has transpired, the initially destroyed nodes are rebuilt and become 
active unless they still lack sufficient supplies from the upper levels. Thus, assuming that TR >  Λ, Ii

t =  0 for  
i =  {0, …, Λ} and t = {Λ, …, TR – 1}.

The total number of nodes restored at step TR in level i is given by the expression:
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Here, Fi
t represents the total number of nodes disabled in level i at time step t due to the fact that they do not have 

sufficient supplies from the upper levels:
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And for the next steps, the formula is as follows:
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Using the formulae above, we may evaluate the average approximated resilience profiles and find the values of 
resilience.

Absorption and recovery algorithms in the coupled networks model. The failure propagation algo-
rithms are described in the original model of Buldyrev et al.34. Initial damage results in a certain fraction of nodes 
deactivated in the network A. Once those nodes are deactivated the network A is fractured in clusters. Nodes 
that do not belong to the largest cluster of the network A are also assumed deactivated. Then all the nodes in the 
network B that depend on the deactivated nodes in the network A are also deactivated. It results in fracturing of 
the network B, and the nodes that are not in the largest cluster of the network B are also assumed deactivated. In 
the second step of the process nodes in the network A depending on the deactivated nodes in the network B are 
deactivated and the process propagates in the same fashion until there are no more nodes to deactivate in any of 
the networks.

Recovery is accomplished by the backup supply agents replacing unresolved dependencies of the nodes in the 
first network (A). The number of those agents is denoted Nb. Each backup agent can serve only one node at a time. 
Nodes to provide the backup supply to are chosen randomly from those nodes in the network A that depend on 
a currently inactive node in the network B. Thus backup is provided either to all nodes in the network A with an 
unresolved dependency (in this case full recovery is guaranteed) or to Nb nodes only. If a node has backup supply 
and it is connected to its network’s GC it is activated. Once a node is activated it is included in the network’s GC. 
This causes eventual growth of the giant component of the network A. After that the nodes in the network B that 
depend on the activated nodes in the network A and are connected to the GC of the network B are also activated 
and the process propagates in a similar fashion. Once the process is complete the recovery phase finishes. After 
that the backup supply is removed meaning that all the nodes whose supplier in the network B is not active (after 

Figure 9. Recovery process in coupled networks. At time 0 nodes A1 and A3 are deactivated for TR steps. The 
failure process finishes before TR so at time TR the network is in its state after the cascade. Panel (a) illustrates the 
case Nb =  0. Only independent node A3 can be recovered as it is connected to the network A GC. Once node A3 
is activated its dependent node B3 is also activated. Panels (b,c) illustrate the stochastic nature of the recovery 
process. In these cases Nb =  1. At time TR +  1 either node A1 (b) or node A2 (c) can have backup supply. In case 
(b) the recovery phase doesn’t start. After that backup is removed but cascading failure occurs. On the next 
time step when backup is applied again to a randomly selected node the recovery cascade is possible if the node 
chosen is A2. This case is the same as the case (c) with time TR +  1 (in the case (c)) corresponding to the time 
TR +  3 (in the case (b)).
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the recovery phase) are deactivated. This leads to a cascading failure propagating as described in the introduction 
section. Once the failure phase finishes the recovery phase is repeated until the full network recovery is estab-
lished or the control time is reached.

Let us consider a simple two-network system (Fig. 9). At the beginning of simulation (time 0) two nodes (A1 
and A3) are assigned to be initially destroyed. Cascading process finishes before the recovery time (that is time to 
repair a node is more than the cascading failure time) TR. Thus at time TR the network is in the state it had after the 
cascading failure. After TR steps have passed the recovery process starts. The case of Nb = 0 is shown in the panel 
(a) of Fig. 9. In this case the only recoverable node is A3. After its recovery node B3 is also recovered, but further 
recovery is not possible. Nodes A1, A2, B1, and B2 can’t be recovered as they have an unresolved dependency. In 
addition even if nodes A1, B1 were independent they still wouldn’t have been recoverable due to the fact that they 
are not connected to the respective networks’ GCs.

Now consider the case Nb = 1. In this case two scenarios are possible:

(a) The node chosen for backup supply is A1 (Fig. 9(b)). Then no recovery can happen as this node is not con-
nected to the network A GC (or GC(A)) and the recovery phase ends in 0 steps;

(b) The node chosen for backup supply is A2 (Fig. 9(c)). Then this node recovers, node B2 recovers in turn. Dur-
ing the second step of the recovery phase node A1 recovers and node B1 recovers in turn.
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