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Secure Multiparty Quantum 
Computation for Summation and 
Multiplication
Run-hua Shi1,2, Yi Mu2, Hong Zhong1, Jie Cui1 & Shun Zhang1

As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build 
complex secure protocols for other multiparty computations, specially, numerical computations. 
However, there is still lack of systematical and efficient quantum methods to compute Secure 
Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum 
approach to securely compute the summation and multiplication of multiparty private inputs, 
respectively. Compared to classical solutions, our proposed approach can ensure the unconditional 
security and the perfect privacy protection based on the physical principle of quantum mechanics.

Secure Multiparty Computation (SMC)1 is an important branch in modern cryptography. Secure Multiparty 
Summation or Multiplication is a fundamental primitive of SMC that enables multiple parties to jointly compute 
the summation or multiplication of their respective private inputs without revealing any private input. As we 
know, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other 
multiparty computations, specially, numerical computations. In addition, there are also lots of other important 
applications of Secure Multiparty Summation and Multiplication in distributed networks, such as secret sharing, 
electronic voting, secure sorting, data mining and so on.

On the one hand, there existed some classical protocols for Secure Multiparty Summation2–4 and 
Multiplication5–7, which were based on classical cryptography. However, classical cryptography cannot provide 
the unconditionally secure communications and cannot resist the attack of the quantum computer especially.

On the other hand, quantum cryptography can provide the unconditional security, which is guaranteed by 
physical principles of quantum mechanics. Since Bennett and Brassard8 presented the first quantum key distribu-
tion protocol (BB84 protocol), quantum cryptography has been widely studied and rapidly developed. Compared 
to classical cryptography, the most important advantage is that an eavesdropper can easily be detected by using 
the characteristics of quantum mechanics. Therefore, a lot of results have been gained, such as quantum key 
distribution, quantum teleportation, quantum secret sharing, quantum secure direct communication, quan-
tum key agreement, quantum signature and so on. Furthermore, SMC is also studied extensively in quantum 
cryptography9–14.

However, there are only a few quantum protocols for Secure Multiparty Summation. In 2007, Du et al.15 pre-
sented a secure quantum addition module n +  1 based on non-orthogonal states, where n denoted the number 
of all parties. In 2010, Chen et al.16 proposed another secure quantum addition module 2 based on multi-particle 
entangled states with the trusted third party. However, the module of the two protocols is too small, so that it 
limits their more extensive applications. Furthermore, the two protocols lack high communication efficiencies 
due to their bit-by-bit computation and communication. In addition, to the best of our knowledge, there is no any 
quantum protocol for Secure Multiparty Multiplication.

In this paper, we present a novel quantum approach to systematically and efficiently compute Secure 
Multiparty Summation and Multiplication, in which the computations of Secure Multiparty Summation and 
Multiplication are securely translated into the computations of the corresponding phase information by the quan-
tum Fourier transform, and later the phase information is extracted out after performing an inverse quantum 
Fourier transform.

Here, we first introduce the quantum Fourier transform, which will be used later in proposed protocols. The 
quantum Fourier transform is a linear transformation on qubits, and is the quantum version of the standard 
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discrete Fourier transform. For ∈ , , …, −x N{0 1 1}, the quantum Fourier transform and the inverse quantum 
Fourier transform are defined as follows17:
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In addition, another multi-qubit quantum logic gate, which will be used later in proposed protocols, is the 
controlled-NOT or CNOT gate:  →00 00 , →01 01 , →10 11  and →11 10 , where the first qubit is 
the control qubit, and the second qubit is the target qubit. That is, if the control qubit is set to 0, then the target 
qubit is left alone. If the control qubit is set to 1, then the target qubit is flipped.

Results
Proposed protocols.  Secure multiparty quantum summation.  Assume that there are n parties: P1, P2, …, Pn 
(n >  2), where each party Pk (1 ≤  k ≤  n) has a secret integer ∈ , , …, −x N{0 1 1}k  ( = )N 2m , and further all n 
parties want to jointly compute the summation ∑ = x modNk

n
k1  without revealing their respective secret xks. In the 

following Protocol I, we suppose that P1 is the initiator party.
Protocol I (Secure multiparty quantum summation)
Step 1. The initiator P1 first prepares an m-qubit basis state  x h1 , where =m Nlog  and x1 is his private secret. 

Then P1 applies a quantum Fourier transform to the state x h1  and gets the resultant state ψ1 . That is,
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Step 2. P1 prepares another m-qubit ancillary state 0 t
 and further performs m CNOT gate operators on the 

product state  ψ 0 t1 , where each qubit of the first m qubits is the control qubit and the corresponding qubit of 
the second m qubits is the target qubit. Here we call the resultant state ψ2 , which is written as
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Clearly, ψ2  is an entangled state, where the subscript h or t denotes that the qubits will stay at home or be 
transmitted through the quantum channel.

Step 3. P1 sends the second m qubits (i.e., the ancillary state )j t
 to P2 through the authenticated quantum 

channel.
Step 4. After receiving the ancillary state j t

, P2 first prepares his secret state x2 . Then he applies an oracle 
operator C j on j xt 2 , where C j is defined by

→ , ( )C j x j U x: 8j t t
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That is, x2  is an eigenvector of U with the eigenvalue πe i2 x
N
2
. After applying the oracle operator C j, the whole 

composite quantum systems of P1 and P2 are in the following state
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Step 5. Furthermore, P2 passes the ancillary state j t
 to P3 through the authenticated quantum channel and 

keeps x2  in secret. Afterward, P3 executes the similar process of P2, and so on. This process is repeated −n 1 
times, so that, if everyone honestly executes the protocol, the composite quantum systems of all n parties are in 
the following state

∑ψ = … .
( )

π

=

− 



∑ 




=

N
e j j x x1

11j

N i
x

N j

h t n4
0

1 2
2

k
n

k1

Step 6. Finally, Pn sends the ancillary state j t
 back to P1. After receiving the ancillary state j t

, P1 again applies 
⊗CNOT m on his m2  qubits, where each qubit of the first m qubits is the control qubit and the corresponding qubit 

of the second m qubits is the target qubit. Call the resultant state ψ5 . That is,
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Step 7. Furthermore, P1 measures the second m qubits (i.e., )0 t
 in the computational basis. If the measured 

result is 0 , then he continues to execute the next step; otherwise he believes that there is at least one dishonest 
party and ends this protocol.

Step 8. Finally, P1 applies −QFT 1 to the first m qubits and further measures it to obtain ω , where 
ω = ∑ = x modNk

n
k1 .

The correctness proof. 
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Therefore, if all parties honestly execute this protocol, P1 will rightly get ∑ = x modNk
n

k1 .

Secure multiparty quantum multiplication.  Assume that there are n parties P1, P2, …, Pn ( > )n 2 , each party with 
a private secret ∈ , , …, −x N{0 1 2 1}k  ( = )N 2m , and all n parties want to jointly compute the multiplication of 
their respective private secret, i.e., ∏ = x modNk

n
k1 . Since each secret xk can be split and expressed as = ⋅x s2k

m
k

k , 
where sk is an odd integer, then we can get

∏ ∏=










.
( )

∑
= =

=x modN s modN2
14k

n

k
m

k

n

k
1 1

k
n

k1

By Eq. (14), if we get the results of ∑ = m modNk
n

k1  and ∏ = s modNk
n

k1 , then we can easily compute 
∏ = x modNk

n
k1 . Accordingly, the computation of ∏ = x modNk
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k1  can be translated into the computations of 

∑ = m modNk
n

k1  and ∏ = s modNk
n

k1 , respectively. We have proposed Protocol I to compute ∑ = m modNk
n

k1 . 
Furthermore, we present Protocol II to compute ∏ = s modNk

n
k1 , where all s sk  are odd integers. Similarly, in the 

following Protocol II, we suppose that P1 is the initiator.
Protocol II (Secure multiparty quantum multiplication)
Step 1. The initiator P1 randomly chooses an odd integer ∈ , …, −r N{1 3 1} and further prepares two m 

qubits in the original state ∑ π
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 in hand.
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This process is repeated −n 1 times, so that, if everyone honestly executes the protocol, the final quantum states 
of the qubits of the subscripts t1 and t2 are in,
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Finally, Pn sends …− −js s modNn t2
1 1

1
 back to P1.

Step 3. After receiving the returned state …− −js s modNn t2
1 1

1
, P1 continues to send j t2

 to P2 through the 
authenticated quantum channel.

Step 4. After receiving the state ⟩j t2
, P2 again applies the oracle operator U2 on j t2

 by his private input s2, i.e., 
= −U j js modNt t2 2

1
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. Furthermore he sends it to P3 through the authenticated quantum channel, and so on. 
This process is repeated −n 1 times, so that, if everyone honestly executes the protocol, the final quantum states 
of the 2 m qubits are in,
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Finally, Pn again sends …− −js s modNn t2
1 1

2
 back to P1.

Step 5. After receiving the state …− −js s modNn t2
1 1

2
, P1 performs m CNOT gate operators on the two returned 

states, such that the quantum systems of the subscripts t1 and t2 will be disentangled. That is,
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Furthermore, P1 measures the qubits of the subscript t2 in the computation basis. If the measured result is 0 t2
, 

then he continues to execute the next step. Otherwise, he believes that there is at least one dishonest party and 
ends this protocol.

Step 6. Finally P1 applies an inverse quantum Fourier transform −QFT 1 on the remaining qubits and further 
measures it to obtain ϖ t1

 in the computation basis, where ϖ = …rs s modNn2 . Then P1 outputs ϖ−s r modN1
1 . 

That is, ϖ∏ ==
−s modN s r modNk
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1 .

The correctness proof.
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Obviously, ϖ = … = …− −s r modN s r rs s modN s s s modNn n1
1

1
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2 1 2 , where r is an odd integer. Therefore, 
Protocol II can rightly output ∏ = s modNk

n
k1 . Furthermore, in order to perfectly compute ∏ = x modNk

n
k1 , the 

initiator first calls Protocol I to securely compute = ∑ =M m modNk
n

k1  and then calls Protocol II to securely com-
pute = ∏ =S s modNk

n
k1 . Finally, the initiator computes = ( )X S modN2M . Obviously, = ∏ =X x modNk

n
k1 .

Security Analysis.  We have analyzed the correctness of Protocol I and II, and further analyze their securi-
ties. In order to save space, please note that we mainly analyze the security of Protocol I, because the security of 
Protocol II is the same as that of Protocol I.

We first analyze that P2 does not get any secret information about the initiator P1’s input x1. In Protocol I, P1 
only sends the ancillary state j t

 to P2 without any classical information. So, for a dishonest P2, if he wants to 
eavesdrop P1’s secret, all possible attacks he can perform with the present technology are as follows:

(1)	 P2 directly measures the ancillary state j t
 in the computational basis. Obviously, he will get j  

( ∈ , , …, − )j N{0 1 1}  with the equal probability of 
N
1 , but the measured result j is independent of P1’s secret 

x1. That is, this attack is infeasible.
(2)	 After applying a unitary operator on the ancillary state j t

, P2 again measures it. Especially, P2 has a knowl-
edge that P1’s secret state x1  has evolved into the same state (i.e., )j h

 as the ancillary state j t
 based on the 

quantum Fourier transform, so he may perform an inverse quantum Fourier transform −QFT 1 on the ancil-
lary state j t

 to expect to extract out x1. That is, this attack can be described as follows:
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By the above equation, if P2 measures the ancillary state, he will get l t
 ( ∈ , , …, − )l N{0 1 1}  with the equal 

probability of 
N
1 . It implies that P2 cannot get any secret information about P1’s private input, because he can-

not extract out the global phase information from the partial qubits of the entangled quantum systems with 
the subscripts h and t. In fact, any local unitary operator on the partial qubits cannot fully disentangle the 
entanglement of the composite system unless directly measured. Therefore, even if P2 performs this attack, he 
still cannot get any private information about P1’s secret x1.

(3)	 P2 performs a more complicated entangle-measure attack that he is able to prepare another ancillary system 
0 P2

 and entangle the two ancillary systems by his local unitary operations, where one is transmitted from P1, 
and afterward he can measure the ancillary system prepared by himself to get the partial information about 
P1’s private inputs. P2’s dishonest action when he receives P1’s ancillary j t

 can be described by a unitary oper-
ator ∼UtP2

, which acts on j t
 and 0 P2

. We can describe it as follows:

η φ η= ( ) + − ( ) , ( )
∼U j j j V j0 1 22tP t P j t P j tP2 2 2 2

where ( )V j tP2
 is a vector orthogonal to φ( )j jt P2

, i.e.,

φ( ) ( ) = . ( )j j V j 0 23t P tP2 2

In order to completely pass the honest test (see Step 7), it can easily deduce that η = 1j . That is, the whole 
quantum systems of P1 and P2 should be in the following state after performing ∼UtP2

:

∑ ∑ φ= ( ) .
( )

∼ π π

=

−

=

−
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e j j
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e j j j1 0 1
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Then P2 sends j t
 back to P1. After P1 performing ⊗CNOT m and further measuring the ancillary system t, the 

state of the remaining quantum system becomes

∑ φ( ) .
( )

π

=

−

N
e j j1

25j
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Now if P2 measures his ancillary state φ( )j P2
, as the above analysis in the case of (2), he still cannot get any 

secret information about x1 because of the entanglement of  j h
 and φ( )j P2

. If P1 further applies −QFT 1 to the first 
m qubits, the state of the remaining quantum system will be updated into
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This equation shows that if P1 measures his remaining m qubits, he will get l h
 ( ∈ , , …, − )l N{0 1 1}  with 

the equal probability of 
N
1 , which implies that the probability of getting x h1  is also 

N
1 , unless φ( )j  is independent 

of j. Similarly, P2 cannot get the secret x1 with the probability of more than 
N
1  due to their entanglement yet. It 

implies that P2 cannot get any secret information about P1’s private input x1. Therefore, the entangle-measure 
attack is infeasible.
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From what we have analyzed above, we can see clearly that P2 cannot get any secret information about x1. 
Furthermore, we can easily and naturally generalize that any party Pk ( ≠ )k 1  cannot obtain any secret informa-
tion about P1’s private input. Therefore, the initiator’s private input is unconditionally secure against other dishon-
est parties. In turn, if all party honesty execute this protocol, P1 only gets the final summation ∑ = x modNk

n
i1  

( > )n 2 , instead of single party’s private secret xk. However, if the parties −Pk 1 and +Pk 1 are dishonest, they can 
collude to get Pk’s private input xk. In order to overcome this weakness, we can use the communication model in 
a random order instead of the fixed order, that is, how to choose the next party is randomly determined by the 
party himself, not pre-determined by a designated party.

In addition, in order to full resist the collusion attack of any less −n 1 parties, we can design the following 
Protocol III, in which all parties are full parity.

Protocol III (to compute ∑ )= x modNk
n

i1
Round 1
Step 1. Each party Pk ( ≤ ≤ )k n1  randomly generates −n 1 integers xk1, xk2, …, ( − )xk n 1  in , , …, −N{0 1 1}, 

and then computes ( )= − ∑ =
−x x x modNkn k j

n
kj1

1 . That is,

∑= .
( )=

x x modN
27

k
j

n

kj
1

Step 2. Each party Pk ( ≤ ≤ )k n1  as the initiator calls Protocol I to compute

∑= ,
( )=

( + − )

y x modN
28k

j k

k n modn

jk

1

where xkk is Pk’s the initial input.
Round 2
Finally, all parties designate an agent who could be one of them to again call Protocol I to compute and 

announce

∑= .
( )=

y y modN
29k

n

k
1

Obviously,

∑

∑ ∑

∑∑
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=

=

= .
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=

= =
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1 1

1

Because Protocol I can ensure the unconditional security of the private input of the initiator, every sub-secret 
xkk of Pk ( ≤ ≤ )k n1  in Round 1 of Protocol III is unconditionally secure against any less −n 1 parties. Therefore, 
Protocol III is unconditional secure against any collusion attack, unless there are −n 1 cheating parties.

As for Protocol II, obviously P1’s secret s1 is unconditionally secure because the transmitted quantum messages 
don’t include any private information about s1. Conversely, if all parties honestly execute Protocol II, P1 only gets 
the final multiplication ∏ = s modNk

n
i1  ( > )n 2 , instead of certain party’s secret sk. In addition, the n-th party Pn 

can easily perform an intercept-resend attack. That is, he intercepts all qubits passing through his hands, and then 
sends fake qubits back to P1. Accordingly, Pn may finally obtain ϖ t1

 after applying m CNOT gate operators and 
an inverse quantum Fourier transform −QFT 1 to his intercepted qubits, where ϖ = …rs s modNn2 . However, Pn 
does not know r, so he still cannot get any secret information about other parties’ private inputs. Therefore, this 
attack is infeasible. Furthermore, in order to resist the collusion attack, we can also use the communication model 
in a random order instead of the fixed order. Similarly, we can also design the unconditionally secure quantum 
protocol for Secure Multiparty Multiplication.

Protocol IV (to compute ∏ )= x modNk
n

k1
Round 1
Step 1. Each party Pk  ( ≤ ≤ )k n1  splits his secret xk  into n random integers xk1, xk2, …, xkn in 
, , …, −N{0 1 1}, such that

∏= ,
( )=

x x modN
31

k
j

n

kj
1

where = ⋅x s2kj
m

kj
kj . That is, ∏ = ∏ ∏=

∑ ∑
= =

= =x modN s modN2k
n

k
m

k
n

j
n

kj1 1 1
k
n

j
n

kj1 1 .
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Step 2. Each party Pk ( ≤ ≤ )k n1  as the initiator calls Protocol III to compute

∑∑= ,
( )= =

M m modN
32k

n

j

n

jk
1 1

where mkk is Pk’s the initial input.
Step 3. At the same time, each party Pk ( ≤ ≤ )k n1  as the initiator calls Protocol II to compute

∏= .
( )=

s s modN
33

k
j

n

jk
1

where skk is Pk’s the initial input.
Round 2
Finally, all parties designate an agent who could be one of them to again call Protocol II to compute 
= ∏ =S s modNk

n
k1  and to further announce

= . ( )X SmodN2 34M

As for the security of the quantum channel, we can use the decoy technology to check eavesdropping in all 
proposed protocols. That is, the initiator randomly inserts enough decoy particles into the qubit sequence to be 
transmitted, where every decoy particle is prepared randomly with either Z-basis (i.e. ,{ 0 1 } or X-basis (i.e. 

)( + ), ( − ){ }0 1 0 11
2

1
2

. After confirming that the receiver has received the transmitted sequence, the 
initiator announces the positions of partial decoy particles and the corresponding measurement basis. The 
receiver measures these decoy particles according to the initiator’s announcements and tells the initiator his meas-
urement results. Then the initiator compares the measurement results of the receiver with the initial states of these 
corresponding decoy particles in the transmitted sequence and analyzes the security of the transmissions. If the 
error rate is higher than the threshold determined by the channel noise, they cancel this protocol and restarts; or 
else they continue to the next step.

In addition, the authenticated quantum channel can further ensure the security of quantum communica-
tions. Like most existing secure multiparty quantum computations, our protocols need there is an authenticated 
quantum channel. This is the only assumption we need to have for proposed protocols to work. In principle, we 
may use a quantum authentication scheme (QAS)18 based on Clifford operators introduced in19 to implement it. 
We may also use quantum encryptions combined with classical authenticated keys20,21. In addition, we may still 
ensure the authentication by sharing the entangled quantum resources in advance22 or using the detecting (or 
decoy) particle technologies23.

Discussion
In this paper, we presented a novel and efficient quantum approach to systematically compute secure multiparty 
summation and multiplication. In our approach, there is an initiator who prepares an entangled state and further 
transmits the partial qubits of the entangled state to every party in turn through the quantum channel. According 
to the different computations, there are two specific processing ways: the receiver in computing the summation 
adds his secret into the global phase of the entangled state by an oracle operator, while the receiver in computing 
the multiplication embeds his secret into the received basis state by another oracle operator. Finally, the initiator 
takes the transmitted qubits back and subtly extracts out the corresponding summation and multiplication from 
the phase information by an inverse quantum Fourier transform. More specifically, we proposed several quantum 
protocols for secure multiparty summation and multiplication, where Protocol I and II have higher efficiency due 
to the linear communication complexity, and Protocol III and IV provide the unconditional security and the 
perfect privacy protection with ( )O n2  communication complexity.

In conclusion, our approach securely implements the fundamental arithmetic operations (i.e., summation 
and multiplication) in secret-by-secret way instead of bit-by-bit way, which may give some good references for 
solving other SMC problems. In theory, it can be generalized to compute lots of secure multiparty numerical 
computations.
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