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Methadone-induced Damage 
to White Matter Integrity in 
Methadone Maintenance Patients: 
A Longitudinal Self-control DTI 
Study
Wei Li1,*, Qiang Li1,*, Yarong Wang1,*, Jia Zhu1, Jianjun Ye1, Xuejiao Yan1, Yongbin Li1, 
Jiajie Chen1, Jierong Liu1, Zhe Li1, Wei Wang1 & Yijun Liu1,2

Methadone maintenance treatment (MMT) can induce impairments in brain function and structure, 
despite its clinical effectiveness. However, the effect of chronic MMT on brain white matter (WM) is not 
fully known. Thirty-three MMT patients underwent diffusion tensor imaging (DTI) twice – at the start 
of the study (Scan1) and one year later (Scan2). Tract-based spatial statistics were used to investigate 
changes in fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD) between the two 
scans. The correlations between DTI indices and methadone consumption and neuropsychological 
status were analysed. We found significantly decreased FA, decreased AD and increased RD in Scan2 in 
extensive WM regions; overlapping regions were found in the left posterior limb and the retrolenticular 
part of internal capsule, superior and posterior corona radiata, bilateral external capsule and the right 
superior longitudinal fasciculus. In addition, the change of FA in the overlapping regions was positively 
correlated with the accumulated dosage of methadone use, the RD value in Scan2 and non-planning 
impulsiveness (NPI) measured at follow-up. The results suggest that methadone has damaging effects 
on WM integrity. The dose-dependent pattern and characteristics of the impairment may suggest new 
strategies for MMT.

Methadone maintenance treatment (MMT) is regarded as the most effective treatment for opioid addiction. 
Approximate 337,000 patients with heroin abuse have received MMT in China since the initiation of the MMT 
program in 20041. Long-term MMT benefits heroin addicts by reducing heroin dependence, preventing the 
spread of HIV and improving the abstinence rates and life status of heroin addicts2. However, as a long-acting 
synthetic opioid drug, despite its therapeutic effectiveness, its potential to induce neuronal adaptations in the 
brain of methadone users remains uncertain. Meanwhile, emerging evidence suggests that long-term methadone 
use may lead to adverse consequences for brain structure, metabolism and function and the neuropsychological 
status of heroin addicted patients.

Toxic effects on neuromechanisms due to long-term opioid consumption have been demonstrated, which 
indicate that opioids may alter brain structure and function by regulating the genesis of neurons, glia and their 
precursors in the central nervous system, or by disrupting gliogenesis3. Heroin-induced neurotoxic modifications 
in humans have been demonstrated, while limited observations of methadone-induced neurotoxic effects have 
been reported. The majority of the previously reported cases were macroscopic lesions observed by neuroimag-
ing, which were induced by acute or subacute use, or an overdose of methadone. The primary magnetic resonance 
imaging (MRI) characteristics of methadone-induced macroscopic neurotoxic effects have been described as 
reversible, extensive and symmetric brain hyperintensities in the cerebellum, basal ganglia4, deep white matter 
(WM) of the cerebral hemispheres5, subcortical U-fibers6, corona radiate and centrum semiovale7. Although 
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methadone-related leukoencephalopathy after acute or subacute methadone use has been observed, the influence 
of chronic methadone exposure remains poorly understood.

Previous research measuring cognitive function has demonstrated several negative effects of long-term MMT. 
Comparisons of the neuropsychological performance of abstinent heroin addicts and former heroin addicts on 
MMT have revealed a wide range of impairments in cognitive function in MMT patients, including processing 
speed, visual-spatial analysis, cognitive flexibility tests, working memory, sustained attention, executive function, 
verbal and non-verbal learning and resistance to distraction8,9. However, the underlying neural mechanisms asso-
ciated with the observed MMT-related cognitive impairments remains uncertain. To the best of our knowledge, 
only a few studies have focused on the brain’s functional and structural alterations caused by long-term MMT in 
humans. For instance, one study reported that striatal dopamine transporter uptake was compromised in her-
oin addicts undergoing MMT compared with that in patients with prolonged abstinence10. In a previous study, 
we observed a decrease in WM integrity induced by methadone in the splenium of the corpus callosum, and a 
negative correlation between WM integrity and the accumulated dosage of methadone consumed, by applying 
diffusion tensor imaging (DTI) with the regions of interest (ROI-wise) method11. However, the limitations of the 
previous study make it difficult to interpret the methadone-related negative effects. Specifically, the former study 
used a group comparison design, in which the effect of previous heroin use could not be eliminated, and did not 
use quantitative methods to measure WM integrity.

Therefore, the aim of the present study was to explore whether long-term MMT would induce impairments 
in WM integrity using a quantitative DTI assessment and a longitudinal self-control design. Alterations in 
WM integrity were assessed by comparing DTI data collected from two scans of each MMT patient over a one 
year interval. The correlations between WM alterations and methadone use and neuropsychology scores were 
determined. It was hypothesized that WM integrity in MMT patients would decrease after a one year treatment 
program, and the observed impairment of WM integrity would be related to the dosage of methadone and neu-
ropsychological scores.

Results
Demographic and clinical characteristics.  Out of the 50 participants, 12 patients did not complete both 
of the two scans, and 5 patients’ data were unusable (due to incomplete brain coverage, head motion, or gross cer-
ebral abnormality in T2WI structural imaging). Hence, 33 patients who completed both MRI scans were included 
in the final analysis. The demographic data, heroin addiction history, and MMT status are summarized in Table 1; 
the depressive, anxious and impulsive scores are summarized in Table 2. All the participants met the initial inclu-
sion criteria of having a stable MMT status; however, all of them were outpatients and reported occasionally using 
heroin during the interval between the two scans. Therefore, the frequency and accumulated dose of occasional 
heroin use (which were confirmed by interview and monthly urine tests) were recorded (Table 1).

Tract-Based Spatial Statistics (TBSS) results.  Compared with Scan1, Scan2 showed significantly 
decreased FA, decreased AD and increased RD in extensive WM regions (Fig. 1). The overlapping regions with 
decreased FA, decreased AD and increased RD were mainly located in the left posterior limb and retrolenticular 
part of the internal capsule, the superior and posterior corona radiata, the bilateral external capsule and the right 
superior longitudinal fasciculus (Fig. 2a). Regions with decreased FA and decreased AD were mainly located in 
the bilateral external and internal capsule, superior longitudinal fasciculus, corticospinal tract, right posterior 
thalamic radiation, anterior corona radiata and the corpus callosum (Fig. 2b). Decreased FA and increased RD 
were located in the bilateral superior corona radiata, external capsule, corticospinal tract, superior longitudinal 
fasciculus, left posterior limb and the retrolenticular part of internal capsule (Fig. 2c).

Characteristics MMT patients (N = 33)

Age (years) 34.8 ±  7.7

Gender(M/F) 30/3

Educational level (years) 9.3 ±  2.4

Dosage of cigarette smoking (cigarettes/day) 21.2 ±  5.2

Duration of cigarette smoking (years) 16.5 ±  8.3

Accumulated dosage of former heroin abuse (g) 951.9 ±  1464.9

Duration of former heroin abuse (months) 76.3 ±  66.5

Accumulated dosage of former methadone use (l) 35.8 ±  29.7

Duration of former methadone use (months) 26.2 ±  16.6

Maintenance dosage of MMT (ml/day) 44.7 ±  16.2

Heroin use during the interval between the two scans

  Proportion of heroin relapse (relapse/non-relapse) 19/14

  Average frequency of heroin relapse 3.3 ±  3.6

  Average accumulated dosage of heroin use (g) 1.1 ±  1.3

Table 1.   Demographic and clinical characteristics of the participants (Mean ± SD).
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Correlation results.  Correlation analysis indicated that the proportion of change in mean FA values in the 
overlapping regions with decreased FA, decreased AD and increased RD were positively correlated with the accu-
mulated dose of methadone used (r =  0.36, P =  0.038) within one year (Fig. 3a). There were no significant correla-
tions between the changes in the DTI indices and occasional heroin abuse within one year. Although the changes 
in the DTI indices were not significantly correlated with changes in the neuropsychological scores, we found that 
the mean RD values in the overlapping regions in Scan2 were positively correlated with NPI scores measured at 
the one year follow-up (r =  0.37, P =  0.032) (Fig. 3b). There had been no significant correlation between the DTI 
indices in Scan1 and any of the initial neuropsychological scores.

Discussion
To the best of our knowledge, this is the first study to provide direct evidence that chronic methadone con-
sumption has damaging effects on WM integrity, using a longitudinal self-control design and quantitative DTI 
methodology. The results of this study indicate that methadone-treated patients have decreased FA, decreased 
AD and increased RD in extensive WM regions. The findings are consistent with the hypothesis that chronic use 
of methadone impairs WM integrity.

Methadone is a highly lipid soluble synthetic opioid, and it is well-absorbed in the brain with a strong 
affinity for u-opioid receptors12, which are predominately located in the limbic system and the cerebellum in 
humans13,14. Although methadone has similar chemical properties and receptor-mediated actions to heroin, rel-
atively specific regional effects of methadone have been reported. Previously published studies have reported 
that methadone is distributed mainly in the frontal cortex, hippocampus, cerebellum, and the basal ganglia, as 

S1 (N = 33) S2 (N = 33) t-value P-value

BDI score 9.70 ± 8.63 8.93 ±  9.28 0.73 0.47

HAMA score 8.52 ± 11.05 10.94 ±  10.46 − 2.36 0.02※

Total BIS score 62.76 ±  8.13 62.51 ±  7.83 0.14 0.89

Attentional impulsivity 13.42 ±  3.04 14.27 ±  2.81 − 1.09 0.28

Motor impulsivity 19.90 ±  3.77 19.24 ±  3.84 0.87 0.39

Non-plan impulsivity 29.33 ±  4.80 28.91 ±  4.24 0.39 0.69

Table 2.   Neuropsychological scores of MMT patients when scanned (Mean ± SD). ※Significant different,  
P <  0.05; S1 =  Scan1, S2 =  Scan2.

Figure 1.  TBSS analysis of FA, AD and RD between S2 and S1. Compared with S1, S2 showed significantly 
decreased FA (a), decreased AD (b) and increased RD (c) in extensive white matter regions (P <  0.05, corrected 
by TFCE and FWE). S1 and S2 are Scan1 and Scan2, respectively.
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detected by immunohistochemistry in patients with a lethal methadone intake15,16. Additionally, methadone can 
produce desensitization in the striatum/accumbens, subiculum, amygdala and periaqueductal gray matter in 
the rat brain17. The WM regions with impaired integrity in the present study were mainly those that form con-
nections between the frontal, temporal, parietal and occipital lobes and the limbic system. The distributions 
of WM impairment may reveal specific regions where methadone was involved and may help to explain the 
MMT-induced functional impairment.

DTI analysis is capable of measuring WM integrity, and FA is an important index that is highly sensitive to 
WM microstructural changes, but not very specific to the characteristics of these changes18. To better character-
ize WM microstructure, multiple diffusion tensor indices (such as AD and RD) should be used19. Therefore, the 

Figure 2.  Overlapping white matter regions with changes in FA, AD and RD. White matter regions with 
decreased FA, decreased AD and increased RD are shown in red (a). Regions with decreased FA and decreased 
AD are shown in yellow (b). Regions with decreased FA and increased RD are shown in purple (c).

Figure 3.  Correlations between DTI indices and clinical characteristics. The proportion of change in FA in 
the overlapping regions was positively correlated with the accumulated dosage of methadone use within one 
year (a). The RD value in the overlapping regions in S2 were positively correlated with the NPI score measured at 
follow-up (b). RD values ×  10−3 mm2/s. S2 is Scan2.
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overlapping WM regions with decreased FA, decreased AD and increased RD in the present study may provide 
more detailed pathological characteristics of WM microstructural changes. It was demonstrated that changes 
in AD are associated with axon changes, while RD implicates the nature of the myelin20. In the human central 
nervous system, myelin is constructed by oligodendrocytes, which express u-opioid receptors21. In the present 
study, significantly increased RD values that hinted of specific demyelination were observed in Scan2 compared 
to Scan1, which validated the harmful-effects of methadone on myelin sheets20,22. The direct effects of methadone 
on WM integrity remain uncertain, as the changes might have resulted from the demyelination induced by direct 
impairment or by the activation of an immunological response to neuronal tissues5. The results of animal studies 
indicate that cell death through apoptosis is related to opioid exposure that is induced by mitochondrial dys-
function, oxidative stress, upregulation of the pro-apoptotic proteins Fas, FasL and Bad and a significant loss of 
mitochondrial membrane potential23–25. Opioid-induced apoptosis of microglia cells and neurons in humans has 
also been reported26. Therefore, apoptosis caused by opioid use (including methadone) may induce demyelination 
and axon impairment.

Several reported impairment mechanisms of methadone, such as respiratory depression and systemic hypoxia, 
have an indirect influence on WM, which can induce chronic hypoperfusion or hypoxia in the brain. According 
to the animal model of chronic cerebral hypoperfusion, chronic hypoperfusion can significantly reduce the mye-
lin basic protein, which is regarded as a marker of myelin, and sequentially reduce the neurofilament H, which is 
considered to be a marker of axonal proteins27. Thus, chronic hypoxia may contribute to the pathological char-
acteristics of methadone-related WM impairment, which is currently seen as demyelination accompanied by 
impairment of the axon.

Impulsiveness has been reported to be associated with substance abuse and related problems, such as 
relapse28–30. NPI has been used to measure the subtypes of impulsiveness, which reflect lack of self-control and 
intolerance of cognitive complexity31. It has been demonstrated that NPI scores are associated with the severity of 
craving and indirectly related to the possibility of relapse via craving32. A positive correlation between RD values 
in the left posterior limb and the retrolenticular part of internal capsule, superior and posterior corona radiata, 
bilateral external capsule and the right superior longitudinal fasciculus in Scan2 and NPI scores measured at the 
one year follow-up in this study, may reflect a potential relationship between methadone-related demyelination 
and increased impulsiveness. However, it is still unclear whether demyelination has a direct effect on the higher 
heroin relapse rate of MMT patients. Previous studies have observed that methadone exposed infants and chil-
dren of female heroin users exhibit an altered maturation of WM, which may underlie some of the increased risk 
for cognitive and behavioral difficulties in these children33,34. Therefore, it is hypothesized that the WM integrity 
impairment induced by methadone may be related to the pathological basis of the neuropsychological or func-
tional abnormalities in MMT patients.

In the current study, the FA values in the overlapping regions were positively correlated with the accumulated 
dosage of methadone use within one year, which may suggest a dose-dependent pattern of the methadone-related 
WM impairment. Another interesting finding was the relative asymmetry of the FA decrease between the hemi-
spheres; we found that most of the regions with significant FA decreases were located in the right cerebral hemi-
sphere. Previous findings have demonstrated that opioid dependent individuals exhibit a left-greater-than-right 
asymmetry of cerebral blood flow, which is the opposite of the asymmetry observed in healthy controls35. 
However, whether this left-greater-than-right asymmetry of cerebral blood flow in MMT patients has the poten-
tial to induce the vulnerability of WM in the right hemisphere requires further investigation.

The findings of the current study have clinical significance. Studies have confirmed that alterations in WM 
integrity are reversible after certain types of physical or pharmacological treatment36,37. Administering long-chain 
polyunsaturated fatty acids to infants born to a methadone-maintained mother, which is essential for the for-
mation of myelin, demonstrates a beneficial effect on their problem-solving skills and recognition-memory38. 
Therefore, the enhancement of myelin integrity may help to ameliorate the cognitive decline or to decrease the 
impulsiveness-related relapse in MMT patients.

The current study has several limitations. First, a major limitation is the lack of comparison groups in pres-
ent study. Second, the version of FMRIB Software Library (FSL) used in this study is quite old. Third, possible 
gender-related differences of methadone effects on WM were not examined, since there were only three female 
MMT patients involved. Previous research has reported the existence of gender-related variations in opioid 
responses39. A sexual dimorphism in the oligodendrocytes and the WM of rodents has also been reported40. 
Therefore, the potential of a gender-related difference in methadone-related WM impairment requires further 
investigation. Finally, due to the lack of a detailed cognitive test or relevant functional imaging data in the present 
study, the conclusion that methadone-related reduction in WM integrity may underlie the neural substrates of 
the relevant cognitive deficits and the functional alterations of MMT patients remains a presumption. Further 
research to understand the correlation of WM integrity with cognitive deficits and functional alterations is 
strongly recommended.

In conclusion, convincing evidence was obtained about the methadone-induced impairment of WM structure 
using DTI. This impairment can be regarded as reflecting the neurotoxic effects of chronic methadone use, which 
may contribute to the origins of impaired brain function and cognitive function in MMT patients. The pattern 
of methadone-related WM impairment may shed light on the development of new approaches to protect WM 
integrity and to enhance therapeutic effectiveness.

Methods
The present study was approved by the Institutional Board of the Fourth Military Medical University, Xi’an, China, 
including all the relevant details. As required by the Institutional Review Board of the Tangdu Hospital, all sub-
jects were informed of the experimental details and aims of the study, and written consent for their involvement 
was obtained from each subject. The experiment was carried out in accordance with the approved guidelines.
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Subject selection.  Fifty right-handed former chronic heroin addicts under stable MMT were recruited 
from the outpatients of Baqiao Methadone Maintenance Treatment Center, Xi’an, China. All of them volun-
tarily came to the MMT center to seek medical help. The primary inclusion criteria for heroin addicts were: 
(1) Diagnosed with heroin addiction as defined by the DSM-IV (American Psychiatric Association) diagnostic 
criteria; (2) Under MMT for at least three months with a stable dose; (3) Being right-handed (as judged by the 
Edinburgh handedness inventory); and (4) The primary route of heroin administration was snorting. Individuals 
were excluded if they had: (1) A drug abuse history other than heroin addiction; (2) Any history of head trauma 
and/or neurological disease or neurological disease signs; (3) Intelligence and language communication issues; 
(4) Daily alcohol consumption; (5) A current medical illness; (6) Claustrophobia or any contraindication for MRI 
examination.

Neuropsychology status assessment.  The co-morbidity of addiction and psychiatric disorders is com-
monly observed, such as depression, which has been observed in 42–54% MMT patients41. Therefore, the Beck 
Depression Inventory II (BDI) and the Hamilton Anxiety Scale (HAMA) were used, respectively, to evaluate 
co-morbid depression and anxiety. In addition, the Barratt Impulsiveness Scale (BIS-11), which is composed of 
three factors, was used: Attentional impulsiveness, motor impulsiveness and NPI, were used to explore the poten-
tial correlation between WM integrity and impulsiveness.

Follow-up design and setting.  A longitudinal self-control design was used in the present study. All partic-
ipants underwent two MRI scans, which were conducted one year apart. The first scan was arranged at the initia-
tion of the study in October 2012, and the second one was at the end of a follow-up in October 2013. Information 
regarding MMT consumption during the one year period between the two scans was recorded. Any occasional 
heroin consumption was determined through a regular interview and monthly urine test.

Image acquisition.  All images were acquired on a 3.0 T MR scanner (GE Signa Excite HD) in the Imaging 
Center of Tangdu Hospital, with a gradient strength of 40 mT/m and a slew rate of 150 T/m/sec. Routine 
T2-weighted imaging was acquired and carefully examined by an experienced radiologist to ensure the absence 
of gross structural abnormalities. A spin-echo echo planar imaging sequence was used in DTI image acquisition. 
During each scanning session, 34 axial slices covering the whole brain were acquired with the following parame-
ters: repetition time =  7,600 ms, echo time =  61.5 ms, matrix =  128 ×  128, field of view =  240 ×  240 mm2, number 
of excitations =  2 and slice thickness =  4 mm, with no gaps. The diffusion images’ gradient encoding schemes 
included 25 non-colinear orientations with a b-value =  1000 s/mm2 and a non-diffusion weighted image with a 
b-value =  0 s/mm2. The total scanning time for each subject was approximately 10 minutes. Ear plugs and foam 
padding were used to reduce noise and minimize head motion.

DTI data processing.  DTI data were pre-processed using the Diffusion Toolbox (FDT) from the FMRIB 
Software Library (FSL version 4.1.8, http://www.fmrib.ox.ac.uk/fsl/)42. The DTI data of each individual was first 
corrected for eddy current distortion and head motion by FDT. The Brain Extraction Tool (BET) was used to 
remove background noise and the non-brain tissue components43. Afterwards, the parameter maps, including 
fractional anisotropy (FA) and three eigenvalues (λ 1, λ 2 and λ 3) were obtained using DTIFIT from FSL. Then, the 
axial diffusivity (AD =  λ 1) and radial diffusivity (RD =  [λ 2 +  λ 3]/2)44 were calculated with an in-house program.

Whole brain voxel-wise statistical analyses of FA images were performed by standard Tract-Based Spatial 
Statistics (TBSS) implemented in FSL42,45. First, the FA map of each subject was realigned to the standard 
FMRIB58_FA template in Montreal Neurological Institute (MNI) space and re-sampled to 1 ×  1 ×  1 mm3 46. 
Afterwards, registered FA images of all the subjects were averaged to generate a cross-subject mean FA image and 
were skeletonized to create a mean FA skeleton by thinning the mean FA image to represent the center of all tracts 
common to the whole group. The threshold of the mean FA skeleton was set to 0.2 in order to exclude peripheral 
tracts. The aligned FA data of each participant was then projected onto the group mean skeleton to create a skel-
etonized FA map by filling the skeleton with the FA values from the nearest relevant tract center. In addition, the 
RD and AD maps were projected onto the skeleton using the same non-linear transformation matrix.

Statistical analysis.  Voxel-wise statistical analyses were performed to investigate the FA, AD and RD dif-
ferences between the two scans, which were derived from the Randomise tool in FSL (http://www.fmrib.ox.ac.
uk/fsl/randomise/index.html) to illustrate the nonparametric permutation inference of the data. The number of 
permutation tests was programmed as 5,000 by using Randomise (routine in FSL)47. The single-group paired dif-
ference (paired t-test) was provided by the GLM in FSL and was used to generate the design matrix and contrast 
files for the comparison of the two scans. Threshold-free cluster enhancement (TFCE) was used to define the 
clusters demonstrating significant differences between the two scans. The results were then corrected for multiple 
comparisons with a family-wise error (FWE) and the criterion set as P <  0.0548. The skeletal regions showing a 
significant intergroup difference were defined by the Johns Hopkins University (JHU)-ICBM-DTI-81 WM labels 
atlas and the JHU white matter tractography atlas in MNI space by using the atlasquery tool in FSL.

A paired t-test was performed to test the difference in the neuropsychological scores between Scan1 and Scan2. 
Pearson correlations were performed to explore the relationship between the proportion of change in FA, AD and 
RD in overlapping regions and the accumulated dose of methadone use and the occasional use of heroin within 
one year. The associations between the changes of the DTI indices and the BDI, HAMA and BIS scores were also 
determined by Pearson correlations using the Statistical Package for the Social Sciences version 16.0 (SPSS Inc., 
Chicago, IL, USA). The criterion of statistical significance was set at P <  0.05.

http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/randomise/index.html
http://www.fmrib.ox.ac.uk/fsl/randomise/index.html
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