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Abstract

Yohimbine is a prototypical alpha2-adrenergic receptor antagonist. Due to its relatively high 

selectivity, yohimbine is often used in experiments whose purpose is to examine the role of these 

receptors. For example, yohimbine has been employed at doses of 1–5 mg/kg to reinstate drug-

seeking behavior after extinction or to antagonize general anesthesia, an effects presumably being 

a consequence of blocking alpha2-adrenergic receptors. In this report we characterized dose-

dependent autonomic and behavioral effects of yohimbine and its interaction with an antagonist of 

5-HT1A receptors, WAY 100635. In low doses (0.5 – 2 mg/kg i.p.) yohimbine induced locomotor 

activation which was accompanied by a tachycardia and mild hypertension. Increasing the dose to 

3–4.5 mg/kg reversed the hypertension and locomotor activation and induced profound 

hypothermia. The hypothermia as well as the suppression of the locomotion and the hypertension 

could be reversed by the blockade of 5-HT1A receptors with WAY 100635. Our data confirm that 

yohimbine possesses 5-HT1A properties, and demonstrated that in doses above 1 mg/kg 

significantly activate these receptors.

1. INTRODUCTION

Yohimbine is a prototypical alpha-2 adrenoreceptor antagonist in neuropharmacological 

studies [16]. It was and still is widely used in various experimental studies in vitro [10, 19, 

34] and in vivo in conscious animals [3, 5, 7] and as an antagonist of general anesthesia [11, 

22, 24, 48].

Importantly, yohimbine has also been reported to evoke responses through dopaminergic 

[40], alpha1-adrenergic [13, 16], 5-HT1A [50, 51], and benzodiazepine [29] receptors. The 
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ability of yohimbine to act as a partial agonist for the human 5-HT1A receptor was 

demonstrated using receptors expressed in cell lines [1]. Hypothermia, induced by 

yohimbine in rats [21, 32] was linked to the activation of 5-HT1A receptors [32].

A major limitation of the above-referenced studies is that they do not provide data 

establishing the relative receptor selectivity of the doses of yohimbine employed in 

conscious animals. If yohimbine evokes some action in doses which are non-specific for 

alpha2-adrenoreceptors, then its pharmacological action needs to be interpreted with 

caution. For example, yohimbine–induced reinstatement of drug-seeking behavior is usually 

assumed to be alpha2-adrenoreceptor-mediated based on the widely known alpha2-blocking 

properties of the drug [2, 4]. However, alpha2-receptor antagonistRS-79948 did not trigger 

reinstatement despite it blocked effects of clonidine [46]. Also, in many studies yohimbine 

was used in high doses (1–5 mg/kg), which exceed those sufficient to block alpha2-

adrenoreceptors.

To determine the doses of yohimbine which significantly activate 5-HT1A receptors in 

conscious rats we studied dose-dependence of the effects of yohimbine and identified those 

mediated by 5-HT1A receptors by using WAY 100635, a specific antagonist of these 

receptors.

2. MATERIALS AND METHODS

2.1. Animal model

Male Sprague-Dawley rats (250–300 g) were used for all experiments. The animals were 

individually housed under standard controlled conditions (lights on 07:00–19:00, room 

temperature of 23–25°C) with free access to food and water. All procedures described were 

approved by the IACUC of the Indiana University School of Medicine and followed NIH 

guidelines.

Rats were implanted with telemetric transmitters (PXT, Transoma Med, St.Paul, MN) under 

isoflurane anesthesia as previously described [47]. After at least seven days of recovery, rats 

were brought to experimental room, placed on receivers of telemetric data acquisition 

system (LabPro 3.11, Data Sciences Int., St.Paul, MN) and allowed to adapt to experimental 

conditions. All animals for which data are reported remained in good health throughout the 

course of surgical procedures and experimental protocols as assessed by appearance, 

behavior, and maintenance of body weight.

2.2. Drugs

Yohimbine hydrochloride and WAY100635(WAY) were obtained from the Sigma-Aldrich 

(St. Louis, MO). WAY was dissolved in sterile saline. Yohimbine was first dissolved in an 

aliquot of distilled water under sonication, and then an equal volume of hypertonic saline 

(1.8% solution of NaCl in distilled water) was added.

2.3. Experimental Protocols

All injections were performed between 11:00 am and 2:00 pm to avoid the effect of 

circadian variability. Two experimental series were performed.
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In the first series of experiments, thermal, locomotor, and cardiovascular responses to 

various doses of yohimbine were studied. Five doses of yohimbine (0.5, 1, 2, 3, or 4.5 mg/kg 

in a volume of 1 ml/kg) or sterile saline were given i.p. Animals (N=4) received all doses of 

yohimbine in random order allowing two days between experiments.

In second series of experiments, three groups of rats (N=5 each) were prepared. Each rat was 

given two identical i.p. injections of either 0.5 or 3 mg/kg of yohimbine or vehicle separated 

by 2 days. Administration of yohimbine or saline was preceded by i.p. injection of either 

WAY (0.5 mg/kg in 1 ml/kg of saline) or saline. The selection of pretreatment for first trial 

was done by randomization. If in first trial the pretreatment was WAY, than pretreatment for 

the second trial was saline and vice versa.

2.4. Statistical analysis

The results are presented as the mean±SEM. For bar graphs and statistical comparisons we 

have averaged parameters between 15 and 30 min after injection of yohimbine, because this 

interval is close to maximal changes after both 0.5 and 3 mg/kg yohimbine. Baseline levels 

of activity, body temperature, heart rate (HR), and mean blood pressure (MBP) did not differ 

between groups across the series of experiments, so changes from baseline were analyzed 

unless specially noted.

Results were compared using a one way (series 1) or two-way (series 2) ANOVA with 

repeated measures followed by a Duncan post hoc test, where appropriate. A value of 

p<0.05 was considered to indicate a significant difference.

3. Results

Yohimbine dose-dependently affected all of the studied parameters: heart rate, blood 

pressure, body temperature, and locomotion (Fig. 1, locomotion F(5,18)=4.1; p=0.01; HR 

F(5,18)=7.8; p<0.001; MBP F(5,18)=5.9; p=0.002; temperature F(5,18)=21.5; p<0.001). In 

low doses (0.5 – 2 mg/kg i.p.) yohimbine induced locomotor activation accompanied by 

tachycardia, mild hypertension, and a trend to a hyperthermia (Fig. 1). In higher doses (3 

and 4.5 mg/kg) yohimbine reversed hypertension (Fig. 1C) and locomotor activation (Fig. 

1A) but not tachycardia (Fig. 1B). The trend to increasing body temperature visible after 0.5 

mg/kg was reversed by higher doses, and body temperature after 2 mg/kg was significantly 

lower than after 0.5 mg/kg, (Fig. 1D). In higher doses yohimbine induced dramatic 

hypothermia (Fig. 1D). Core body temperature fell to 34.7±0.6°C after 3 mg/kg yohimbine 

and to 33.4±0.9°C after 4.5 mg/kg yohimbine. The rates of decline in temperature between 5 

and 30 min were similar after 3 mg/kg and 4.5 mg/kg yohimbine (0.058±0.019°C/min vs 

0.058±0.004°C/min), but the nadir occurred later after the higher dose (59±14 min vs 

118±19 min). Dose-response curve for yohimbine for temperature had a clear sigmoidal 

shape with EC50 equal 2.2 mg/kg (95% confidence interval 1.8–2.6 mg/kg).

Pretreatment with WAY (0.5 mg/kg, i.p.) had effects on all parameters (locomotion 

F(1,12)=10.9; p<0.05; HR F(1,12)=50.4; p<0.001; MBP F(1,12)=19.0; p<0.001; 

temperature F(1,12)=64.7; p<0.001) and effect on temperature was also dependent on the 

dose of yohimbine (F(2,12)=18.0; p<0.001). Administration of WAY did not affect the 
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locomotor response to i.p. injection of saline or 0.5 mg/kg yohimbine, however it 

significantly increased locomotion after 3 mg/kg yohimbine (Fig. 2, A1–D1). 

Administration of WAY moderately increased (i.e., by approximately 50 beats/min) 

tachycardia seen in response to saline and both 0.5 and 3.0 mg/kg yohimbine (Fig 2, A2–

D2). Unlike heart rate, the effect of WAY on blood pressure changes induced by yohimbine 

was dependent on the dose of yohimbine (Fig. 2, A3–D3). Increase of blood pressure 

induced by 0.5 mg/kg yohimbine was modified not significantly by WAY, but pretreatment 

with the antagonist of 5-HT1A receptors clearly prevented a drop of blood pressure after 3 

mg/kg yohimbine (Fig. 2, C3–D3). Finally, the 5-HT1A antagonist slightly increased 

hyperthermic response to injections of saline or 0.5 mg/kg yohimbine (Fig. 2, A4–D4). 

However, administration of WAY completely abolished hypothermia evoked by 3 mg/kg 

yohimbine (Fig. 2, C4–D4).

4. Discussion

In many studies, in which yohimbine was used as a prototypical alpha2-adrenoblocker, 

doses of drug were significantly higher than required for specific effects of this compound 

on the alpha2-adrenoreceptor. Our data unequivocally demonstrated that high doses of 

yohimbine activate 5HT1A receptors.

Administration of yohimbine at high doses results in significant hypothermia, similar to 

decrease of body temperature evoked by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-

DPAT), a prototypical 5-HT1A agonist [17]. Yohimbine-induced hypothermia is prevented 

by WAY (our data and [32]) in a dose specific for 5-HT1A blocking action [18]. Previously, 

we demonstrated that hypothermia evoked by systemic administration of the 8-OH-DPAT is 

mediated by activation of 5-HT1A receptors in the ventromedial medulla [39]. Most likely, 

the effect of systemically-administered yohimbine on core body temperature is also 

mediated by the inhibition of ventromedial medulla through activation of 5-HT1A receptors: 

the rate of cooling after high dose of yohimbine (0.06±0.02°C/min after 3 mg/kg yohimbine) 

is similar to one induced by inhibition of neuronal activity in ventromedial medulla [52].

What is the dose of yohimbine which can be clearly identified as evoking 5-HT1A effect, 

using body temperature as an experimental end-point? Administration of 3 mg/kg results in 

clear hypothermia. Considering that the slope of temperature decline after 3 mg/kg is similar 

to the one after 4.5 mg/kg, the effect of yohimbine on thermoregulation is saturated at 3 

mg/kg. The administration of 2 mg/kg results in significantly lower body temperature 

compared with lowest studied dose (0.5 mg/kg). In fact, if there is a progressive increase of 

hyperthermic action with increasing dose, then hypothermic effect of 1 mg/kg would simply 

be masked. Non-linear regression of dose-dependency of the hypothermic effects of 

yohimbine results in EC50 estimate of 2.2 mg/kg. Therefore, we conclude that in doses 

above 1 mg/kg yohimbine has considerable 5-HT1A agonistic activity when administered 

intraperitoneally. This estimation is supported by complete suppression of serotonergic 

neurons in the dorsal raphe nucleus by 0.5 mg/kg yohimbine intravenously, which could be 

reversed by WAY [32].

Zaretsky et al. Page 4

Neurosci Lett. Author manuscript; available in PMC 2016 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The data in the National Institute of Mental Health – Psychoactive Drug Screening Program 

(NIMH-PDSP) database reveal, that in rats yohimbine is approximately 80-fold more 

selective for alpha-2 adrenergic receptors than to 5HT1A receptors. This selectivity 

corresponds to the ratio of doses needed to activate 5-HT1A receptors to doses required to 

block alpha2-adrenoreceptors in conscious rats. Is it possible that WAY blocks hypothermic 

effects of yohimbine through receptors other than 5-HT1A ? WAY does not affect alpha1-

adrenoreceptor-mediated responses in doses below 1 mg/kg [49], and the sensitivity of 

alpha2-adrenoreceptors to WAY is at least twice less than that of alpha1-adrenoreceptors 

(PDSP database). According to PDSP database the only other candidate receptor, to which 

both substances could bind with reasonable affinity, is the D2 receptor. However, the 

reported threshold dose in which WAY blocks effects on 5-HT1A is 6 µg/kg [35], and the 

ratio of Ki for WAY acting on two receptors exceeds 1000 (0.24 nM for 5-HT1A vs 370 nM 

for D2, PDSP), than the dose in this study (0.5 mg/kg) is not sufficient to block effects on 

D2.

Presence of 5-HT1A-mediated effects of yohimbine in doses higher than 1 mg/kg can be 

found using other experimental end-points. Yohimbine-induced locomotion after 0.5 mg/kg 

was not affected by WAY, while the effect of 3 mg/kg was augmented by WAY. 

Considering that the administration of 8-OH-DPAT, an agonist of 5-HT1A receptors, 

increases locomotion by itself [12, 14], but suppresses locomotion induced by other stimuli 

[8, 20], this double action can explain the relatively small locomotor responses to yohimbine 

[42] and its ability to suppress locomotion in behavioral paradigms [9].

In low doses yohimbine increased inferior cardiac nerve discharge [30] and caused 

tachycardia [25, 38]. However, in higher doses yohimbine inhibited nerve discharge, and 

this inhibition was reversed by spiperone [30], an agent with 5-HT1A-antagonist properties 

[28]. Similarly, we found that high dose of yohimbine caused the reversal of hypertonic 

response, and this reversal was completely prevented by pretreatment with WAY. 

Yohimbine has also other effects typical for 5-HT1A agonists, such as release of ACTH and 

corticosterone [36], which was observed in rats only in doses higher than 1 mg/kg [45].

There are accumulating data on the importance of 5-HT1A agonistic properties of 

yohimbine in experimental studies. Yohimbine (2.5–7.5 mg/kg) disrupted prepulse 

inhibition [37] and produced antinociception [43] in rats via the action at 5-HT1A receptors 

but not at alpha2-adrenoceptors. Ability of alpha2-adrenoblockers to affect 5-HT1A 

receptors is not unique for yohimbine: BRL-44408 recognizes 5-HT1A receptors along with 

being alpha2-adrenoceptor antagonist [31].

Understanding dose-dependence of effects of yohimbine mediated by different receptors has 

a potential to affect interpretation of various phenomena related to the use of this drug. 

Yohimbine is known to reinstate methamphetamine [44], cocaine [15, 27], and alcohol 

seeking [26] behaviors, and it is assumed that these actions result from a blockade of alpha2-

adrenoceptors [4, 26]. However, the doses of yohimbine in all these studies (1.25–5 mg/kg) 

appear to be sufficient to activate 5-HT1A receptors, while a dose less than 1 mg/kg was not 

effective in reinstating food-seeking behavior [33]. Considering that yohimbine is quickly 

accumulated in the brain but is eliminated with t1/2 of 7.7 h [23], the need to use high doses 
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cannot be justified by pharmacokinetics. A potential role of 5-HT1A receptors is supported 

by the ability of WAY to attenuate cocaine-induced reinstatement [6, 41].

Similarly, an antagonism of general anesthesia in rats also requires 1–2 mg/kg of yohimbine 

[22], while 0.25 mg/kg of yohimbine did not reverse the anesthesia in cats [48]. We 

conclude that in the doses, in which it is used in many experimental paradigms, yohimbine is 

also a 5-HT1A agonist.
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Highlights

• Alpha2-adrenoblocking properties of yohimbine are observed in doses below 1 

mg/kg.

• In doses exceeding 1 mg/kg yohimbine is a 5-HT1A-agonist.

• Yohimbine reinstates drug-seeking behavior or antagonizes general anesthesia 

in high doses (more than 1 mg/kg).
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Figure 1. 
Physiological responses to intraperitoneal injection of saline or various doses of yohimbine. 

The data are averages of locomotor activity (A), heart rate (B), mean blood pressure (C) and 

body temperature (D) over interval of 15–30 minutes after injection. * - significant 

difference from saline (p<0.05). # - significant difference from the lowest dose (0.5 mg/kg, 

p<0.05).
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Figure 2. 
Physiological responses to intraperitoneal injection of saline or WAY (0.5 mg/kg, i.p.) at 

time 0 followed by i.p. injection of saline or yohimbine (0.5 mg/kg or 3 mg/kg) at 5 min. 

The bar graphs (right column) show the averages of locomotor activity, cardiovascular 

parameters and core body temperature during the interval of 15–30 min after injection of 

yohimbine.

* - significant difference from saline pretreatment (p<0.05).
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