
iPS cell transplantation for traumatic spinal cord injury

Miguel Goulão1,2 and Angelo C. Lepore1

1Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical 
College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, PA, 19107

2Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of 
Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B’s - PT Government Associate 
Laboratory, Braga/Guimarães, Portugal

Abstract

A large body of work has been published on transplantation of a wide range of neural stem and 

progenitor cell types derived from the developing and adult CNS, as well as from pluripotent 

embryonic stem cells, in models of traumatic spinal cord injury (SCI). However, many of these 

cell-based approaches present practical issues for clinical translation such as ethical cell 

derivation, generation of potentially large numbers of homogenously prepared cells, and immune 

rejection. With the advent of induced Pluripotent Stem (iPS) cell technology, many of these issues 

may potentially be overcome. To date, a number of studies have demonstrated integration, 

differentiation into mature CNS lineages, migration and long-term safety of iPS cell transplants in 

a variety of SCI models, as well as therapeutic benefits in some cases. Given the clinical potential 

of this advance in stem cell biology, we present a concise review of studies published to date 

involving iPS cell transplantation in animal models of SCI.

Introduction

Traumatic spinal cord injury (SCI) and its motor, sensory and autonomic consequences have 

a devastating impact on patient quality of life [1]. In the United States alone, there are 

around 276,000 individuals currently living with SCI (with even higher published estimates) 

and approximately 12,500 new cases per year [2]. Major causes of SCI include vehicular 

accidents, falls, sports injuries and violence [1]. SCI represents a heterogeneous set of 

conditions resulting from differences in the location, type and severity of trauma, as well as 

on the consequent types and degree of functional impairment. As the central nervous system 

(CNS) has limited potential to spontaneously regenerate, a first line treatment for SCI 

patients often involves interventions such as surgical stabilization and decompression and 

high dose methylprednisolone, followed by long-term approaches such as physical 

rehabilitation and pharmacological treatments for problems like chronic neuropathic pain 
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[3]. Although used, controversies on the efficacy of therapies such as methylprednisolone 

and decompression remain [4].

To overcome the non-regenerative state of the CNS, cell transplantation provides a 

potentially powerful approach to repair and/or replace damaged elements of the injured 

spinal cord. A number of these transplant-based interventions using cell types derived from 

the developing and adult CNS, as well as from pluripotent embryonic (ES) stem cells, have 

demonstrated therapeutic efficacy in various animal models of SCI [5]. Despite success with 

many of these cell types, practical issues including ethical derivation, necessity for long-

term immunosuppression of the patient recipient, and isolation and expansion of large 

numbers of cells in a uniform manner are impediments to clinical translation. With the 

advent of induced Pluripotent Stem (iPS) cell technology [6], many of these issues may 

potentially be overcome. Given the clinical relevance of this advance in stem cell biology, 

we will review studies published to date involving iPS cell transplantation in animal models 

of traumatic SCI.

Spinal cord injury pathophysiology

SCI progression generally consists of three major temporal phases [7]. The primary injury is 

characterized by direct tissue trauma, resulting in early loss of various CNS cell types, 

axotomy of passing axonal fibers, and blood vessel and blood brain barrier disruption [8, 9]. 

The initial trauma sets into course a sequence of secondary pathological events that occur 

over the hours, days and even weeks following injury, causing significant additional 

degeneration and consequent functional loss [7]. A large number of underlying cellular 

mechanisms are responsible for secondary injury processes, including excitotoxicity, 

immune cell activation, and oxidative damage [10]. In the chronic stages following SCI, 

little-to-no long-term recovery occurs due to issues such as minimal axonal growth/

regeneration, modest functional remyelination, and lack of a robust response by endogenous 

neural stem and progenitor cells [11–16].

Cell transplantation as a therapy for SCI

Cell transplantation provides a therapeutic tool to target a number of these SCI pathological 

processes. Transplants can (1) replace damaged and loss CNS cell types (2), provide 

neurotrophic support and modulate the host immune response to minimize secondary injury, 

(3) enhance axonal plasticity by reducing the growth inhibitory environment of the injured 

spinal cord and by providing a cellular substrate for axonal extension in the lesion site, 

amongst a number of other potential benefits [17, 18]. To date, a variety of cell types have 

been tested in models of SCI to varying degrees of success. These include neural cells types 

such as peripheral nerve grafts, Schwann cells [19–21], olfactory ensheathing glia [22–25], 

dissociated fetal tissue, multipotent neural stem cells (NSCs), lineage-restricted neural 

progenitor cells (NPCs), and mature CNS cells. In addition, non-neural cell classes have also 

been tested, including genetically-modified fibroblasts, bone marrow stromal cells and 

activated macrophages. NSCs and NPCs are particularly promising sources for SCI given 

that they can actually replace mature CNS cell types, as well as contribute to other beneficial 

processes such as immune modulation.
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Background on iPS cell technology

Nearly 10 years ago, the laboratory of Shinya Yamanaka developed a method for the in vitro 

conversion of adult rodent somatic cells into pluripotent ES cell-like cells (termed “induced 

Pluripotent Stem cells” or “iPS cells”) via retroviral introduction of several pluripotency 

related genes - Oct3/4, Sox2, c-Myc and Klf48 [6]. This work was then extended to the 

generation of human iPS cells using a similar combination of pluripotency factors [26]. 

NSCs and NPCs have traditionally been obtained from fetal or adult nervous system tissue 

or from pluripotent ES cells, all of which are associated with ethical concerns and practical 

issues of standardization and generation of adequate numbers of cells for transplantation in 

potentially large numbers of patients. iPS cell technology allows for homogeneous 

derivation of cell types in large quantities for applications such as therapeutic 

transplantation, potentially in an autologous fashion from the eventual patient recipient [27–

31].

However, iPS cell use of is not devoid of risks. One of the main concerns regarding this 

technology is the potential for uncontrolled proliferation and even tumor formation given 

their pluripotent state (ES cells present a similar concern) [32, 33]. Also, the use of viral 

vectors that can integrate randomly into host genome could disrupt important regulators of 

cell division such as tumor suppressors or could result in the activation of oncogenes [6, 34, 

35]. In addition, iPS cell generation involves the introduction of factors that regulate the 

cell’s proliferative state, and so it is imperative when using this method that there is a tight 

screening of oncogenic capacity prior to transplantation [36]. Alternative strategies are being 

developed to minimize this risk. PiggyBac transposition [37, 38], episomal vectors [39–44], 

microRNA [45, 46], and delivery of recombinant reprogramming proteins [47–49] are 

examples of these new methods. More recently, small-molecule compounds like 

CHIR99021 (glycogen synthase kinase 3 inhibitor), RepSox (TGF-β inhibitor), DZNep (s-

adenosylhomocysteine hydrolase inhibitor), valproic acid (histone deacetylase inhibitor), 

tranylcypromine (lysine-specific demethylase 1 inhibitor), forskolin (adenylate cyclase 

activator) and TTNPB (retinoic acid receptor ligand) have been used to generate iPS cells 

[50]. More extensive discussion of these issues are available [44]. These new methods can 

reduce the risk of malignant transformation of transplanted cells and can serve as 

alternatives to “classic” viral transduction. Also, emerging iPS cell technologies that require 

less time to induce pluripotency (and subsequently to differentiate the iPS cells into mature 

cell types of interest) would provide much needed methodological improvements for 

achieving autologous transplantation at earlier stages of disease in conditions such as SCI.

Overview of iPS cell transplantation in SCI models

Despite the promise of this approach, the iPS cell transplantation field is in its infancy with 

respect to evaluating long-term in vivo integration and therapeutic usefulness in relevant SCI 

models. A number of studies have reported significant therapeutic benefit when NSCs/NPCs 

derived from either mouse [33] or human [36, 51, 52] iPS cells were transplanted into 

contusion or cavity-type models of rodent SCI, as well as in non-human primate models 

[53]. Given the xenografting paradigm, most studies of iPS cell transplantation in SCI 

animal models have employed either immunosuppressed rodents or animals with a 
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genetically-compromised immune response. In many cases, cells were delivered in a 

multipotent NSC-like state and resulted in mixed differentiation into glial phenotypes, 

including astrocytes, and various neuronal subtypes. Across all of these published studies, 

the phenotypic state of cells (derived in vitro from iPS cells prior to injection) at the time of 

transplantation into injured spinal cord ranged from undifferentiated neurospheres [53], 

NSCs [52], mixed cell lineages to even astrocytes only [54]. While these studies were able 

to achieve some functional benefit, future work may require more phenotypically targeted 

strategies, each of which depends on the nature of the SCI pathology (e.g. type of injury, 

anatomical locations affected, etc.) and the specific cell lineages being targeted for 

replacement. Nevertheless, these studies have collectively demonstrated therapeuitc 

properties of iPS cell-derived transplants in the injured spinal cord environment, including 

synaptic integration into endogenous neuronal circuitry [36, 51].

Therapeutic effects of iPS cell transplantation in SCI

Following transplantation of human iPS cell-derived neurospheres into an immunodeficient 

mouse model of SCI, Nori and colleagues demonstrated functional efficacy that was 

accompanied by a variety of histopathological improvements, including decreased neuronal 

death and demyelination and increased angiogenesis and axonal growth [36]. Transplanted 

cells survived for prolonged lengths of time and differentiated into various mature CNS 

lineages. Transplants also secreted a variety of neurotrophic factors, including NT3, NT4, 

CNTF, VEGF and PECAM, which may explain, for example, the increased angiogenesis 

and axonal growth observed in both this study and by Kobayashi et al. in the marmoset 

contusion SCI model [53]. Using a model of thoracic contusion SCI in rats, Romanyuk and 

colleagues showed that transplantation of iPS cell-derived NPCs one week post-SCI 

promoted tissue sparing and improvement in a number of functional motor tests, even 

though only approximately 10% of transplanted cells survived in injured spinal cord [52]. 

Similar to the neurotrophin production noted in the Nori study, the authors observed 

increased levels of human-specific neurotrophic factors, possibly underlying the observed 

therapeutic benefit. Together, these findings point to the multi-faceted potential of 

transplanted iPS cells in SCI; not only are they capable of replacing lost cell types, but they 

are also able to modulate the environment of the injured host spinal cord.

In the majority of studies involving iPS cell transplantation in SCI models, significant graft 

survival, integration and, often times, migration from injection sites were observed. Using a 

thoracic spinal contusion model in Nonobese diabetic-severe combined immunodeficiency 

(NOD-SCID) mice, Fujimoto and colleagues showed that transplantation of human iPS-

derived neuroepithelial-like NSCs promotes functional motor recovery via integration of 

transplant-derived neurons and connection with host neuronal circuitry [51]. Along these 

lines, Lu and colleagues showed results indicating that even iPS cells derived from older 

subjects can be used successfully for SCI treatment. After a C5 hemisection, human iPS 

cell-derived NSCs from an 86 year-old were transplanted into adult immunodeficient rats. 

At 3 months follow-up, transplanted cells survived and the cells that differentiated into 

neurons showed long-distance axonal outgrowth and made extensive synaptic connections 

with host neurons, even outside of the lesion area [55]. Tang and colleagues transplanted 

human iPS cell-derived NSCs labelled in vitro with superparamagnetic iron oxide particles 
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into both a rat model of traumatic brain injury and a monkey model of SCI at 1 week post-

injury. Using recurrent in vivo magnetic resonance imaging (MRI) tracking until 30 days 

post-injury, the authors showed that transplant-derived cells could progressively migrate 

from injection sites, which was accompanied by significant motor function recovery [56]. 

Despite the graft integration shown in these studies, it has yet to be mechanistically 

determined how these cells are promoting therapeutic effects. It may, for example, be that 

long-term graft integration and cell replacement of mature CNS lineages are not even 

necessary if transplanted cells can exert benefit via transient processes such as 

neuroprotection. This issue, however, is not unique to transplantation of iPS cells, but it 

relevant to NSC/NPC transplantation in general in SCI and other CNS diseases.

Studies to date using iPS cell transplantation in SCI models have not focused on astrocyte 

replacement. To begin to utilize astrocyte replacement in a mechanistically-targeted fashion 

based on their crucial functions in the intact nervous system, we transplanted human iPS 

cell-derived astrocytes (hiPSAs) as a strategy for restoring extracellular glutamate 

homeostasis in the injured spinal cord. Astrocytes are responsible for the vast majority of 

glutamate uptake throughout the CNS via expression of the plasma membrane transporter, 

glutamate transporter 1 (GLT1), thereby playing a central role in maintaining normal 

synaptic communication and preventing glutamate-mediated excitotoxicity. Following SCI, 

astrocyte GLT1 expression and function are severely compromised, which contributes to 

excitotoxicity-induced cell death during the delayed secondary injury phase. We derived 

pluripotent iPS cells from non-diseased human donors, subsequently generated glial 

progenitors and then differentiated these cells into hiPSAs prior to transplantation. In a 

unilateral cervical contusion model of rat SCI, we injected hiPSAs engineered to 

overexpress GLT1 into the cervical ventral horn as a therapeutic strategy for reconstituting 

GLT1 function, preventing excitotoxicity, and consequently protecting respiratory phrenic 

motor neurons and preserving diaphragm function. Transplants survived for long periods of 

time in the injured cervical spinal cord, did not form tumors or show uncontrolled 

proliferation, differentiated into only GFAP-positive astrocytes, and did not localize to 

ectopic locations or differentiate into unexpected lineages. GLT1 overexpressing hiPSAs 

(engineered using an AAV8- GLT1 vector in vitro prior to injection) expressed persistently 

high levels of GLT1 protein following transplantation, and overexpression also enhanced 

GLT1-mediated glutamate uptake compared to control cells. Furthermore, these 

overexpressing hiPSA transplants promoted significant survival of phrenic motor neurons, 

preservation of diaphragm neuromuscular junction innervation, and protection of 

diaphragmatic respiratory function. Our findings demonstrate the therapeutic value of 

targeting mature astrocyte properties using iPS cell transplantation in the injured spinal cord. 

Given the long list of important astrocyte functions, this strategy represents just one example 

of using this astrocyte-targeted approach in SCI.

Collectively, these studies indicate the therapeutic utility of iPS cell-derived transplantation 

for SCI potentially via properties such as differentiation into mature CNS cell types, 

neuronal integration into host circuitry, production of neurotrophic factors, and distribution 

from injection sites to areas of pathology.
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Lack of therapeutic effects / negative effects of iPS cell transplantation in 

SCI

Not all studies with iPS cell transplantation reported beneficial outcomes in SCI models. 

Pomeshchik and colleagues did not observe improved function when human iPS cell-derived 

NPCs were transplanted 7 days after contusion SCI [57]. However, the authors also did not 

find long-term survival of grafted cells in these mice receiving a Tacrolimus immune 

suppression regimen. Contrary to this report, a number of studies employing human iPS cell-

derived transplants have noted significant survival and differentiation into mature CNS cell 

types following injection into the adult spinal cord of immunosuppressed rodents [58, 59]. In 

our study with hiPSAs described above, we also observed robust and persistent transplant 

integration in the contused spinal cord using a modified immune suppression protocol 

consisting of both Tacrolimus and Rapamycin in mice or cyclosporine only in rats. 

Transplant rejection due to immunesuppression regimen problems may not be relevant to 

autologous delivery; nevertheless, it is unlikely that autologous transplantation will be used 

in all cases because of issues such as minimal time available between trauma and 

transplantation (as discussed below). It will therefore be crucial to address this important 

issue in animal models prior to clinical translation.

A study from the Horner group [60] reported lack of therapeutic improvement with 

transplantation of human iPS cell-derived NPCs in a SCI model, despite significant graft 

integration. However, cells were delivered at a chronic time point following injury, which 

may represent an environment less amenable to transplant-induced plasticity than delivery at 

very early stages post-trauma. As for any cell-based intervention, the timing of iPS cell 

transplantation will have important therapeutic consequences. The temporal delivery 

paradigm will depend on both the disease mechanism(s) being targeting (e.g. early 

neuroprotection, delayed regeneration, etc.) and practical issues encountered in the clinical 

setting (e.g. need for patient stabilization prior to invasive interventions).

A recent study from the Steward lab reported that transplantation of a mixed population of 

rodent-derived glial and neuronal progenitors (which were not derived from iPS cells) into 

transection SCI resulted in ectopic engraftment of large numbers of cells at locations such as 

the central canal and pial surface of the spinal cord and the 4th ventricle [61], providing a 

note of caution when using transplantation of any class of NSC/NPC in SCI. This issue is 

particularly relevant to strategies employing cells derived from pluripotent sources such as 

ES and iPS cells given the possibility of incomplete and/or inefficient differentiation. For 

example, Tsuji and colleagues generated lines of both “safe” and “unsafe” neurospheres 

from mouse iPS cells [33]. In a mouse model of contusion SCI, the “safe” cells successfully 

survived, differentiated along mature CNS lineages and promoted functional recovery, 

serotonergic axon growth and remyelination without tumor formation. On the contrary, the 

“unsafe” neurospheres produced teratomas and associated functional impairment in the same 

SCI model. Unlike the Steward and Tsuji papers, the other iPS cell transplantation studies 

we describe in this review did not systematically assess distribution of transplant-derived 

cells throughout the neuraxis. In future experiments, it will be important for the field to 

assess cell fate at long-term time points post-transplantation, as well as possible ectopic 
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localization away from injections sites, to establish the safety of tested cells before 

proceeding to the clinic.

In all of these studies using iPS cells in SCI, transplanted cells differentiated into one or 

more mature CNS cell types (i.e. neurons, astrocytes and oligodendrocytes) in the injured 

spinal cord, although smaller percentages of undifferentiated nestin+ neural precursors were 

also seen even out to relatively late time points post-transplantation [33, 36, 53]. Along these 

lines, we noted the presence of a small residual population of proliferating graft-derived 

cells out to four weeks post-transplantation (the latest time point examined) when we 

injected hiPSAs into our SCI model. Even though we and others [36] did not observe overt 

tumor formation or extensive migration away from injection sites beyond only a few spinal 

segments, all of these studies collectively demonstrate the importance of efficient in vitro 

pre-differentiation prior to transplantation, which may require a combination of both 

positive selection of differentiated cell types and negative selection for residual pluripotent 

stem cells (and possibly even less immature NSCs and NPCs). Even with the use of this in 

vitro pre-selection, it will still be necessary to comprehensively conduct longer term follow-

up (preferably out to a year or more post-transplantation) of the safety of these cells in SCI 

animal models.

Mechanical allodynia (a form of neuropathic pain) was observed when iPS cell-derived 

astrocytes were transplanted into a contusion SCI model [54]. In addition to this work, other 

studies have similarly reported sensory hypersensitivity in SCI models accompanying 

transplantation of progenitor-derived astrocytes [62, 63], possibly due to increased neuronal 

plasticity induced by transplantation of immature astrocyte populations [64]. However, in a 

large body of work, we and others [60, 65, 66] have not found such increased sensitivity, 

including following hiPSA transplantation [60]. The discrepancy amongst these studies may 

be due to heterogeneity in the subtypes of astrocytes being injected [62, 67]. Nevertheless, 

this suggests caution with respect to potentially inducing unexpected functional outcomes 

after transplantation that can be very debilitating to patients, though this particular example 

is not specific to iPS cells.

A comprehensive summary of all these relevant papers using iPS cells in SCI animal models 

is presented in Table 1.

Transplantation of iPS cells in other spinal cord disease models

The application of iPS cells for treatment of spinal cord diseases is not exclusive to SCI. For 

example, Simone and colleagues transplanted iPS cell-derived NSCs into a rat model of 

Spinal muscular atrophy with respiratory distress type 1 (SMARD1). The authors reported a 

number of results similar to those already described in SCI models such as survival and 

differentiation of transplanted cells. They also found phenotypic improvement due to motor 

neuron protection, suggesting trophic influences of the transplanted cells. In support of this 

mechanism, through in vitro co-culturing studies with motor neurons generated from human 

SMARD1-iPS cells, they reported that iPS cell-derived NSCs increased motor neuron 

axonal length via neurotrophic factor production [68].
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Clinical implications of iPS cells for therapeutic transplantation in SCI

A number of practical issues will need to be addressed before moving iPS cell 

transplantation to the clinic in SCI and other nervous system diseases. Protocols for in vitro 

generation of iPS cells will need to be optimized (and possibly standardized), including the 

preferred somatic cell types used, the specific pluripotency factors and vectors used for 

reprogramming (discussed above), and the differentiation procedures used to efficiently 

generate cell types of interest from iPS cells without leaving residual undifferentiated cells. 

Importantly, these considerations will play a major role in preventing uncontrolled 

proliferation after transplantation.

Specifically with respect to targeting relative early events following SCI (e.g. secondary 

degeneration), autologous derivation of cells may not be relevant given the extended time 

needed (at least based on current induction technologies) to generate iPS cells and 

subsequently differentiate them prior to delivery. Instead, cells to be used for transplantation 

could be obtained from banks of immune/HLA-matched cells [69]. Given the need to 

extensively test iPS cell lines prior to transplantation into a patient, as well as the time that 

will be required for generating cells for each individual patient, this approach may actually 

be practically preferable to autologous derivation in some cases [70]. However, with such as 

allogeneic approach, the choice of appropriate immune suppression regimens will become a 

key factor, as will consideration of toxicity associated with long-term administration of such 

drugs. Nevertheless, autologous transplantation of iPS cells does seem practically plausible 

for transplanting cells into the chronic SCI condition (to target, for example, remyelination 

and axon regeneration) given the extended time frame from trauma to cell delivery.

As human stem cell lines have shown donor variability in SCI models [71], future studies 

will also need to investigate in vivo properties and therapeutic efficacy of human iPS cells 

derived from multiple donors in an attempt to move this approach towards clinical 

translation, particularly if banks of cells will be used to provide transplants for large 

numbers of patients. We may find, for example, that various donor lines differ in their 

therapeutic properties (e.g. levels and types of neurotrophins produced) and/or 

differentiation potential and consequently that certain lines are more suited to particular 

disease conditions depending on the mechanistic biological needs of a given disease or even 

disease sub-type.

With a number of studies having already demonstrated safety and therapeutic efficacy of iPS 

cell transplantation in animal models of SCI, clinical trials are beginning to move forward. 

For example, Okano and colleagues are currently preparing a clinical trial for SCI following 

sub-acute transplantation of iPS-derived NSCs/NPCs [72].

Conclusions

iPS cell technology provides a novel and clinically-relevant source of cells for CNS 

transplantation given that these cells avoid ethical issues associated with ES cell derivation 

and can be autologously derived from the patient in some cases, thereby avoiding toxic 

immune suppression. The iPS cell transplantation field is rapidly progressing, particularly 
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with respect both to testing therapeutic potential in SCI models and overcoming many of the 

practical hurdles associated with clinical translation. While a collective body of work has 

demonstrated that transplantation of CNS cells types derived from iPS cells into various 

models of SCI can promote histopathological and function recovery, many of these studies 

also provide important cautionary notes, mainly regarding the safety of the cell lines and the 

risk of tumor formation, which can be extremely detrimental to patients. Once practical 

issues associated with iPS cell transplantation are resolved and protocols for ensuring 

transplant safety are established, individualized therapies using iPS cells will be within 

closer reach for a wide range of CNS disease conditions, including SCI.
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