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Abstract
Improvement of cognitive impairments represents a high medical need in the development

of new antipsychotics. Aberrant EEG gamma oscillations and reductions in the P1/N1 com-

plex peak amplitude of the auditory evoked potential (AEP) are neurophysiological biomark-

ers for schizophrenia that indicate disruption in sensory information processing. Inhibition of

phosphodiesterase (i.e. PDE10A) and activation of metabotropic glutamate receptor

(mGluR2) signaling are believed to provide antipsychotic efficacy in schizophrenia, but it is

unclear whether this occurs with cognition-enhancing potential. The present study used the

auditory paired click paradigm in passive awake Sprague Dawley rats to 1) model disruption

of AEP waveforms and oscillations as observed in schizophrenia by peripheral administra-

tion of amphetamine and the N-methyl-D-aspartate (NMDA) antagonist phencyclidine

(PCP); 2) confirm the potential of the antipsychotics risperidone and olanzapine to attenuate

these disruptions; 3) evaluate the potential of mGluR2 agonist LY404039 and PDE10 inhibi-

tor PQ-10 to improve AEP deficits in both the amphetamine and PCP models. PCP and

amphetamine disrupted auditory information processing to the first click, associated with

suppression of the P1/N1 complex peak amplitude, and increased cortical gamma oscilla-

tions. Risperidone and olanzapine normalized PCP and amphetamine-induced abnormali-

ties in AEP waveforms and aberrant gamma/alpha oscillations, respectively. LY404039

increased P1/N1 complex peak amplitudes and potently attenuated the disruptive effects of

both PCP and amphetamine on AEPs amplitudes and oscillations. However, PQ-10 failed

to show such effect in either models. These outcomes indicate that modulation of the

mGluR2 results in effective restoration of abnormalities in AEP components in two widely

used animal models of psychosis, whereas PDE10A inhibition does not.
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Introduction
Deficits in sensory information processing have been associated with several neuropsychiatric
and neurodegenerative disorders. Investigation of the electrophysiological response to visual
and auditory stimuli may be used to elucidate the neurobiological processes underlying such
diseases as well as to evaluate treatments [1,2]. Much effort in recent translational psychiatric
research has focused on using neurophysiological measurements to characterize endopheno-
types of schizophrenia and neurobiological markers underlying the disease. Schizophrenic
patients exhibit disturbances in inhibitory filtering mechanisms that are considered a trait
marker for the illness [3,4]. Event related potentials (ERPs) are widely used to study disruption
of neuronal circuits underlying sensory encoding, information processing and attention in neu-
ropsychiatric and neurodegenerative disorders. The auditory paired-stimulus P50 paradigm is
a predominant neurophysiological tool used to demonstrate deficiency in gating or filtering
out stimuli that lack novelty, threat or other salience. An animal analogue of the human P50
AEP has been developed to investigate the underlying neural integrity of inhibitory circuits
and to explore potential abnormalities in the mechanisms of the P50 suppression found in
schizophrenia [1,2]. Sensory gating, a process by which the response of the brain to a repeated
stimulus is attenuated, contributes to information processing by enabling organisms to filter
extraneous sensory inputs from the environment [5,6]. Changes in the amplitudes of AEP
responses in humans and animals can be demonstrated in the double click paradigm, in which
two identical auditory tones are presented in a time window of 500 ms. Normal subjects have a
smaller response to the second stimuli tone (S2) compared to the first stimuli tone (S1), and
the ratio measure (S2/S1) is used as a quantitative index of sensory gating. The P1 component
of the AEPs reflects largely pre-attentive sensory processing, while N1 and P2 reflect atten-
tional processing (relative to the late endogenous P300 component involving voluntary, con-
trolled attention). Disturbances in information processing and cognitive function are key
features of schizophrenia. Accordingly, abnormalities in P50 suppression have been related to
deficits in attention and processing speed assessed in cognitive tests [7,8–12]. In schizophrenia,
deficits in P50 gating may result from deficient response to first, second or both stimuli. The
first condition referred as “gating out” is assoiated with deficient suppression of the response to
the second stimuli with fairly normal amplitude of S1 wave, which is assumed to reflect failure
and diminished capacity of the brain to inhibit repetitive irrelevant sensory input [13,14]. The
second condition referred as “gating in” is observed when a relatively small amplitude S1 wave
occurrs with a fairly normal amplitude S2 wave [14–17], which reflects an inability of the brain
to encode and register novel fetaures of first stimuli. These waveform properties of waveforms
measured in the paired click paradigm may correlate with the ability of the brain to “gate out”
by decreasing the S2 response to repetitive irrelevant stimuli and to “gate in” by increasing the
S1 response to novel or changing stimuli [18]. Schizophrenic patients commonly exhibit defi-
cits in sensory gating in double click paradigms, which can be replicated in animal models of
schizophrenia wherein suppression of the response to the second stimulus is reduced
[3,4,6,19–22].

Recently, analyses of brain electroencephalogram (EEG) network oscillations have also
gained support as a sensitive measure of both normal, abnormal information processing and
cognitive functions in humans as well as in animals. Oscillations reflect synchronization in the
activity of neuronal ensembles that arise either spontaneously or in response to an event, such
as an auditory stimulus. Oscillatory activities are estimated by performing a decomposition of
the EEG signal into phase and magnitude information over a range of frequencies that have
been correlated with various states of perceptual and cognitive processing. Network oscillations
in the gamma range have repeatedly been shown to accompany several distributed
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neurocognitive functions in normal subjects [23,24]. A wealth of evidence indicates that abnor-
malities in the oscillatory activity of neuronal networks in the gamma frequency range play a
central role in the pathophysiology of schizophrenia [25–31]: pathologically increased gamma
oscillation propensity is found during psychotic episodes and hallucinatory states [27,28,32–
34]. In animals, the NMDA receptor antagonists PCP, ketamine and MK801 elicited aberrant
gamma oscillations in the hippocampus and neocortex,which likely reflects similar cortical
EEG abnormalities found in schizophrenics [35–38]. Thus, the ability to induce and maintain
large network oscillations within the gamma frequency range in rat offers the possibility of
linking the results of clinical studies to findings from basic research.

Most clinically effective atypical antipsychotics show mixed dopamine (D2) and 5-hydroxy-
tryptamine (5-HT2A) antagonism, resulting in an improved safety profile regarding extrapyra-
midal symptoms and increased antipsychotic efficacy against psychosis [39]. However, the
resistance of negative and cognitive symptoms to these treatments supports the hypothesis that
other systems are involved in the pathophysiology of schizophrenia. On the one hand, the dis-
ruption of intracellular signaling pathways involving cAMP and/or cGMP as second messen-
gers plays a key role in the disease. Inhibition of the cyclic nucleotide phosphodiesterase (PDE)
10A has been recently hypothesized to represent a new therapeutic approach for treating
schizophrenia [40]. PDE10A is highly expressed in the medium spiny neurons of the mamma-
lian striatum [41,42], where this enzyme regulates both cAMP and/or cGMP signaling cascades
and striatal output to the cortico-striato-thalamic and nucleus accumbens circuits [43].

On the other hand, pharmacological, anatomical and genetic studies indicate that deficits in
glutamatergic neurotransmission contribute to all symptoms of schizophrenia [44,45]. Lower
levels of glutamate have been observed in the cerebrospinal fluid and postmortem brain tissue
of schizophrenic patients. In addition, the non-competitive N-methyl-D-aspartate (NMDA)
receptor antagonists phencyclidine (PCP) and ketamine have been shown to elicit transient
psychosis, disrupted mood and cognitive process in healthy volunteers [45,46], which could be
attenuated by administration of antipsychotics [47]. Moreover, modulation of the glutamater-
gic neurotransmission using an orthosteric agonist of the metabotropic glutamate receptor
(mGluR2) demonstrated antipsychotic-like effects in a variety of preclinical in vivo paradigms
[7,48,49]. Furthermore, an mGluR2 prodrug (LY2140023) showed efficacy and reduced symp-
toms in schizophrenic patients [50].

In the present study, we have used PCP and amphetamine in the paired click paradigm in
conscious rats i) to model disturbances in the AEP waveform components observed in schizo-
phrenia and ii) to evaluate the degree to which the mGluR2 agonist LY404039 [48] and the
PDE10 inhibitor PQ-10 [51] could improve PCP and amphetamine-induced auditory process-
ing deficits as was observed with atypical antipsychotics risperidone and olanzapine,
respectively.

Material and Methods

1. Animal husbandry
All protocols were performed in accordance with guidelines of the Association for Assessment
and Accreditation of Laboratory Animal Care International (AAALAC), and of the European
Communities Council Directive of 24 November 1986 (86/609/EEC) and were approved by
Janssen Pharmaceutica ethical committee. All animal studies have been carried out in accor-
dance with guidelines of the Association for Assessment and Accreditation of Laboratory Ani-
mal Care International (AAALAC), and of the European Communities Council Directive of 24
November 1986 (86/609/EEC) and were approved by Janssen Pharmaceutica Ethical Commit-
tee. Every effort was made to minimize animal use and disturbances in animal well-being and

Modulation of mGluR2 but Not PDE10 Alleviates Deficits in Rat's AEPs

PLOSONE | DOI:10.1371/journal.pone.0147365 January 25, 2016 3 / 23



experimental animals were euthanized at the end of the study by common rodents CO2 proce-
dure. The experiments were carried out on male, adult Sprague Dawley rats, supplied by Har-
lan Netherlands, weighing 400–560 g at the time of experiments. Ninety-six animals were
housed in individually ventilated cages (IVC), located in a sound-attenuated chamber. The rats
were provided with micro-chips for identification purposes and maintained under controlled
environmental conditions throughout the study: 22°C ± 2°C ambient temperature, relative
humidity 60%, 12:12 light-dark cycle (lights off from 07:00 to 19:00; light intensity: ~100 lux).
Standard laboratory food chow and tap water were available ad libitum. Experiments were con-
ducted during the dark phase of the circadian time between 9 am and 1 pm under a reversed
light-dark schedule.

2. Surgery and experimental design
The surgery was performed under isoflurane inhalation anesthesia. A mixture of 30% O2, 70%
N2O and 5% isoflurane was administered to animals as an initial induction for 2 minutes.
Then, the animals were mounted in a stereotaxic apparatus and were given a continuous con-
stant mixture of O2, N2O and 2% isoflurane. An analgesic Piritramide (dipidolor) 0.025 mg/kg
(0.1 ml / 100 g. B.W) was subcutaneously administered before an incision was made over the
total length of the head. The oval area of the scalp was removed and the uncovered skull was
cleared of the periosteum. Animals were equipped with fixing epidural screws for EEG record-
ings (diameter 1 mm), which were placed bilaterally on the surface of the left and right hemi-
sphere along the antero-posterior axes (frontal left: FL, frontal right: FR, parietal left: PL,
parietal right: PR, occipital left: OL, occipital right). Epidural electrodes were stereotaxically
fixed at the following coordinates (AP +2 mm, L +/- 2 mm; AP -3 mm, L +/-4 mm and AP -5.5
mm, L +/- 4 mm from the Bregma, respectively) and referenced to the same ground electrode
placed on the midline above the cerebellum. The incisor bar was -5 mm under the center of the
ear bar, according to the stereotactic atlas of Paxinos andWatson [52]. Screw electrodes were
soldered to insulated wires (7N51465T5TLT, 51/46 Teflon Bilaney, Germany) connected to a
pin (Future Electronics: 0672-2-15-15-30-27-10-0) with a small insert (track pins; Dataflex:
TRP-1558-0000) and were fit into a 10-hole connector after which the whole assembly was
affixed with dental cement to the cranium.

3. Paired-stimulus auditory evoked potentials: recording and analysis
Two weeks after surgery, the animals were habituated to the recording procedure by connect-
ing them at regular intervals to a rotating swivel, allowing free movement while EEG and
evoked responses were monitored in the paired-stimulus paradigm.

The P50 paradigm consists of two consecutive auditory clicks presented 500 ms apart (S1:
first click or conditioning stimulus, S2: second click or test stimulus). The P50 gating is the rel-
ative amplitude reduction of auditory evoked potential P50 from the first stimulus (S1) to the
second stimulus (S2), which mostly has been reported as a ratio measure (S2/S1).

Individual animals were kept in their home cage placed in recording Faraday boxes for at
least 15 min before the start of the recording session in order to reduce any kind of stress. The
timing of waveform averages was determined on the basis of 1) our balanced stimulus presen-
tation protocol and 2) the compounds’ pharmacokinetics, while minimizing confounding
effects of stimulant-induced stereotyped motoric hyperactivity on the one side and response
habituation due to repeated stimulus presentations on the other side: @1) A 30 min stable EEG
baseline session without stimuli was used to check the quality of signals, after which a subse-
quent drug-naive baseline session of 30 min followed with stimuli (120 trials: 3 runs of 40 trials
“7 min each” with a 3 min white noise between trials): hence the baseline period in total lasted
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2 times 30 min = 60 min. This series of 120 clicks (3000 Hz tones and 10-ms duration) was pre-
sented in pairs of 500 msec at 10s inter-stimulus interval at 87 dB compared with background
of 40 dB. In the next phase of the experiment, a 120 min total session followed during which
the challenge drugs were administered in the combined pharmacological treatment: this ses-
sion included 4 series of 120 trials (each series lasted 30 min, so 4 times 30 = 120 min, 480 tri-
als). In this second series of trials, the last 2 runs (i.e. trials 241–280) because of of habituation
due to repeated stimulus presentation, only stimulus presentations with low levels of motor
behavior and artifacts-free epochs were selected only to construct waveforms and calculate
average peak amplitude for different AEP components. @2) Given the PK-characteristics of the
drugs used (e.g. stereotyped behavior of challenge stimulant drugs will wear off after about 30
minutes, while PK indicates t ½ between 60–120 minutes; test compounds t ½ about 2–3 hrs),
Therefore the waveform averages were analyzed while both compound PK characteristics were
adequate, yet confounding effects of stereotyped behavior or stimulus habituation minimal.Sti-
muli were generated by sound hardware and software (Labview Electronic) and were delivered
through speakers mounted at the cage top at approximate height of 20 cm to allow relatively
uniform intensity distribution in the cage.

Offline, the AEP waveforms were filtered between 1 and 500 Hz and baseline corrected at
stimulus onset. In all animals, the AEP waveforms were chosen from the the frontal electrode
sites, the areas showing pronounced auditory potential response, were consequently used for
all subsequent pharmacological studies. Waveform averages for each rat were calculated at 40–
60 min after the administration of challenge drugs on epochs that were free of gross movement
artefacts; sleep state and amplifiers saturation artifacts. Individual sweeps were rejected for
movement artifacts based on a criterion of 2 times the root mean squared amplitude per rat.
Grand average waveforms were constructed in 50 ms pre-stimulus and a 450 ms post-stimulus
interval for each treatment. The resultant average for each subject were analyzed for P1, N1
and P2 component amplitudes.

In all animals, the changes in frequency oscillations were analyzed by using the Discrete
Fourier Transform on passive wake epochs used to construct AEP waveforms. For baseline
EEG power, spectral density values were averaged for both S1 and S2 responses in the runs of
baseline session with stimuli. For drug effects on EEG oscillations, EEG spectral power was
averaged for both S1 and S2 responses in selected passive waking epochs between 40–60 min
after the administration of challenge drugs. Drug-induced changes in EEG spectral power dur-
ing S1 and S2 were calculated as the ratio of mean spectral power obtained following the
administration of drug in S1 and S2 responses versus the mean spectral power obtained during
baseline with stimuli period in S1 and S2, respectively. This procedure allows for assessment of
drug-induced changes in EEG power of S1 and S2 responses expressed in each frequency
bands: Delta band (1–4 Hz), Theta band (theta1: 4–6.5 Hz, theta2: 6.5–8 Hz), Alpha band
(alpha1: 8–11 Hz; alpha2: 11–14 Hz), Beta band (beta1: 14–18 Hz; beta2: 18–32 Hz), Gamma
band (gamma1: 32–48 Hz; gamma2: 52–100 Hz).

4. Auditory evoked potentials: treatment groups drugs
Treatment groups consisted of challenge drugs such as amphetamine (0.64 mg/kg) and PCP
(3 mg/kg). The test drugs were risperidone (0.64 mg/kg), olanzapine (2.5 mg/kg), LY403939
(10 mg/kg) and PQ-10 (3 mg/kg). The doses selected for amphetamine and PCP were repeatedly
found to elicit marked alterations in EEG patterns. The doses of risperidone and olanzapine were
selected based on dopamine D2 receptor occupancy and their potency to attenuate the challenge-
induced hyperlocomotor behaviour. The doses of LY403939 and PQ-10 were selected based on ini-
tial dose response AEP studies (1, 3, 10 mg/kg) and (0.3, 1, 3 mg/kg), respectively.

Modulation of mGluR2 but Not PDE10 Alleviates Deficits in Rat's AEPs

PLOSONE | DOI:10.1371/journal.pone.0147365 January 25, 2016 5 / 23



In the first experiments, it was examined whether subcutaneous PCP (3 mg/kg) and
amphetamine (0.64 mg/kg) administration in conscious rats could induce abnormalities in the
AEP components and EEG frequency oscillations similr to those described in schizophrenic
patients. Subsequently, it was determined to what extent the atypical antipsychotics risperidone
(0.64 mg/kg) and olanzapine (2.5 mg/kg) would normalize PCP and amphetamine-induced
aberrant AEP waveform components and EEG oscillations, respectively. In the second set of
experiments, it was evaluated whether oral administration of LY403939 (10 mg/kg) or PQ-10
(3 mg/kg) had therapeutic potential across the NMDA receptor antagonist and dopamine ago-
nist models of schizophrenia.

Animals were not used in equal numbers and baseline AEP responses were examined before
the pharmacological experiments in order the examine the quality of EEG signal and the S2/S1
ratio measures. For each study, animals were randomly allocated to experimental conditions
(n = 32 for each study, 8 animals per group). Consequently, some animals may have been used
more than others (exclusion criteria: maximally 6 times reuse, and only following a wash out
period of at least 2 weeks in order to avoid long-lasting effects as well as carry-over of drug
treatments). Animals with an S2/S1 ratio higher than 5 indicating a disruption in gating were
discarded from the analysis.

5. Drugs
All drugs were synthesized at Janssen Research and Development laboratories and were prepared
and administered as follow: Risperidone and olanzapine (H2O + 2H2T + NaCl, subcutaneous),
PCP and amphetamine (H2O + NaCl, subcutaneous). The mGluR2/3 agonist, (-)-(1R, 4S,5S,6S)-
4-amino-2-sulfonylbicyclo[3.1.0] hexane-4,6-dicarboxylic acid (LY404039) (Rorick-Kehn et al.,
2007) was prepared in H2O + 1NaOH for oral administration. PQ-10 (Siuciak, 2008) was dis-
solved in a solution of 10% Hydroxyl-propyl-beta-cyclodextrin (HP-β-CD) containing 2 equiva-
lents of tartaric acid for oral administration. All drugs were given at a volume of 5 ml/kg of body
weight in rats. An equivalent volume of vehicle was administered in control animals.

6. Statistical analysis
Artifact-free trials were averaged and frontal AEP waveform components such as the amplitude
(expressed in μV) and latency (expressed in ms) of P1 (first most positive deflection), N1 (most
negative deflection) and P2 (second most positive deflection) were analyzed. The influence of
acute administration of these drugs on each auditory component, gating ratios (S2/S1) and EEG
oscillations was calculated for each time point and were given as mean values ± S.E.M. Repeated
measure ANOVA was applied to determine difference in relative changes for different parame-
ters in relation to treatment. A Dunnett-Test post hoc analysis with pairwise comparison was
performed to determine statistical at a significance level of p< 0.05.

Results

1. Auditory gating paradigm
Amphetamine and PCP are widely used to recreate both positive and negative symptoms of
schizophrenia in rodents. Behavioral abnormalities such as hyperlocomotion and stereotypic
behaviors (sniffing, head swaying, rearing) were particularly observed during the first half hour
following the administration of amphetamine and PCP, therefore passive waking epochs in the
interval of 40–60 min following the administration were considered here. In different experi-
ments, typical average waveforms and peak amplitudes in response to auditory stimuli exhib-
ited an initial positive peak P1 within 10 and 30 ms following tone stimuli, a prominent
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negative peak (N1) within 30 and 50 ms of stimulus delivery followed by a second prominent
positive peak (P2) within 50 and 100 ms (Fig 1). A consistent reduction of the peaks P1, N1
and P2 in the response to the second stimuli compared to the first one indicated that P1, N1
and P2 exhibited gating of S2 relative to S1.

2. Effects of olanzapine on amphetamine-induced deviance in AEP
waveform components and oscillations

Evoked potentials and peak amplitudes. A striking difference in the morphology of the
waveforms was apparent between groups for the P1, N1 and P2 waveforms components (Fig
2A). Amplitude responses of P1 and N1 to first stimuli were consistently affected by drug treat-
ment [F(3,21) = 3.0, p = 0.03] and [F(3,21) = 10.9, p< 0.0004]. Post hoc analysis for the main
effect of drug treatments revealed that amphetamine significantly decreased P1 and N1 peak
amplitudes, whereas olanzapine increased N2 peak amplitude to the second stimuli (Fig 2B).

S2/S1 ratio. The S2/S1 ratios for both P1 and N1 amplitudes were affected by drug treat-
ment [F(3,21) = 3.06, p = 0.04] and [F(3,21) = 2.5, p = 0.08], respectively. Post hoc tests
revealed that amphetamine significantly reduced P1 and N1 ratio indices. The increased S2/S1
ratios in amphetamine-treated animals were due to reduced responses to the first stimulus
rather than increased amplitude to the second stimulus. Pretreatment with olanzapine attenu-
ated the reduced response to first stimuli therefore prevented amphetamine-induced increases
in S2/S1 ratios in the frontal cortex (Fig 2C).

EEG oscillations. Amphetamine consistently enhanced aberrant slow alpha oscillations in
both S1 and S2 responses. Pretreatment with olanzapine consistently prevented amphetamine-
induced aberrant slow alpha oscillations in responses to both stimuli (Fig 2D).

3. Effects of risperidone and PCP on AEP waveform components and
oscillations

Evoked potentials and peak amplitudes. The grand average waveforms of the auditory
evoked potentials demonstrated a reduction of peak amplitudes to first stimuli for P1 and N1
in response to PCP (Fig 3A). The amplitude of the P1 to the first stimulus was significantly

Fig 1. Typical grand average waveforms derived from the right frontal cortex. Auditory-evoked responses consisted of positive and negative peak
deflections (P1, N1 and P2 in response to first and second stimuli tones in awake quiet state. A pronounced reduction in the amplitude of the second
stimuli (S2) relative the first stimuli (S1) demonstrated gating for the P1, N1 and P2 waves.

doi:10.1371/journal.pone.0147365.g001
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affected by drug treatment [F(3,22) = 3.05, p = 0.036] up to similar level of the corresponding
peak to the second stimulus whereas the amplitude of the N1 component was close to signifi-
cance level [(F3,22) = 2.8, p = 0.08]. Post hoc tests indicate that PCP markedly reduced P1 and
N1 peak amplitudes (Fig 3B).

The peak amplitudes for the P1 and N1 components in response to the first and second
stimulus following the administration of risperidone were not consistently different from vehi-
cle treated group. However, risperidone increased P2 peak amplitude to the first stimulus [F
(3.22) = 7.0, p = 0.007] (Fig 3B).

S2/S1 ratio. The S2/S1 ratio measure was consistently affected by drug treatment [F(3,22)
= 3.8, p = 0.02]. Post hoc test revealed that PCP disrupted S2/S1 ratio for P1 amplitude. The
disruption of the S2/S1 ratios following the administration of PCP was due to the decrease in
peak amplitude to first stimuli rather than the increase peak amplitudes to second stimuli

Fig 2. Effects of acute administration of olanzapine (2.5 mg/kg), amphetamine (0.64 mg/kg) or in combination on A/ Grand average evoked
potentials derived from the frontal right hemisphere, B/ peak amplitude of the P1, N1, and P2 components (expressed in μV), C/ Mean S2/S1 ratio
represent the gating index, D/ Average time frequency response in alpha EEG oscillations from the right frontal cortex in awakemotionless state
during the period of 40–60min following the combined pharmacological treatment.Data are presented as mean ± S.E.M. of (n) animals for each
condition (vehicle (7), olanzapine (7), amphetamine (7) and alanzapine + amphetamine (7)). 4 animals with baseline S2/S1 ratio higher than 5 across
different conditions were discarded from the analysis. Olanzapine restored amphetamine-induced deficits in P1 and N1 gating responses and changes in low
alpha oscillations. * indicates significant difference from vehicle (p < 0.05).

doi:10.1371/journal.pone.0147365.g002
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(Fig 3C). Pretreatment with risperidone effectively attenuated this PCP-induced disruption in
the S2/S1 ratio for P1.

EEG oscillations. PCP markedly enhanced aberrant high gamma oscillations in both S1
and S2 response. Pretreatment with risperidone consistently attenuated PCP-induced aberrant
high gamma oscillations in responses to both stimuli (Fig 3D).

4. Effects of PQ-10 and LY404039 on the P1, N1 and P2 S2/S1 ratios
Peak amplitudes. The amplitude of the P1 was affected by drug treatment [F(3,26) = 3.7,

p = 0.04]. Post hoc analysis revealed that PQ-10 at the higher dose significantly decreased P1
peak amplitudes to the second stimulus. The peak amplitudes for both N1 and P2 to the first
stimulus were enhanced, however these changes did not reach significance level (Fig 4A).

S2/S1 ratio. The S2/S1 ratio for the P1 amplitude was influenced by drug treatment [F
(3,26) = 2.9, p = 0.07]. Post-hoc analysis showed that PQ-10 at the highest dose significantly

Fig 3. Effects of acute administration of risperidone (0.64 mg/kg), PCP (3 mg/kg) or in combination on A/ Grand average evoked potentials derived
from frontal right hemisphere, B/ peak amplitude of the P1, N1, and P2 components (expressed in μV), C/ Mean S2/S1 ratio represent the gating
index, D/ Average time frequency response in gamma EEG oscillations from the right frontal cortex in awakemotionless state during the period of
40–60min following the combined pharmacological treatment. Data are presented as mean ± S.E.M. of (n) animals for each condition (vehicle (7),
risperidone (7), PCP (6) and risperidone + PCP (8)). 4 animals with baseline S2/S1 ratio higher than 5 across different conditions were discarded from the
analysis. Administration of risperidone improved PCP-induced disruption in P1 gating response. * indicates significant difference from vehicle (p < 0.05).

doi:10.1371/journal.pone.0147365.g003

Modulation of mGluR2 but Not PDE10 Alleviates Deficits in Rat's AEPs

PLOSONE | DOI:10.1371/journal.pone.0147365 January 25, 2016 9 / 23



reduced the S2/S1 p = 0.043 (Fig 4A). The S2/S1 ratio for N1 and P2 amplitudes were not con-
sistently affected by drug treatment [F(3,26) = 2.05, p = 0.14] and the P2 amplitude [F(3,26) =
2.22, p = 0.17].

EEG oscillations. PQ10 at the higher dose slightly decreased EEG slow alpha and higher
gamma oscillations in response to both S1 and S2 auditory stimuli.

Peak amplitudes. The amplitude of P1 amplitude was affected by drug treatment [F(3,25) =
4.1, p = 0.04]. Post hoc analysis showed that LY404039 at the highest dose consistently decreased
P1 amplitude to the second stimulus. Both N1 and P2 peak amplitudes were enhanced, however
these changes did not reach significance level.

S2/S1 ratio. The S2/S1 ratio for the P1 amplitude was affected by drug treatment [F(3,25) =
3.56, p = 0.046]. Post hoc analysis revealed that LY404039 at the highest dose consistently low-
ered the S2/S1 ratio effect of p = 0.04 (Fig 4B). There were no effects of LY404039 on S2/S1 ratios
for the N1 amplitude [F(3,25) = 0.26, p = 1.03] and the P2 amplitude [F(3,25) = 0.40, p = 0.8].

EEG oscillations. LY404039 at the higher dose consistently decreased aberrant EEG slow
alpha in responses to both S1 and S2 auditory stimuli. A slight decrease in higher gamma oscil-
lations was also found.

Next, the higher doses of PQ-10 and LY404039 previously shown to decrease S2/S1 ratio for
the P1 amplitude were used in separate combined pharmacological experiments with amphet-
amine and PCP.

Fig 4. Bar graphs depicting peak amplitude of the P1, N1, and P2 components (expressed in μV) and
S2/S1 ratios of frontal auditory potentials after acute administration of A/ PQ-10 and B/ LY404039
compared to vehicle values.Data are presented as mean ± S.E.M. of (n) animals for each condition: PQ10
(vehicle (7), 0.3 (7), 1 (8) and 3mg/kg (8)), and LY404039 (vehicle (6), 1 (7), 3 (7) and 10 mg/kg (8)). Animals
with baseline S2/S1 ratio higher than 5 across different conditions were discarded from the analysis (2 and 3
animals in PQ-10 and LY404039 experiments, respectively). There was a significant reduction of peak
amplitude and S2/S1 ratios for P1 at the highest dose of both drugs (* p<0.05).

doi:10.1371/journal.pone.0147365.g004
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5. Effects of PQ-10 and amphetamine on AEP waveform components
and oscillations

Evoked potentials and peak amplitudes. Grand averages of the auditory evoked poten-
tials show that amplitudes of P1, N1 and P2 were affected by drug treatment: P1 [F(3.25) = 5.4,
p = 0.008], N1 [F(3.25) = 10.4, p = 0.00001] and P2 [F(3.25) = 15.6, p = 0.00001]. Post hoc tests
revealed that amphetamine significantly reduced P1 and N1 peak amplitudes, whereas PQ-10
(3 mg/kg) had no consistent influence on the amplitude of the P1, N1 and P2 (Fig 5A and 5B).

S2/S1 ratio: P1 gating was consistently affected by drug treatment [F(3,25) = 3.74,
p = 0.027], whereas N1 ([F(3,25) = 3.23, p = 1.2] and P2 [F(3,25) = 1.5, p = 0.24] ratios were
not altered. Post hoc tests indicated that amphetamine significantly disrupted P1 gating by

Fig 5. Effects of acute administration of PQ-10 (10 mg/kg), amphetamine (0.64 mg/kg) or in combination on A/ Grand average evoked potentials
derived from frontal right hemisphere, B/ peak amplitude of the P1, N1, and P2 components (expressed in μV), C/ Mean S2/S1 ratio represent the
gating index, D/ Bar graphs indicate average time frequency response in alpha and gamma EEG frequency oscillations from the right frontal
cortex in awakemotionless state for the period of 50–60min following the second pharmacological treatment. Data are presented as mean ± S.E.M.
of (n) animals for each condition (vehicle (7), PQ10 (7), amphetamine (8) and PQ10 + amphetamine (8)). 2 animals across different conditions with baseline
S2/S1 ratio higher than 5 were discarded from the analysis. Administration of PQ10 failed to improve amphetamine-induced disruption in gating response.
* indicates significant difference from vehicle (p < 0.05).

doi:10.1371/journal.pone.0147365.g005
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increasing S2/S1 ratio due to a decrease in amplitude response to the first stimuli (Fig 5B). Pre-
treatment with PQ-10 failed to prevent disruption in gating (Fig 5C).

EEG oscillations. Amphetamine consistently enhanced aberrant EEG slow alpha oscilla-
tions in responses to both S1 and S2 auditory stimuli. Pretreatment with PQ-10 had no effect
on those abnormalities (Fig 5D).

6. Effects of PQ-10 and PCP on AEP waveform components and
oscillations

Evoked potentials and peak amplitudes. There was a main drug effect on the peak ampli-
tude to first stimuli for P1 [F (3,23) = 6.7, p = 0.0023], whereas peak amplitudes for N1 [F
(3,23) = 2.7, p = 0.10] and P2 [F(3,23) = 3.42, p = 0.08] were slightly affected. Post hoc tests
indicate that PCP significantly reduced P1 peak amplitude, whereas there was no consistent
effect of PQ-10 on PCP-evoked reduction in P1 response (Fig 6A and 6B).

S2/S1 ratio. Evaluation of the S2/S1 ratio for the P1 component indicated that PCP consis-
tently impaired this measure [F(3,23) = 10.1, p = 0.001]. PQ-10 consistently decreased S2/S1
ratio for P1, however the compound was without effect on PCP-induced deficits in this mea-
sure (Fig 6C).

EEG oscillations. PCP consistently enhanced aberrant high gamma oscillations in
responses to both auditory S1 and S2 stimuli. Pretreatment with PQ-10 did not attenuate those
abnormalities (Fig 6D).

7. Effects of LY404039 and amphetamine on AEP waveform
components and oscillations

Evoked potentials and peak amplitudes. The grand average waveforms showed that P1,
N1 and P2 amplitude responses to first stimuli were consistently affected by drug treatment [F
(3,26) = 4.7, p = 0.01], [F(3,26) = 20.1, p = 0.00001] and [F(3,26) = 6.7, p = 0.009], respectively.
Post hoc analysis revealed that amphetamine significantly decreased P1, N1 and P2 peak
amplitudes, whereas LY404039 enhanced the amplitude of N1 (Fig 7A and 7B).

S2/S1 ratio. There was a main effect of drug on the S2/S1 ratio for P1 in the amphetamine
treated group [F(3,26) = 3.1, p = 0.04], whereas N1 [F(3,26) = 1.1, p = 0.34] and P2 [F(3,26) =
2.0, p = 0.12] ratios were not affected. Post hoc analysis showed that amphetamine treatment
significantly increased the S2/S1ratio for P1, which was reversed by LY404039 (Fig 7C).

EEG oscillations: Amphetamine enhanced aberrant slow alpha oscillations in responses to S1
and S2 auditory stimuli. Pretreatment with LY404039 attenuated those abnormalities (Fig 7D).

8. Effects of LY404039 and PCP on AEP waveform components and
oscillations

Evoked potentials and peak amplitudes. The grand average waveforms shown in Fig 8A
and peak measurements obtained in this paradigm indicated that P1 [F(3,36) = 3.4, p = 0.02],
N1 [F(3,36) = 5.5, p = 0.003] and P2 [F(3,36) = 3.9, p = 0.02] amplitudes were affected by drug
treatment. Post hoc analysis revealed that PCP consistently reduced both P1, N1 and P2 peak
amplitudes (Fig 8B). In LY404039 treated animals, N1 and P2 peaks to first stimuli were signif-
icantly higher than the corresponding peaks to first stimuli in the vehicle treated group (Fig
8B).

S2/S1 ratio. There was a main drug effect on S2/S1 index for P1 [F(3,36) = 6.2, p = 0.002]
(Fig 8C). Post hoc analysis indicated that PCP disrupted the S2/S1 for P1, an effect which was
attenuated by LY404039 (Fig 8C).
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EEG oscillations. Consistent alterations in higher gamma oscillations were observed with
PCP in responses to both auditory S1 and S2 stimuli. Pretreatment with LY404039 attenuated
PCP-induced aberrant gamma network oscillations in responses to both stimuli (Fig 8D).

Discussion
The present study used auditory evoked potentials (AEP) and oscillations in conscious rats to
confirm the efficacy of atypical antipsychotics in attenuating pharmacologically-induced defi-
cits in sensory encoding and processing of auditory stimuli, and to address the potential of
mGluR2 activation and of PDE10 inhibition as therapeutic strategies in conditions of auditory
processing impairments. In the paired click paradigm, acute administration of PCP and

Fig 6. Effects of acute administration of PQ-10 (10 mg/kg), PCP (3 mg/kg) or in combination on A/ Grand average evoked potentials derived from
frontal right hemisphere, B/ peak amplitude of the P1, N1, and P2 components (expressed in μV), C/ Mean S2/S1 ratio represent the gating index,
D/ Bar graphs indicate average time frequency response in alpha and gamma EEG frequency oscillations from the right frontal cortex in awake
motionless state for the period of 50–60 min following the second pharmacological treatment. Data are presented as mean ± S.E.M. of (n) animals for
each condition (vehicle (6), PQ-10 (7), PCP (7) and PQ-10 + PCP (8)). 4 animals across different conditions with baseline S2/S1 ratio higher than 5 were
discarded from the analysis. Administration of risperidone failed to improved PCP-induced disruption in gating response. * indicates significant difference
from vehicle (p < 0.05).

doi:10.1371/journal.pone.0147365.g006
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amphetamine decreased the amplitude of S1 response and induced aberrant oscillations, which
is associated with impaired initial encoding processes of auditory stimuli. Both risperidone and
olanzapine reliably reduced PCP and amphetamine-induced alterations in peak amplitudes of
AEP components, respectively. Activation of mGluR2 attenuated alterations in peak AEP
amplitudes induced either by amphetamine or PCP, whereas PDE10 inhibition had no such
effect.

Altered dopamine and glutamate circuits affect AEP
In the present study, the AEP components measured under baseline conditions reflects sequen-
tial components in early auditory information processing, associated with suppression of S2

Fig 7. Effects of acute administration of LY404039 (10 mg/kg), amphetamine (0.64 mg/kg) or in combination on A/ Grand average evoked potentials
derived from frontal right hemisphere, B/ peak amplitude of the P1, N1, and P2 components (expressed in μV), C/ Mean S2/S1 ratio represent the
gating index, D/ Bar graphs indicate average time frequency response in alpha and gamma EEG frequency oscillations from the right frontal
cortical in awakemotionless periods for the time-interval of 50–60min following the second pharmacological treatment. Data are presented as
mean ± S.E.M. of (n) animals for each condition (vehicle (7), LY404039 (8), amphetamine (7) and LY404039 + amphetamine (8)). 2 animals across different
conditions with baseline S2/S1 ratio higher than 5 were discarded from the analysis. Administration of LY404039 improved amphetamine-induced disruption
in gating response. * indicates significant difference from vehicle (p < 0.05).

doi:10.1371/journal.pone.0147365.g007
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relative to S1 for P1, N1 and P2 components (Fig 1). Although the direct analogy between
human and rat AEP components is unclear, this study and others support the rodent P50
paired click paradigm as a plausible analogue of human P50 suppression for studying the integ-
rity of brain inhibitory circuits and evaluation of treatments [53–57].

Hyperdopaminergic and hypoglutamatergic transmission has been linked to cognitive defi-
cits in schizophrenia [58,59]. Amphetamine and the NMDA receptor antagonists PCP, keta-
mine and MK801 have repeatedly been used to model schizophrenia-like deficits in sensory
encoding and information processing in both humans and animals. In the present work, both
amphetamine and PCP disrupted the S2/S1 ratio for P1 and N1 peaks due to reduced suppres-
sion of the response to the first stimuli, which is in line with previous reports showing a consis-
tent reduction in both the amplitude to the first stimuli and the gating index [60–62]. Deficits

Fig 8. Effects of acute administration of LY404039 (10 mg/kg), PCP (3 mg/kg) or in combination on A/ Grand average evoked potentials derived
from frontal right hemisphere, B/ peak amplitude of the P1, N1, and P2 components (expressed in μV), C/ Mean S2/S1 ratio represent the gating
index, D/ Bar graphs showing EEG oscillations in alpha and gamma EEG frequency oscillations from the right frontal cortex in awakemotionless
periods for the time-interval of 50–60min following the second pharmacological treatment.Data are presented as mean ± S.E.M. of (n) animals for
each condition (vehicle (8), LY404039 (8), PCP (8) and LY404039 + PCP (8)). Administration of LY404039 improved PCP-induced disruption in gating
response. * indicates significant difference from vehicle (p < 0.05).

doi:10.1371/journal.pone.0147365.g008
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in P50 suppression by reduced S1 amplitude has been reported in unmedicated schizophrenic
patients [41,14,63]. The present data may suggest that PCP and amphetamine-induced deficits
in the ability to ‘gate in’ information and in the perception threshold of auditory stimuli may
resemble the findings in unmedicated schizophrenic patients.

Atypical antipsychotics attenuate disruption in AEP and aberrant EEG
oscillations
Clinical studies have demonstrated efficacy of the second-generation antipsychotics to reverse
deficits in gating [4,20]. Olanzapine, which exhibits a potent antagonist activity at the 5-HT2
receptor, elevated the amplitude response S1 stimuli suggesting an opposite effect might restore
deficits of P50 suppression in rodents [54]. In accordance with this model, the present work
demonstrated that both atypical antipsychotics risperidone and olanzapine increased peak
amplitudes to S1 stimuli and attenuated amphetamine and PCP-induced altaerations in AEP
peak amplitudes, respectively. The results suggest potential efficacy to improve pharmacologi-
cally-induced impairments in auditory processing.

In the present study, a transient pathological enhancement in gamma network oscillations
was elicited by PCP. Our results extend previous observations on enhanced aberrant gamma
oscillations following blockade of NMDA receptors and suggest that disruption in encoding
processes of auditory stimuli may be confounded by the abnormal enhancement of gamma
activity.

Hallucinogenic drugs such as lysergic acid diethylamide (LSD) and the serotonergic phe-
nethylamine hallucinogen [–]-2,5-dimethoxy-4-methylamphetamine (DOM) increased the
power in the alpha frequency oscillations [64]. The atypical antipsychotics decreased high fre-
quency as well as slow alpha oscillations in humans and animals [65–68]. Amphetamine is
widely used to recreate positive symptoms of schizophrenia in rodents, and this drug increases
motor activity, during which the firing rate of neurons in the hippocampus rhythmically
increased and decreased at ~8 Hz “theta rhythm” [69]. In the present work, amphetamine
enhanced a transient aberrant EEG slow alpha oscillations during motionless behavior in
responses to both S1 and S2 stimuli. Accordingly, it has been suggested that alpha rhythm may
emerge during loss of attention in immobile state or during failure to process sensory input,
and may serve to functionally disengage and reduce the processing capabilities of a given brain
region [70]. Therefore, it is hypothesized that the alpha activity elicicted by amphetamine may
silence other frequency rhythms to disengage and/or inhibit network computations of those
cortical regions during encoding processes.

The disruption in dopaminergic and/or glutamatergic transmission may results in abnormal
networks oscillations observed in schizophrenics, and antipsychotics-induced attenuation of
aberrant alpha and gamma network oscillations can provide significant benefits for informa-
tion processing. In line with these observations, pretreatment with the atypical antipsychotics
risperidone and olanzapine consistently reduced PCP and amphetamine-induced transient
pathological enhanced higher gamma and alpha frequency oscillations.

PQ-10 failed to prevent disruptive effects on AEP and aberrant EEG
oscillations
In schizophrenia, increases in dopamine D2 receptors and decreased D1 receptor activities
may lead to reduced cAMP levels in frontal and temporal cortex, leading to psychosis and cog-
nitive deficits. Recently, it has been hypothesized that inhibition of dopaminergic signaling
through PDE10A could represent a novel non-receptor-based mechanism for the reduction of
psychosis and related cognitive dysfunction in schizophrenia [40,41,71].
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Here, PQ-10 at the dose of 3 mg/kg reduced the S2/S1 ratio for the P1 amplitude in the ini-
tial dose response and combined pharmacological studies: this dose is highly brain penetrant
with a brain-plasma ratio of 0.66 at 30 min after oral administration and well above the behav-
iorally active dose of 1 mg/kg in the MK801 model [72]. At this dose PQ-10 enhanced the
amplitude of P1, N1 and P2 components of AEPs to the first stimuli (as already suggested
above), however, it did not attenuate the detrimental effects of amphetamine and PCP on
evoked potentials and S2/S1 ratios for P1. The present data are in agreement with a recent AEP
study showing that PQ-10 enhanced the N1 amplitude to the first stimulus in the cortex of rats
[73]. Of note, a consistent deficit effects of PCP on S2/S1 ratio for P1 was found in all experi-
ments, however the effect of PCP on S2/S1 ratio for P2 was not consistently altered. It is likely
that the response variability to S1 for P2 amplitude caused this discrepancy between studies;
however it cannot be ruled out that PQ-10 could attenuate deficit in the S2/S1 amplitude as it
was repeatedly found that PQ-10 increase peak amplitude to S1 for N1 and P2 components,
which represent later stages of information processing. In contrast, intravenous administration
of another selective PDE10 inhibitor TP-10 reversed amphetamine-induced gating impair-
ments in anesthetized rats [74], suggesting that the route of administration as well as the model
used (freely moving vs. anesthetized rats), might cause discrepancies between studies.

The inhibition of PDE10A showed mixed results on cognition. In the scopolamine and
MK801 models, PQ-10 showed efficacy to reverse deficits in the object recognition memory at
the doses of 0.3 and 1 mg/kg, respectively [72], while the selective PDE10A inhibitor MP-10
reversed an MK-801-induced memory deficit in social odor recognition in mice [70]. However,
PDE10A deficient mice showed no alteration in learning and memory performance in the pas-
sive avoidance and water escape tasks [24,73]. In contrast to amphetamine and PCP-induced
locomotor activity, PDE10 inhibitors have been shown to reduce locomotor activity and had
no effect on exploratory behavior [71,74]. Thus, it is likely that the lack of efficacy of PQ-10 on
amphetamine and PCP-induced gating deficits could partially be explained by altered motor
behavior: behavioral cognitive measures could be more sensitive to assess PDE10A inhibition
as compared to neurophysiological read-outs.

It is also important to note that another phosphodiesterase inhibitor, PDE4 rolipram,
reversed amphetamine-induced abnormalities in auditory evoked potentials in mice [75] sug-
gesting that enhancement of evoked potentials might be a general feature of increased intracel-
lular cAMP/cGMP second messengers through PDE inhibition. Overall, PQ-10 failed to
restore amphetamine and PCP-induced gating deficits in conscious rats, and suggests that
impairments in sensory processing are not sensitive to changes in the levels of intracellular
cAMP/cGMP elicited in the amphetamine and PCP psychosis models.

LY404039 normalized disruption of AEP and aberrant cortical gamma
oscillations
mGluR2 orthosteric agonists potently attenuate both amphetamine and PCP-evoked hyperac-
tivity, show antipsychotic-like effects in a variety of preclinical rodent paradigms, and suppress
ketamine-induced aberrant augmentation in gamma oscillations [7,48,66,76,77]. In addition,
the prodrug LY2140023 significantly improves both positive and negative symptoms of schizo-
phrenia [50], which provides further evidence that modulation of glutamate tone may have
antipsychotic properties to treat refractory clinical symptoms of schizophrenia.

The present studies revealed consistent effects of the mGluR2 agonist in two different ani-
mal models predictive of antipsychotic potential. Amphetamine and PCP yielded significant
reduction of evoked potentials, whereas LY404039 at the dose that reduced the S2/S1 ratio for
the P1 amplitude enhanced the auditory response to the first stimuli, indicating that the
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mGluR2 orthosteric agonist could increase the initial encoding response of an auditory stimu-
lus. Moreover, LY404039 restored the gating deficits induced by amphetamine and PCP, an
effect shared by atypical antipsychotics.

A functional interaction between mGluR2 and 5-HT2A receptors has been demonstrated to
form a heterodimer complex in the prefrontal cortex [78]. PCP-induced glutamate release
through 5-HT and 5-HT2A receptor mechanisms might result in dishinbition of pyramidal neu-
rons, leading to abnormal network gamma oscillations. Given that atypical antipsychotics display
a robust antagonism activity at 5-HT2A receptors, we hypothesize that activation of mGluR2
may exert a negative control and act to reduce glutamate release following the activation of
5-H2A receptors in prefrontal cortical areas, then leading to improved information processing.
In the present work, LY404039 significantly attenuated amphetamine and PCP-induced disrup-
tion in frontal network gamma oscillations, which is in line with recent reports showing efficacy
of mGluR2 drugs to inhibit MK-801 and ketamine-induced excessive gamma oscillations
[66,76]. MGluR2 signaling may alleviate auditory processing deficiencies and attenuate abnor-
malities in large EEG networks partially through different mechanisms from those of atypical
antipsychotics. However, the recent binding study revealed that LY404039 displayed relatively
high affinity towards dompaminergic D2 receptors as this compound inhibited the binding of
the specific dopamine D2 receptor antagonist, [3H]domperidone to human cloned D2 receptors
[79]. Therefore, it should be considered that clinical antipsychotic action of LY404039 may
depend on synergistic stimulation of glutamate receptors with a partial agonism at the dopamine
D2 receptors, thus reducing endogenous dopaminergic neurotransmission.

P50 gating versus pre-pulse inhibition (PPI)
Two paradigms are widely used to investigate sensory gating response: the behavioral prepulse
inhibition of the startle response (PPI) and the neurophysiological P50 gating. PPI and P50
measures may have overlapping as well as separate neurobiological substrates.

PPI is a motor startle reflex elicited by a sudden and strong sensory stimulus, usually audi-
tory. This reflex can be reduced by a weaker stimulus that precedes the startle-eliciting stimulus
[80]. Modulation of the startle reflex (including phenomena such as habituation, sensitization
and fear potentiation) involves a number of brain structures located up to the forebrain, i.e.
auditory nerve, ventral cochlear nucleus, dorsal nucleus of the lateral lemniscus, caudal pontine
reticular nucleus, spinal motor neurons [81–83].

In a “paired-stimulus” paradigm two identical auditory stimuli are presented 500 ms apart
to evaluate neurophysiological sensory gating, reflecting an individual’s ability to screen out
trivial or repetitive stimuli in order to protect against information overload. The brain neuronal
structures associated with the dynamic generation and suppression of P50 gating have been
identified by advanced brain mapping with neurophysiological methods that facilitate detec-
tion of activity from deeper brain sources (e.g. fMRI or magnetoencephalography) [84]. The
superior temporal gyrus, hippocampus, dorsolateral prefrontal cortex, and thalamus are neural
structures that contribute to the generation of a P50 response. Unlike the PPI startle reflex, P50
suppression has a substrate that is easily identified across animal species, such as N34.

Some reports indicate that PDE10A inhibitors reverse pharmacologically -induced (e.g.
MK-801, quinpirole; apomorphine/SCH23390) deficits in PPI [85,86]. These findings contrast
with the findings of PQ-10 in the current study. Discrepancies were also reported regarding the
effect of mGluR2 activation in amphetamine and PCP-induced PPI deficit paradigm [87]. In
the present study, the potential of mGluR2 but not PDE10 to improve P50 gating disruption
may reflect distinct parametric sensitivities and/or distinct neural mechanisms of inhibition.
Consistent with earlier studies on the relationship between PPI and P50 suppression in either
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the auditory or visual modality [88,89], no correlations could be derived between these two gat-
ing measures in earlier PPI and the present P50 gating paradigms. These observations further
emphasize that the sensory gating P50 and sensorimotor gating PPI measures reflect different
underlying phenomena [90].

AEP paradigm: application and translation suitability
Auditory potentials have mostly been studied in anesthetized animals and in different inbred
mice [91,92]. In contrast, the current study used pharmacological challenges in conscious rats
to closely model gating deficits and aberrant network oscillations as found in schizophrenics.
This approach offers valuable opportunities to probe the integrity of sensory processing net-
works and to study the mechanisms of potential drug actions in translational research.

Collectively, our results demonstrate that modulation of mGluR2 signaling can effectively
alleviate deficits in pre-attentive stages of sensory information processing in two rat models of
schizophrenia, whereas PDE10 inhibition had no such effect. The results provide a basis for
further validation of this hypothesis in other animal models, and ultimately in clinical trials.
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