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Abstract

The cardiotoxic effects of adjuvant cancer treatments (i.e., chemotherapy and radiation
treatment) have been well documented, but the effects on peripheral cardiovascular func-
tion are still unclear. We hypothesized that cancer survivors i) would have decreased rest-
ing endothelial function; and ii) altered muscle deoxygenation response during moderate
intensity cycling exercise compared to cancer-free controls. A total of 8 cancer survivors
(~70 months post-treatment) and 9 healthy controls completed a brachial artery FMD test,
an index of endothelial-dependent dilation, followed by an incremental exercise test up to
the ventilatory threshold (VT) on a cycle ergometer during which pulmonary \'/O2 and
changes in near-infrared spectroscopy (NIRS)-derived microvascular tissue oxygenation
(TQI), total hemoglobin concentration ([Hblotar), and muscle deoxygenation ([HHb] ~ frac-
tional O, extraction) were measured. There were no significant differences in age, height,
weight, and resting blood pressure between cancer survivors and control participants. Bra-
chial artery FMD was similar between groups (P = 0.98). During exercise at the VT, TOIl was
similar between groups, but [Hb];.to; and [HHD] were significantly decreased in cancer survi-
vors compared to controls (P < 0.01) The rate of change for TOI (ATOIA/VO,) and [HHb]

(A[HHb]/AVO,) relative to AVO, were decreased in cancer survivors compared to controls
(P =0.02 and P = 0.03 respectively). In cancer survivors, a decreased skeletal muscle
microvascular function was observed during moderate intensity cycling exercise. These
data suggest that adjuvant cancer therapies have an effect on the integrated relationship

between O, extraction, \'/O2 and O, delivery during exercise.

Introduction

Numerous types of cancer are frequently treated with chemotherapy or a combination of che-
motherapy and radiation. While these treatment regimens have contributed in part to
increased cancer survival rates [1], their use is associated with both acute and long-term
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cardiotoxicity, which over time may result in late-occurring cardiac complications (for review
see Khouri et al. [2]). Similarly, Mulroney et al. (2012) reviewed the potential vascular injury
associated with adjuvant treatment and cancer survivors, but the direct effects upon the periph-
eral vascular system have yet to be fully understood [3]. Despite the evidence of endothelial
function as an underlying cardiovascular disease risk factor, only a few studies have investi-
gated the effects of adjuvant treatment on this parameter of cardiovascular health [4-6]. In sur-
vivors of childhood cancer, Chow et al. (2006) and Dengle et al. (2008) observed a decreased
brachial artery flow-mediated dilation (FMD), a measurement of endothelial-dependent dila-
tion, compared to healthy controls. However, these findings are not universal as others have
reported no difference in FMD in breast cancer patients /20 mo post-treatment compared to
healthy adjuvant therapy naive controls [7].

During dynamic exercise muscle metabolism is dependent on the integration of convective
and diffusive components of the O, transport pathway [8]. An essential component to this
movement of O, from atmospheric air to muscle mitochondria is the peripheral microvascula-
ture, which forms a complex three-dimensional network that supports the regulation of tissue
perfusion and O, diffusive transport. The adverse effects of adjuvant cancer treatments on the
microcirculation have previously been reported in myocardium as Ammar et al. (2011) dem-
onstrated a significant decrease in capillary number in rats exposed to doxorubicin chemother-
apy [9]. Similarly, others have reported decreases in nail fold capillary density in patients
treated with sunitinib therapy [10]. If similar changes occur within the skeletal muscle capillar-
ies the effects may cause an attenuated blood-myocyte O, and substrate exchange leading to
decreases in muscle O, extraction and exercise capacity [11, 12].

Near-infrared spectroscopy (NIRS) is a non-invasive means to evaluate the redox state of
tissue oxygenation at the level of the small vessels, capillaries, and intracellular sites of O, trans-
port and utilization [13]. Specifically changes in NIRS-derived deoxygenated hemoglobin and
myoglobin (A[HHDb]) provides a reliable estimate of fractional tissue O, extraction within the
microcirculation in the field of interrogation [14-19]. During progressive increases in exercise
workload and oxygen uptake (V O,), evaluation of the fractional O, extraction within the con-
tracting muscle via NIRS can provide valuable insight into skeletal muscle microvascular func-
tion. Since chemotherapy and radiation have a known impact on central cardiovascular
function, the primary aims of the present investigation were twofold: to evaluate resting vascu-
lar function, as assessed via brachial artery flow-mediated dilation, and evaluate changes in
muscle deoxygenation via NIRS during moderate intensity ramp exercise in cancer survivors
previously treated with adjuvant therapy. We hypothesized that i) cancer survivors would have
a decreased brachial artery flow-mediated dilation (FMD) response; and ii) have an altered
muscle deoxygenation response during moderate intensity ramp exercise compared to healthy
cancer-free controls.

Materials and Methods
Subjects

Eight individuals were recruited to a cancer survivor group (7 women) and 9 individuals to a
control group (7 women). All cancer survivor participants were recruited from advertisements
in the local community and cancer support groups. Confirmation of cancer diagnosis, cancer
type, and treatment were obtained from each participant’s current oncologist or family practi-
tioner. Cancer survivor participants were > 2 years from diagnosis with a treatment history
consisting of chemotherapy and/or radiation therapy (Table 1). Participants in the control
group were recruited via local advertisements. Individuals showing interest with similar age
and history of cardiovascular disease as the cancer survivor group were included in the study.
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Table 1. Cancer Survivor Treatment Characteristics.

ID
no.

1
2
3

N o s

doi:10.1371/journal.pone.0147691.t001

Age
(yrs)

56
54
59

55
55
54
44
42

Sex

=gl

m T T M

Months post-
treatment

40
36
31

187

41
35

136

48

Chemotherapy treatment Radiation

treatment
Herceptin+Taxotere+ Carboplatin+Femara No
Taxotere+Cytoxan No
Cytoxan+Adriamycin+ Vincristine+Etoposide Prednisone+Ifosfamide No

+ Carboplatin

Cytoxin+Adriamycin +Taxane Yes
Cytoxan+Taxol Yes
Adriamyacin+Cytoxan+Taxotere+Abraxane Yes
Cytoxan+Adryamycin +Taxotere Yes
Taxotere+Adriamycin +Cyclophosphamide Yes

All participants were free from all known cardiopulmonary disease, microvascular/peripheral
artery disease, COPD, asthma, lung disease, cystic fibrosis, and diabetes. In addition, partici-
pants were free of any major signs or symptoms suggestive of cardiovascular, pulmonary, or
metabolic disease. Smokers and individuals with poorly controlled hypertension

(systolic > 160 mmHg), or currently taking statins were excluded from the study. Also, indi-
viduals who reported anemia or symptoms of anemia (e.g., light headed, dizziness, and faint-
ing) were excluded from participation. The number of participants was determined based
upon previous studies evaluating microvascular responses during exercise [17, 19] and assum-
ing a physiologically relevant 10-15% difference between groups for NIRS responses at 80%
power and an o of 0.05.

Study Procedures

All experimental procedures were performed on a single morning following a 4 hour fast and
after refraining from exercise, alcohol, and caffeine for at least 12 hours. All tests were per-
formed in a thermoneutral environment (21-23°C). Prior to experimental testing verbal and
written consent were obtained from each participant. All procedures were approved by the
Institutional Review Board for Research Involving Human Subjects at the University of Okla-
homa Health Sciences Center, which conformed to the Declaration of Helsinki.

Measurements

General Characteristics. Body mass index was calculated from height and body mass.
Resting arterial blood pressure was measured in the supine position from the average of three
brachial artery pressure recordings following a 5 minute resting period [20] (Omron BP785N,
Hoofddorp, Netherlands). Current level of physical activity was assessed with the International
Physical Activity Questionnaire as previously described by Craig et al. [21].

Brachial Artery Flow Mediated Dilation. Arterial endothelial-dependent vasodilator
function was evaluated via brachial artery flow-mediated dilation (FMD) using the guidelines
established by Harris et al. [22]. Following a 10 min supine rest period an automated rapid cuff
inflator was placed on the right arm just proximal to the elbow (Hokanson, Bellevue, WA).
Using non-invasive 2D and Doppler ultrasound equipped with a linear array transducer oper-
ating in duplex mode at a frequency of 10M Hz and 4.0 MHz, respectively (Logiq S8, GE Medi-
cal Systems, Milwaukee, WI), measurements of brachial artery diameter and mean blood
velocity were simultaneously performed. Doppler velocity measurements were performed and
corrected for an angle of insonation less than 60°. Baseline measurements were performed for 1
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min at which point the pneumatic cuff was then inflated to at least 20 mmHg above the resting
systolic blood pressure for 5 minutes. Occlusion was confirmed by the absence of a radial
pulse. Following the 5 minute occlusion period the cuff was released (< 1 s) and continuous
measurements of brachial artery diameter and blood velocity were performed for 2 minutes.

Baseline and post-occlusion brachial artery diameter was calculated at 15 frames per second
and averaged into 3 s bins using a commercially available edge-detection and wall-tracking
software package, which minimizes investigator bias [Vascular Research Tools 6, (Medical
Imaging Applications, Coraville, lowa, USA)]. FMD was calculated as the highest absolute
(mmA) and relative (%A) mean average 3-s diameter following cuff release in peak brachial
artery diameter from the preceding baseline diameter. The baseline and post-occlusion time-
averaged mean velocity (in centimeters per second) values over each 3 s contraction cycle were
calculated on the ultrasound system using the manufacturer’s on-screen software. The binned
diameter and velocity data were time aligned and used to calculate shear rate [Shear rate (s =
(4 x mean blood velocity (cm/s) / diameter (cm)]. The stimulus eliciting brachial artery dilation
following cuff deflation was calculated as the area under the shear rate curve (AUCgR) deter-
mined using the trapezoidal rule [22]. To normalize brachial artery dilation to the shear stimu-
lus, the FMD response was divided by the cumulative shear rate (%Amm-s?)[23].

Incremental Exercise. Upon completion of the FMD test, subjects rested ~15 min fol-
lowed by a ramp incremental exercise protocol on a cycle ergometer (Lode BV, Groningen,
The Netherlands). Following a 1 minute resting baseline, subjects pedaled at 60-80 rpm with
progressive increases in power output at a rate of 15W min™" until the subject fully expressed
their ventilatory threshold (VT). The obtainment of the VT was visually determined in real
time as the time at which VCO, increased out of proportion with respect to VO, and there
was an increase in VE/V O, with no increase in VE/V CO, [24]. Following the incremental
test using the same criteria the VO, and work rate (accounting for a 30 s mean response time)
for the VT was determined via two independent investigators. The VT was chosen as a physio-
logic end-point in the present study as it demarcates the boundary between moderate and
heavy exercise intensity domains [25]. In addition, the VT is effort independent and is widely
used as a submaximal index of exercise capacity in clinical and research applications and is
therefore an appropriate exercise end-point [26]. Due to the absence of a physician, population
age, and potential risk of adverse responses incremental tests to maximum effort could not be
performed. Throughout the incremental test metabolic and ventilatory data were continuously
recorded via a gas exchange measurement system (True One 2400, Parvo Medics, Sandy, UT),
which was calibrated before each testing session according to the manufacturer’s instructions.
During off-line analysis the 30 s mean average of pulmonary VO, was calculated at 50 W and
the 30 s preceding the VT.

Near-infrared spectroscopy (NIRS) (OxiplexTS; ISS. Champaign, IL) was used to measure
total muscle microvascular hemoglobin + myoglobin concentration ([Hb] ), and individual
oxygenated ([HbO,]) and deoxygenated ([HHD]) concentrations. The NIRS probe was placed
longitudinally on the belly of the right m. vastus lateralis and secured using a cohesive bandage.
Location of the m. vastus lateralis was confirmed manually with palpation during active knee
extension and visually via 2D ultrasound. The depth of the muscle was measured from the 2D
ultrasound image and used to correct for adipose tissue thickness [27]. No movement of the
probe was observed during the exercise test. During the test NIRS data were stored at 25 Hz
and averaged into 1 s bins during off-line analysis.

The NIRS system used in the present study utilized light-emitting diodes operating at two
wavelengths (690 and 830 nm) with an optical-fiber based light and detector source with a sepa-
ration of 2.5-4.0 cm which make up the primary elements of the sensor. This system also
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dynamically determined and incorporated tissue scattering and absorption coefficients into the
NIRS variable calculations, which allowed for absolute concentrations of [Hb],; and [HHD] to
be calculated (UM) as opposed to relative values. The assumptions and limitations relevant to
this measurement technique have been previously discussed in detail [28]. Briefly, the NIRS-
derived [HHD] is reflective of changes in muscle deoxygenation within the small arterioles,
venules, and capillaries, and of intracellular myoglobin [13]. Due to similar absorption properties
of the NIRS light wavelengths, distinction between the hemoglobin and myoglobin cannot rou-
tinely be made [29]. In addition, the influence of skin blood flow and volume on the NIRS signal
cannot be ignored [30], but has been shown to contribute minimally to the NIRS signal [31].

NIRS during incremental cycling exercise has previously been used to evaluate the redox
state of microvascular hemoglobin and intracellular myoglobin [16-18]. Changes in [Hb]
(A[Hb]ota1) throughout the incremental test were taken as an index of changes in total micro-
vascular hemoglobin concentration which can occur due to changes in regional blood volume
and/or capillary hematocrit. It is important to note that A[Hb],.,; does not provide a measure-
ment of systemic hemoglobin concentration. Changes in [HHb] (A[HHDb]) were taken as an
estimate of skeletal muscle fractional O, extraction [16-19]. During off-line analysis, muscle
tissue oxygenation index (TOI) was calculated as TOI = [HbO,]/ ([HbO,] + [HHb]) x 100.
The A[HDb] o1, AlHHbD], and ATOI were calculated as the difference between the value
obtained during the initial 30 seconds of the incremental test and the mean average at VT.
These differences were then used to calculate the individual rates of concentration change rela-
tive to the change in VO,. Due to several subject’s inability to remain completely at rest (i.e.,
no movement of the leg) prior to the start of exercise a true resting condition could not be mea-
sured. Since the incremental exercise test began at an unloaded workload followed by a 15 W
min"' ramp, the mean work rate during this time was 7.5 W, which is similar to the unloaded
cycling baseline used in previous studies [16].

Statistical Analysis

Statistical analyses were performed using a commercially available software package (Sigma-
Plot/SigmaStat12.5, Systat Software, Point Richmond, CA). Group differences were determined
by unpaired t-tests. Ventilatory, gas exchange, and NIRS responses to incremental exercise
were analyzed by two-way repeated measures ANOVAs (group x time), with time as the
repeated factor. To identify significant changes in the within and between groups a post hoc
Holm-Sidak test was performed. All group data are expressed as mean * SE, unless otherwise
stated. Statistical significance was declared when P < 0.05. Given the sample size and need to
detect the smallest meaningful physiological differences, effect size comparisons were also
made via Cohen’s d with threshold values for small, moderate, and large effects as 0.2, 0.5, >0.8
respectively [32].

Results
General Characteristics

Individual cancer survivor characteristics of age, sex, months since last date of treatment, che-
motherapy drugs used, and radiation exposure are presented in Table 1. Table 2 describes the
baseline characteristics of each group. There were no significant differences in age, height,
weight, and BMI between cancer survivor and control participants. Resting systolic, diastolic,
and mean arterial pressures were also not different between groups. In the cancer survivor
group 4 (50%) individuals were classified as inactive, 2 (25%) as minimally active, and 2 (25%)
as active. The control group was composed of 1 (11%) inactive, 3 (33%) minimally active, and
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Table 2. Participant characteristics.

Age, yr

Body mass, kg
Stature, cm

BMI,

Systolic BP, mmHg
Diastolic BP, mmHg
VT, | min™’

VT, ml kg™ min™
VT, W

CS(n=38) Control (n = 9) P Value
52.4+6.0 53.3+4.4 0.71
70.8 £14.5 69.2+9.7 0.78
166.8 + 6.4 170.1 £ 9.6 0.42
25.3+4.0 24.0+£3.2 0.45
120.9+9.8 126.9+17.8 0.41
78.0£6.0 81.7+8.3 0.32
1.10+£0.19 1.21 £ 0.33 0.43
16.2+4.6 174 £ 3.7 0.55
78.6 £ 14.2 95.5 + 31.1 0.18

Data are presented as means + SE; n, no. of subjects; BMI, body mass index; VT, ventilatory threshold.

doi:10.1371/journal.pone.0147691.t002

5 (56%) active individuals. The V02 (CS, 1.10 + 0.07 l min™* vs. Control, 1.21 £ 0.11 I min™";
P =0.43) and workload at VT (CS, 78.6 + 5.0 W vs. Control, 95.4 + 10.3 W; P = 0.18) were not
different between groups, suggesting a similar level of submaximal aerobic fitness (Table 2).

Brachial Artery Flow Mediated Dilation

Brachial artery diameter did not differ between groups prior to cuft inflation (Table 3;

P =0.24). Following 5 min of arterial occlusion, the FMD was not different between groups
when expressed in absolute (Amm, Table 3; P = 0.29, ES = 0.53) or percentage values (A%,
Table 3; P=0.21, ES = 0.65). The mean group values of FMD normalized to the shear rate stim-
ulus are illustrated in Fig 1. Similar to the absolute FMD (mm) response, the FMD normalized
to the shear rate stimulus (FMD%) was not different between groups (Table 3; P = 0.98,

ES =0.01).

Exercise Responses

Mean values of NIRS-obtained skeletal muscle microvascular TOI, [HHb], and [Hb];ot during
the ramp cycling exercise test are illustrated in Fig 2. In the cancer survivors, TOI remained at
baseline levels throughout the test compared to the significant decrease observed in controls.
There was a significant group-by-work rate interaction for [HHb] (P = 0.01). The muscle
[HHDb] response, which was used to evaluate changes in fractional O, extraction, was signifi-
cantly lower in cancer survivors compared to controls at VT (40.6 + 0.8 vs. 45.2 + 2.2 uM;

P =0.009, ES = 0.98). In the control group, [HHb] was significantly increased above baseline at

Table 3. Brachial FMD Responses.

CS(n=38) Control (n = 9) P Value
Baseline D, mm 3.28+0.15 3.64+0.24 0.24
FMD, mm 0.33+0.09 0.21 £ 0.08 0.29
FMD, % 10.2+2.48 5.77+2.18 0.20
AUCgg, s 10* 34.2+3.6 22.6+ 3.1 0.03

Data are presented as means + SE; n, no. of subjects; D, diameter; FMD, flow-mediated dilation; AUCSR,
area under the shear rate curve.

doi:10.1371/journal.pone.0147691.t003
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6.0e-7

4.0e-7

2.0e-7 4
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Fig 1. Endothelium-dependent, flow-mediated, brachial artery dilation (FMD) in control and cancer
survivors (CS). FMD values are shown normalized for the magnitude of the hyperaemic shear stimulus (i.e.
% change in diameter divided by the AUCgR).

doi:10.1371/journal.pone.0147691.g001

50W 36.1 £ 0.4 vs.39.6 £ 0.8 uM; P < 0.001) and VT (45.2 £ 2.2 uM; P < 0.001). However,
[HHb] was only significantly increased above baseline at the VT in the cancer survivors

(37.1 £0.6 vs. 40.6 + 0.9 uM; P = 0.04) suggesting a delayed increases in fractional O, extraction
in the cancer survivor group compared to controls. Muscle [Hb],, significantly increased at
50W (125.5+ 1.3 v5.129.9 + 1.9 uM; P = 0.04) and VT (138.9 + 3.8 uM; P < 0.001) relative to
baseline in controls, whereas [Hb] .1 only increased at VT in the cancer survivors (121.3 + 2.0

mmmm Cancer survivors

A mmmm Cancer survivors B mmmm Cancer survivors C
— Control — Control —— Control
75 50 t 145 1
T
70 1- 45 * 140
t+ *
T 135 ¥
—~ 65 S 40 =) T
S E =
< — s 130
o g -
60 L 35 I
125
55 30 120
50 - — 25 115
Baseline  50W VT Baseline 50W VT Baseline  50W VT

Fig 2. Near-infrared spectroscopy (NIRS)-obtained muscle oxygenation data at baseline, 50 W, and the ventilatory threshold (VT). Tissue
oxygenation index (TOI; Panel A) in the cancer survivors remained at baseline levels throughout the test compared to the progressive decrease observed in
controls. Deoxygenated hemoglobin ([HHb]; Panel B) was significantly lower in cancer survivors compared to controls at VT. Total hemoglobin ([Hb]iotas;
Panel C) at VT was significantly decreased in the cancer survivors compared to controls. Values are mean + SE; 1 P<0.05 significantly different compared to
baseline. * P<0.05 significantly different compared to controls.

doi:10.1371/journal.pone.0147691.9002
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Fig 3. The rate of change for tissue oxygenation index (TOI; Panel A), deoxygenated hemoglobin ([HHb]; Panel B), and total hemoglobin ([Hb}otar;

Panel C) as a function of oxygen uptake (VO,). Note that the absolute change in TOI and [HHb] as a function of the increase VO, during exercise were
significantly less in cancer survivors compared to controls. Values are mean * SE.

doi:10.1371/journal.pone.0147691.g003

vs.129.5 + 2.7; P = 0.002). The [Hb]o at VT was significantly decreased in the cancer survi-
vors compared to controls (129.5 + 2.7 vs. 138.9 + 3.8 uM; P = 0.02, ES = 0.96). The rate at
which TOI (CS, -0.13 + 0.3 vs. Control, -1.21 + 0.3 uM 1! min™; P = 0.02, ES = 1.19) and
[HHb] (CS, 2.76 + 0.54 vs. Control, 4.47 + 0.99 uM 1! min™'; P = 0.03, ES = 1.22) increased for
a given increase in VO, throughout the ramp exercise test were significantly less in cancer sur-
vivors compared to controls (Fig 3).

Discussion

The purpose of this study was to evaluate endothelial function and the skeletal muscle deox-
ygenation responses to moderate intensity ramp exercise in a group of cancer survivors and
healthy controls. This study has three major findings. First, brachial artery FMD, a non-inva-
sive measurement of endothelial function, was not different between cancer survivors and
healthy controls. This finding does not support the first hypothesis. The second key finding
was that skeletal muscle microvascular [Hb]. and [HHb] were significantly decreased during
dynamic cycle ergometry in the cancer survivors compared to healthy controls. These decreases
suggest that muscle microvascular hemoglobin concentration and muscle O, extraction were
lower in the cancer survivor group. Lastly, these differences resulted in decreased ATOI and A
[HHD] relative to AV O, in the cancer survivor group. Taken together these findings suggest
that the muscle microvascular responses to dynamic exercise are attenuated in the cancer survi-
vors compared to healthy controls. In total these conclusions are consistent with the second
hypothesis that cancer survivors have an altered muscle deoxygenation response to moderate
intensity exercise. The decreased muscle deoxygenation suggests the presence of some alter-
ation in the balance between O, delivery, O, extraction, and O, utilization during exercise in
cancer survivors, which to our knowledge, represents the first evidence of potential muscle
microvascular toxicity in cancer survivors treated with adjuvant treatments.

Endothelial function

Treatment with certain chemotherapies can elicit endothelial damage and vascular dysfunc-
tion. Ito et al. [33] and Gibson et al. [34] exposed rat aortas to anthracycline chemotherapy,
specifically doxorubicin, and demonstrated significant decreases in acetylcholine-induced
endothelial-dependent relaxation within hours of injection. Similarly, Duquaine et al. [5] dem-
onstrated a significantly decreased brachial artery FMD immediately following infusion of
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Adriamycin chemotherapy in breast cancer patients. Like chemotherapy, radiation has also
been shown to acutely decrease endothelium-dependent vascular function [35, 36].

Similar to the findings that chemotherapy can acutely impact vascular function, Chow et al.
[4] observed a decreased brachial artery FMD responses several months following anthracycline
chemotherapy in pediatric cancer patients. While suggestive of long-term adverse vascular
effects of chemotherapy, their study can only be generalized to individuals treated prior to 21
yrs old. In the present study, brachial artery FMD was unaffected by prior exposure to chemo-
therapy or a combination of chemotherapy and radiation compared to controls. In a similar
study design, Jones et al [7] demonstrated no difference in brachial artery FMD in breast cancer
patients approximately 20 mo following chemotherapy compared to healthy controls. The pres-
ent findings in combination with those of Jones et al. [7] suggest that the long-term effects of
chemotherapy and radiation in the major conduit arteries may be minimal, which may indicate
that the vasculature, at least within the brachial artery, may have the ability to restore its dilative
qualities in the years following treatment. One experimental consideration to note when inter-
preting the similar brachial artery FMD between cancer survivors and controls is the vascular
heterogeneity that exists between limbs. While regional brachial artery FMD traditionally has
been used as an index of global vascular health, recent evidence strongly cautions against extrap-
olating the findings from a single limb to the whole body since it is now recognized that endo-
thelial and vascular smooth muscle exhibit heterogeneity across the peripheral vasculature[37].
Specifically, Newcomer et al. (2004) demonstrated that the endothelium-dependent vascular
responses in the femoral artery are significantly different compared to the brachial artery[37]. It
is therefore critical that the findings from the present investigation are not used as a comprehen-
sive index of global vascular health and that a more compressive evaluation of vascular function
in multiple vascular beds is required in the cancer survivor population.

Microvascular responses to exercise

The VT expressed as both a work rate and VO, were similar between groups. The VT provides
a non-invasive measurement of the lactate threshold, which together demarcate the boundary
between moderate and heavy-intensity exercise domains and occurs at ~ 50% V O,max [24]. In
addition, the VT is effort independent and is widely used as a submaximal index of exercise
capacity in clinical and research applications [26]. The similar VT between groups is in line
with the similar levels of self-reported physical activity in each group.

NIRS. During incremental exercise muscle [HHb] progressively increases linearly as a
function of exercise intensity up to ~75-90% VO, max and reflects skeletal muscle microvascu-
lar O, extraction [16, 17]. Similar to previous work, the present study observed significant
increases in [HHb] throughout the incremental exercise test up to the VT. However, at the VT
muscle [HHb] was significantly lower in the cancer survivors compared to healthy controls,
suggesting a significantly decreased skeletal muscle microvascular O, extraction at the higher
exercise intensity (Fig 2). This conclusion is supported by the decreased A[HHb] for a given
increase in AV O, in the cancer survivors compared to controls, which suggests that the rate at
which microvascular O, extraction increased in proportion to VO, was significantly attenu-
ated in the cancer survivors. These findings indicate that the ability to increase fractional O,
extraction as the metabolic demands of exercise increased may be impaired in this patient
population.

The differences in skeletal muscle microvascular [HHb] during exercise observed in the cur-
rent study are similar to those reported in other patient populations [38] and following
extended periods of bedrest [39, 40]. In post-myocardial infarction patients the increase in
muscle [HHDb], evaluated using NIRS, was significantly lower compared to healthy controls
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during the transition from rest to peak cycling exercise, which was also significantly correlated
with peak aerobic capacity [38]. Similarly, in healthy individuals exposed to bedrest, the change
in skeletal muscle microvascular [HHDb] responses in the m. vastus lateralis, also evaluated
using NIRS, during dynamic exercise were significantly decreased compared to pre bed rest val-
ues. Taken together, these previous investigations highlight the adverse microvascular changes
associated with acute cardiovascular insult and physical inactivity, both of which can occur fol-
lowing adjuvant cancer treatment [41]. The findings of the present study, which observed a sig-
nificantly decreased A{HHb)] as a function of AV O, in a group of cancer survivors compared
to untreated cancer treatment naive controls provides evidence that factors associated cancer
survival and prior treatment with adjuvant therapy adversely impact the factors associated
with O, extraction. Given that the profile of microvascular O, extraction during incremental
exercise is impart dependent upon muscle VO, and muscle blood flow; these findings suggest
that the decreased O, extraction in the cancer survivors during moderate intensity exercise
may have been compensated by an increased muscle blood flow. While muscle blood flow was
not measured in the present investigation, the similar FMD responses between the cancer sur-
vivors and controls suggests that endothelium-dependent vasodilation during exercise may
have also been similar. Also during moderate intensity exercise a substantial cardiac output
reserve exists, which may have allowed for a compensatory increased muscle blood flow in
response to the decreased O, extraction for a given metabolic rate in the cancer survivors, thus
allowing VO, to appropriately increase with increases in workload. Future investigations will
need to determine if the control of blood flow is altered during dynamic exercise and how it
impacts the muscle [HHb] response in cancer survivors.

Determinants of O, extraction. During dynamic exercise O, extraction is dependent on
the integration of ‘central” and ‘peripheral’ factors which include: muscle DO,, capillary muscle
O, conductance, muscle blood flow, blood flow heterogeneity, arterial O, content, and muscle
oxidative capacity and is can be mathematically expressed as: 1 ~e—"°%®? (DO, O, diffusing
capacity; Q, blood flow; B, slope of the O, dissociation curve) [42-44]. In the present study’s
group of cancer survivors, it is plausible that changes in both ‘central’ and ‘peripheral’ factors
may have contributed to the decreased [HHb]. A key factor in O, extraction is O, diffusing
capacity (DO,), which is thought to be primarily determined by microvascular hematocrit
(Hct) [11]. At rest, microvascular Hct is less than systemic Hct, which increases with muscular
contraction and plays a key role in the contraction-induced increases in muscle DO, [12]. Pre-
vious investigations have highlighted that changes in NIRS measured [Hb], reflect increases
in microvascular Hct given that muscle myoglobin concentration presumably does not change
with exercise [29]. In the present study [Hb] ot Was decreased at the VT in the cancer survi-
vors compared to healthy controls, which is suggestive of a decreased microvascular hemoglo-
bin concentration and subsequent capillary hematocrit. Therefore, the decreased fractional O,
extraction observed during moderate intensity exercise in cancer survivors may be due in part
to decreases in muscle DO, owing to a decreased microvascular Hct. In addition to potential
decreases in microvascular Hct, the decreased [HHDb] response during exercise in the cancer
survivors could be due to additional factors including heterogeneity in microvascular mean
transit time, blood flow, blood flow distribution, capillary density, and decreased mitochondrial
activity [45-47]. The measurement depth of the NIRS technique is limited to approximately
half the distance between the light source and detector, which with the present study’s NIRS
system is equal to 2 cm. Any heterogeneity in mean transit time or blood flow would subse-
quently result in regional differences in the [HHb] response and suggest that the decreased
[HHDb] observed during exercise in our group of cancer survivors compared to healthy controls
may only exist in the superficial portions of the m. vastus lateralis.
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The integrated relationship between the profiles for VO,, blood flow, and muscle [HHb]
during incremental exercise dictate that the lower (A[HHb]/V O,) in the cancer survivors was
likely compensated by a greater increase in muscle blood flow for a given increase in VO,.
Thus, it is unlikely that the decreased muscle [HHb] relative to VO, would significantly limit
exercise during moderate intensity exercise. This is supported by the finding that our submaxi-
mal index of exercise capacity (i.e., VT) was similar between groups. However, had exercise
continued to near maximal exercise intensities, when the ability to increase muscle blood flow
may become compromised, the altered microvascular function may have limited peak exercise
capacity in a similar manner as that reported in post-myocardial infarction [38].

Experimental considerations

The strengths of the study include the similar levels of self-reported physical activity and mea-
sured VT's in a diverse group cancer survivors and controls. This is important given that fitness
level alone can impact measurements of brachial artery FMD [48] and NIRS derived measure-
ments of skeletal muscle deoxygenation [17]. However, there are several important limitations
to this study. First, the type of treatment, while documented, was not controlled for, nor was
the type of cancer. This was done so that the results of this study would be more relatable to the
general cancer-survivor population. Second, the population measured was predominantly
female and is therefore not representative of cancer survivors as a whole [49] and the sample
size was also modest, but very similar to previous investigations evaluating the NIRS response
to dynamic exercise and is supported by our a prior sample size calculations [16, 18, 19, 50].
Third, much of the previous research involving NIRS measurements of skeletal muscle micro-
vascular function utilized a ramp cycling protocol to VO, max, which is a historically relevant
measurement of integrative cardiovascular function. The present study was limited to submaxi-
mal exercise intensities and it is therefore unknown as to how the results may have differed
during a maximal incremental test. Fourth, the NIRS analysis and interpretation is associated
with certain methodical assumptions and limitations [28, 51]. Briefly, the NIRS-derived [HHb]
is reflective of changes in hemoglobin oxygenation within the small arterioles, venoules,
capillaries, and intracellular myoglobin due to similar absorption properties of the NIRS light
wavelengths, thus preventing distinction between the two [29]. Also, the NIRS probe was
attached to the mid portion of the right m. vastus lateralis and only allowed for a portion of the
exercising muscle to be investigated. It must be recognized that spacial heterogeneities exist
and that the observed differences between cancer survivors and control groups could be due to
differences in O, transport, diffusion, and utilization across different locations within the mus-
cle [46]. Lastly, blood flow was not measured. Since changes in muscle [HHb] may be the result
of several factors, including alterations in blood flow, it this measurement would have provided
valuable insight into the underlying mechanisms altering the microvascular responses during
exercise in the cancer survivors. However, this measurement, while important, could not be
performed in the present study due to the invasiveness and technical issues associated with the
determination of exercising blood flow during dynamic cycling exercise.

Summary

From the present study in can be concluded that the pattern of microvascular redox status,
evaluated via NIRS, during a moderate intensity ramp exercise test is influenced by prior expo-
sure to adjuvant cancer therapy. In cancer survivors skeletal muscle microvascular [Hb]o¢a
and [HHb] were compared to healthy controls. In addition, cancer survivors demonstrated
decreased rates of change for TOI and [HHDb] relative to metabolic rate, probably due
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alterations in microvascular function, fiber type distribution, intracellular oxidative capacity,
or muscle blood flow. Since skeletal muscle [HHb] is an estimate of O, extraction and since

VO,, blood flow, and O, extraction are related, our data suggest that adjuvant cancer therapies
has an effect on the integrated relationships required for the maintenance of dynamic exercise.
The mechanistic reasons for these findings and the functional consequences can only be specu-
lated at this point and future investigations should focus providing further mechanistic insight
into the long-term effects of adjuvant cancer therapies.
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