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Abstract

Background—Heckman-type selection models have been used to control HIV prevalence
estimates for selection bias, when participation in HIV testing and HIV status are correlated after
controlling for observed variables. These models typically rely on the strong assumption that the
error terms in the participation and the outcome equations that comprise the model are distributed
as bivariate normal.

Methods—We introduce a novel approach for relaxing the bivariate normality assumption in
selection models using non-linear copula functions. We apply this method to estimating HIV
prevalence and new confidence intervals (CI) in the 2007 Zambian Demographic and Health
Survey (DHS), using interviewer identity as the selection variable that predicts participation
(consent to test) but not the outcome (HIV status).

Results—We show in a simulation study that selection models can generate biased results when
the bivariate normality assumption is violated. In the 2007 Zambia DHS, HIV prevalence
estimates are similar irrespective of the structure of the association assumed between participation
and outcome. For men, we estimate a population HIV prevalence of 21% (95% = Cl 16% to 25%),
compared with 12% (11% to 13%) among those who consented to be tested; for women, the
corresponding figures are 19% (13% to 24%) and 16% (15% to 17%).

Conclusions—Copula approaches to Heckman-type selection models are a useful addition to
the methodological toolkit of HIV epidemiology, and of epidemiology in general. We develop the
use of this approach to systematically evaluate the robustness of HIV prevalence estimates based
on selection models, both empirically and in a simulation study.
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In order to address almost every aspect of the HIV epidemic, from assessing the risk factors
associated with infection, to planning future resource allocation, to anti-retroviral treatment
(ART) scale-up, accurate information on HIV prevalence is required.! Research on HIV/
AIDS often relies on nationally representative surveys,? but participation rates in these
surveys can be low. Table 1 shows that participation rates in the HIV surveys that are nested
within one of the major sources of nationally representative data in low- and middle-income
countries, the Demographic and Health Surveys (DHS), range from a high of 97% for
women in Rwanda in 2005, to a low of 63% for men in Malawi in 2004 and Zimbabwe in
2005.3

There are many potential reasons for low participation rates in HIV surveys (including
concerns about the confidentiality of results, lack of incentive to participate, and survey
fatiguel4, and non-participation can arise at different stages of HIV survey administration.®
In this paper, we focus on refusal to be tested for HIV, which is typically the most important
cause of missing data in HIV surveys.® In longitudinal studies, it has been shown that
respondents who are HIV-positive are less likely to consent to be tested for HIV than HIV-
negative individuals.”19 In Malawi, 46% of women and 39% of men who declined to be
tested did so because of prior HIV testing, knowledge of HIV status, or fear of positive
results.11 Such reasons for declining to participate in an HIV survey have implications for
the calculation of HIV prevalence. Neither complete case analysis (limiting the analysis only
to people who consent to be tested for HIV) nor standard approaches to account for missing
values generate unbiased estimates in the presence of selection on unobserved variables.12:13
A potentially important situation leading to selection into survey participation based on
unobserved variables occurs if HIV status itself predicts consent to be tested for HIV. This
scenario is likely if people know that they are HIV-positive and fear that others will learn
about their positive HIV status if they participate in a survey. It is also likely if people
suspect that they are HIV positive (for instance, based on evaluation of past sexual
behavior), if this suspicion predicts true HIV status, if they fear confirmation of this
suspicion, or they fear that others might learn about their positive status. In these cases,
standard approaches to correct HIV prevalence estimates for missing values (such as single
imputation, multiple imputation, inverse probability weighting or propensity score
reweighting) will be biased because they can only account for selection on observed factors,
but HIV status is unobserved among those who refused to be tested. Another consequence of
high refusal rates is that the uncertainty associated with estimating HIV prevalence can
increase substantially, leading to wide confidence intervals.3

More generally, missing data is a common problem in epidemiologic studies, and the
mechanisms through which this occurs can have an important impact on resulting estimates.
Heckman-type selection models can provide asymptotically unbiased estimates of the
parameters of interest, even when missing data are systematically related to unobserved
characteristics of the individual.1*15 These models will thus be useful whenever researchers
cannot be certain that the assumption that is required for the standard approaches to generate
unbiased results holds — i.e., that data are missing at random after selection on observed
variables has been taken into account. However, in practice the use of Heckman-type
selection models is limited by one requirement and one statistical assumption.
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Heckman-type selection models require the existence of a selection variable that predicts
participation in a survey but not the outcome of interest, other than through the effect on
participation. Elements of survey design and implementation are often documented in
datasets in epidemiology.16 Characteristics of these elements are often likely to determine
survey participation, and are thus potential candidates for selection variables if they are also
plausibly uncorrelated with the characteristics of the individuals who are potential
participants in a survey.1” In HIV surveys, interviewer identity generally predicts consent to
be tested, but it is unlikely that it also predicts HIV status. Previous research that has used
interviewer identify as a selection variable in Heckman-type selection models has found
evidence for selection on unobserved variables in several HIV surveys.3:18-21

The key statistical assumption that the standard Heckman-type selection models need to
meet is that the relationship between consenting to be tested for HIV and HIV status follows
a bivariate normal distribution after other covariates have been taken into account, i.e., that
the error terms of the two equations in Heckman-type selection models are distributed as
bivariate normal. While this assumption is convenient and tractable, it is a potentially
serious limitation.22-25 If this assumption is met, then the estimates obtained using the
conventional bivariate probit Heckman-type selection model are consistent and
asymptotically efficient. However, if the true distribution of the error terms is not bivariate
normal, then the estimates are likely to be both inconsistent and inefficient.28 Simulation
studies have indicated that HIV prevalence estimates from selection models may indeed be
sensitive to violations of this assumption.2”

The robustness of results obtained from surveys involving missing data is particularly
important.2% The implementation of selection models can be viewed as a sensitivity analysis
to adjust for potential bias using alternative sets of assumptions about the underlying
mechanisms causing data to be missing. If it can be demonstrated that the results obtained in
selection models are invariant to a variety of alternative assumptions regarding the
mechanisms leading to missing data, our belief that the conclusions are not just a function of
the model imposed by the researcher will be substantially strengthened. The lack of methods
for evaluating the robustness of Heckman selection models is likely an impediment to wider
use of this approach.

The aim of this paper is to develop and illustrate a means of determining the sensitivity of
results from selection models to alternative ways of characterizing the functional form of the
association between the participation equation (in this case, consent to be tested for HIV)
and the outcome equation (in this case, HIV status). Copulae have been previously applied
to recursive models involving a treatment that is affected by unobserved variables (such as
health as function of medical care utilization?8-31) and in censored models with continuous
outcomes.32 The main contribution of this paper is the application of copulae to binary
outcomes with missing data. In addition, we use a variety of copulae (including the rotated
Clayton, Joe, and Gumbel), allowing for large flexibility in modelling dependence. This
flexibility is a key characteristic of our approach, because it allows us to capture a much
wider set of possible dependence structures than those used in the previous literature.33 With
this method, and the number of alternative parametric specifications, we are therefore able to
be more confident in assessing the robustness of results based on the standard Heckman-type
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selection models. For example, whereas previous implementations of the copula approach
have generally focused on distributions that are similar to the bivariate normal (such as the
Frank or Clayton31), we are able to consider asymmetric dependence. In addition to
potential bias arising from misspecification of the error distribution, by potentially providing
a more accurate representation of the underlying data structure, the copula approach may
also provide more efficient estimates, allowing us to make better inferences. This approach
with asymmetric copulae has not been previously implemented in the sample selection
literature.

In what follows, we introduce and demonstrate our methodology for relaxing the assumption
of bivariate normality in Heckman-type selection models that allow for non-linear
association between participation and the outcome of interest. Although, in theory, semi-
parametric or nonparametric approaches would not require any distributional assumptions,
their application to estimating the intercept in sample selection models with binary data and
a high degree of missing data is limited due to their inefficiency and computational
feasibility. While the copula method does require parametric specification, our approach
makes many distributional functional forms available, therefore making copulae a viable
practical alternative to imposing bivariate normality. We illustrate the consequences of
violating the normality assumption in a simulation study, and show that copulae can provide
an effective and practical means of adjusting for this bias and inefficiency. Finally, we
evaluate the robustness of estimates of HIV prevalence in Zambia. We provide the relevant
code in order to make this approach easily accessible to researchers working with surveys
containing missing data eAppendix.

Statistical Approach

We begin by modelling consent to be tested for HIV and HIV status simultaneously, an
approach based on the adaptation of the original Heckman selection model estimator for
binary outcomes,14:34:35

Consent to be tested is given by:

T

Consentzj:Xijﬂ—l—Z]T a+tui;,i=1,...n, j=1l...J ()

Consent;j=1 if C’onsentfj>0, Consent;j=0 otherwise ()

The observed consent for person i with interviewer j, Consent;;, is a dummy variable
indicating acceptance of being tested, and is a function of a latent variable Consent;
which reflects the respondent’s propensity to be tested. X;j is a p x 1 vector representing
observed individual level characteristics with associated parameter vector 5, Zjisa k x 1
vector of dummy variables representing interviewer identity with associated parameter
vector a, and uijj is a random error term. Although, in theory, identification can be achieved
using the same set of regressors in both the participation equation and the outcome equation,

in practice empirical identification in selection models requires at least one variable, the
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selection variable, to be present in the participation equation but not the outcome
equation.3238 |n this case, interviewer identity predicts consent to be tested but does not to
enter into the HIV equation directly.

The equation for the HIV status HIVj; of individual with i interviewer j is:

HI‘Q}T:Xin+eij 3)

HIV;=1 if HIV;;->0, HIV;j=0 otherwise (4)

HIV;; observed only if Consent;;=1, missing otherwise (5)

where yis a parameter vector and ; is a random error term. The structural assumption used
in previous studies to estimate HIV prevalence is that the error terms in both equations (uij,
&j) are independent and identically distributed (i.i.d.) as bivariate normal, with means equal
to zero, constant variances equal to one, and covariance (correlation coefficient)p. That is,
the joint distribution of ujj, ; is given by F(ujj, &j) = ®aUjj, &j;0) , Where @, is the
standardized bivariate normal cumulative distribution function (cdf). This model can be
fitted using classic maximum likelihood. The standard selection model that relies on joint
normality is equivalent to specifying the Gaussian copula in our framework; therefore we
use this model as the baseline for our comparisons.

In order to allow for non-linear association between the consent and HIV status equations,
we model the dependency of the error terms in the two equations using copulae. Broadly
speaking, these are functions that connect multivariate distributions to their one dimensional
margins, such that if F is a two-dimensional cdf with one-dimensional margins (F1(y1),
F>(y»)), then there exists a two-dimensional copula C such that F(y, ¥2) = C (F1(y1), F2(Y»);
6), where y; and y, are two random variables, and @is an association parameter measuring
the dependence between the two marginals.3” If HIV-positive persons are refusing to be
tested on the basis of knowledge of their HIV status,”1% we would expect a value of p < 0.
When we estimate the model for Zambia using symmetric copulae (Gaussian, Frank,
Student-t) that do not impose a sign on the relationship between consent and HIV status, the
dependence is estimated to be negative in the data, and when we implemented asymmetric
copulae that specify positive associations (Clayton 0 and 180, Joe 0 and 180, Gumbel 0 and
180), we found that the models did not converge. Therefore, we focus on those copulae that
allow for negative association. However, in other contexts there could just as easily be a
positive relationship, when this method is equally applicable. The models we consider are
therefore: Gaussian (Cg), equivalent to the standard bivariate normal probit model; Frank
(Cf); 90 and 270 degrees rotated Clayton (Ccqq, Ccy70); 90 and 270 degrees rotated Joe
(Ci9gr Cip70); 90 and 270 degrees rotated Gumbel (Cggy, Ca,70); and Student-t (Cy). These
copulae are reported in Table 2 and illustrated in Figure 1. While the Gaussian, Frank and
Student-t copulae are symmetric, the rotated Clayton, Joe and Gumbel copulae allow for
stronger negative dependence in the tails of the distribution. The 90- and 270-degrees
rotated versions can be obtained using the following equations38:
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Coo= F3(y2) = C (1= Fi(y1), F2 (y2);0)
Cono= Fi(y1) — C(F1(y1),1 — F2(y2);0)

These forms of dependence are particularly applicable in the context of HIV prevalence
estimation, as we might expect respondents with a strong negative score on the latent test
variable to be of particularly high risk of being HIV-positive.

In the sample selection context, the data identify the three possible events (Consentj; = 1,
HIVjj = 1), (Consentjj = 1, HIVjj = 0) and (Consentjj = 0), with probabilities:

P (Consent;j=1, HIV;;=1)=py1;;=C (<1> <Xi7; 5— 27 a) ) (X%Y) ;0)
P (Consent;j=1, HIV;;=0) =py1;;=® (Xgmzfa) — P11y
P (Consent;;=0) =pg;j=1 — ® (Xg;ﬁ%—Zfa)

The log-likelihood function is therefore:

n
£(6) :ZConsentinHIV;j log (puij) +Consent;; x (1- HIVij) log (Pouj) +(1- Consentij) log (pOij) (11)
i=1

where 8" (47, ', 4T, ).

Maximization is based on a trust region Newton algorithm and not the usual Newton-
Raphson algorithm, resulting in more stable computation and better convergence properties,
which is valuable because another common criticism of these models is that they can often
fail to converge.

We assess the degree of association between the consent and HIV status equations using a
nonparametric measure of rank (Kendall's Tau, z), which is more appropriate than the
correlation coefficient (o) as the dependence modelled by copulae is typically non-linear. ¢
can be interpreted in the same manner as p in the sense that it ranges between -1 and +1;
therefore if persons who refuse to be tested are more likely to be HIV positive, we would
expect to see a value of 7< 0. The approximate posterior cumulative distribution function FTA
is obtained by simulating a set of random values, {4: r =1, ... ,R}, from the multivariate
normal posterior of §such that:

. 1 &
F (1) :EZH (r—=7(6,))

where H is the Heaviside function (jumping from 0 to 1 at 7). Confidence intervals are
obtained from quantiles of this distribution. Intervals for 7(6) may also be obtained by
bootstrapping. The HIV prevalence estimate is computed as a weighted average of
individual predicted values with survey weights, wij :

Epidemiology. Author manuscript; available in PMC 2016 January 26.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

McGovern et al.

Page 7
A n A n
PHIV=1)= (3" wiP(HIVy=1|Xy)) /3wy

We use a Taylor-series expansion to derive the large-sample variance estimator for the point
estimate of HIV prevalence, which simultaneously acknowledges uncertainty due to cluster
effects and the presence of sampling weights.3°

There are no disadvantages to not specifying the standard normality assumption as we are
using a likelihood based model; hence, asymptotic theory will still hold under the usual
regularity conditions, and we can evaluate model fit using information criteria (for example,
the Akaike Information Criterion [AIC]). However, it is important to understand the relative
performance of the standard Heckman-type model in comparison with the copula approach.
Therefore, we undertake a simulation study in order to determine the conditions under which
the normality assumption performs well, and to assess the extent of bias which arises from
misspecification of the error terms’ distribution.

Simulation Study

Data

We follow the approach implemented in Clark and Houle by generating a dataset based on a
real HIV survey (the 2007 Zambian DHS).2” Therefore, our simulations closely match the
observed consent rates and HIV prevalence in the data used in the empirical part of this
paper. We construct latent variables for consent and HIV status, and allow for interviewer
identity to influence the probability of consent. Then we draw error terms for the latent
variable equations in order to induce a correlation between consent and HIV status (which
we censor for individuals with Consentjj = 0). As we know the true HIV prevalence, we can
evaluate the relative performance of imputation, the standard selection model, and our
copula selection model. By varying the structure of the error terms, we assess the extent to
which the standard selection model is sensitive to the assumption of bivariate normality, and
whether the copula approach can be used to correct for potential bias and inefficiency.

We confirm that the imputation model performs poorly when there is correlation between
consent and HIV status (bias of between 40% and 50%), and that selection models are
appropriate for correcting for this correlation. We find that the performance of the bivariate
normal selection model is related to the strength of the relationship between the selection
variable and consent. This closely parallels the case of instrumental variables, and is
consistent with previous results.?% When the relationship between interviewer identity and
consent is less strong, bias and inefficiency can arise when the model is misspecified. For
example, when normal errors are cubed we find the mean bias of the standard Heckman-type
model is -14%, while the bias in the copula model is less than half this amount, as well as
being more efficient. The distribution of the normal and copula estimators, along with that
for the imputation model, is shown in Figure 2. Further details are presented in the
eAppendix.

We use data from the 2007 Zambian DHS (publically accessible from
www.dhsprogram.com). We adopt the same explanatory variables and specification as used
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in previous research,3 the code for which is freely available online from http:/
hdl.handle.net/1902.1/17657. As outlined in model (1), interviewer identity enters into the
consent equation as a series of dummy variables, one for each interviewer. As some
interviewer fixed effects are collinear with other variables in the model, interviewers with
fewer than 50 interviewees, or those with interviewer effects which are collinear, are
combined into a single category. After combining, there are 29 interviewers for men, and 45
for women. We focus on estimating selection models for persons who refused to consent to
be tested, as opposed to respondents who have missing HIV data due to non-contact, as there
are relatively few of these persons compared with those who refuse. However, the
methodology we propose could be easily applied to respondents who were not contacted.
Table 3 illustrates the composition of the analysis sample for men and women separately.
Excluding non-contacts, of the eligible 6,416 men, 1,318 (21%) declined to take a HIV test;
of the eligible 7,025 women in the survey, 1,400 (20%) declined to take a HIV test. Table 3
also illustrates the HIV prevalence estimate based on the complete case analysis
(respondents with a valid HIV test), which is estimated to be 12% for men and 16% for
women.

All our estimates of HIV prevalence are weighted and take account of the complex survey
design of the DHS.#! Statistical analyses were performed in R version 3.1.1 , using the
SemiParBIVProbit package.*?

Table 4 presents estimates for the rank association between consenting to be tested and HIV
status (Kendall's Tau, z) for each of the nine copula models employed, along with the
corresponding 95% confidence intervals (Cls), which account for clustering at the primary
sampling unit level. A measure of model fit (the AIC) is also presented in the final column
of Table 4. While the AIC is not adjusted for clustering, this limitation is unlikely to affect
the preferred ordering of the models.#3 For men, there is support for the hypothesis of
selection bias, with a negative association for each of the copula models, and the 95% CI for
zexcludes zero in each case. The 7 of -0.53 for the normal model corresponds to a p
(correlation coefficient) of -0.73. On the basis of the AIC, the model with the best fit is the
Cij-

For women, the measure of association between testing and HIV status is also negative,
although the association is less strong than for men, with the 95% Cls in most models
including zero. The zof -0.19 in the normal model corresponds to a p of -0.30. On the basis
of the AIC, the preferred copula specification for women is Cg or Cey, -

Table 5 gives the corresponding HIV prevalence estimates. Point estimates for all copula
models for men are similar, ranging from 19% to 21%, with the preferred model (Cjqgg
copula) indicating a population HIV prevalence of 21% (with a corresponding 95% CI of
16% to 25%). As with men, HIV prevalence estimates for women are not sensitive to the
choice of the copula function, ranging between 18% and 19%. The results for the preferred
copula model (Cg) is 19% (with a 95% CI of 13% to 24%).
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Discussion

Longitudinal evidence has demonstrated that people who do not consent to be tested in HIV
surveys are more likely to be HIV positive than people who do consent to be tested.”-10
Heckman-type selection models can be used to correct for the bias in data that are missing
due to unobserved variables. However, the practical use of these selection models has been
criticized for the strong assumptions required for their implementation.22-2% Our method
provides estimates of HIV prevalence that are corrected for missing data on unobserved
variables, without relying on the assumption of bivariate normality for identification. This
study shows how the credibility of conclusions from selection models can be enhanced by
demonstrating that identification does not rely on a specific functional form for estimation —
here, for the example of estimating HIV prevalence in Zambia. The wider variety of error
distributions we consider provide a more meaningful assessment of the importance of the
bivariate normality assumption than was previously possible using existing methods.

Our results indicate population HIV prevalence for men in the preferred selection model that
is statistically larger than that based on the assumption of missing at random for the data on
respondents who refuse to consent to be tested. The preferred copula model for men, the Joe
90 (Cygp), indicates the presence of asymmetric dependence. This finding highlights the
importance of our contribution of allowing for a large number of parametric structures. The
previous literature relied on a more narrow set of models, which did not include the rotated
Joe, Gumbel or Clayton copulas.33 In addition, we find that the corresponding 95% CI for
the Joe 90 copula estimate is substantially narrower than that obtained from the bivariate
normal model, indicating an efficiency gain from implementing a dependence structure that
may more accurately reflect the true underlying distribution of the data.

In this analysis, imputation models, which require that the strong assumption of data being
missing at random is met, produced results that are almost identical to the complete case
analysis of respondents who have a valid HIV test, which is similar to previous
findings.3644 Given the increasing focus on treatment-as-prevention in HIV research and
policy, it is likely that the HIV surveys will increase in both frequency and coverage in
many settings. Therefore, the issue of non-response bias in such surveys will likely increase
in importance. Moreover, knowledge of HIV status, and therefore the potential for selection
bias that depends on the unobserved variable HIV status is also likely to increase as a result.
The development of approaches to correct for selection on unobserved variables while
relying on as few assumptions as possible, as well as approaches to test the robustness of the
results from such selection models to variation in assumptions, are an important aim. The
use of copula functions in Heckman-type selection models is an important advance toward
this aim. We believe that our approach using several parametric assumptions in the
implementation of Heckman-type selection models makes the use of these models an even
more viable alternative to the other approaches to correct for selection bias, which require
that the strong and untestable assumption that data are missing at random.

Our simulation results indicate that estimates obtained from the standard selection model
that assumes bivariate normality can be biased and inefficient when the structure of the error
term is misspecified. The copula models we propose perform well under a variety of
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different correlational structures, including scenarios with asymmetry. While these
conclusions are valid for the simulation settings considered here, it cannot be determined a
priori whether relaxing the assumption of normality will lead to dramatically different
estimated prevalence, as the error terms are not observed and the true structure is unknown.
It is difficult to simulate the highly complex processes that likely underlie the relationship
between consent to HIV testing and HIV status. However, these results do suggest that there
are a variety of scenarios where an incorrect normality assumption leads to biased results,
and where the copula approach can correct for this bias.

The methodology we outline is easily implemented in standard statistical software (http://
cran.r-project.org/web/packages/SemiParBIVProbit), and we provide the code for all the
analyses discussed in this paper (eAppdendix). Assessing the sensitivity of selection model
results to relaxing the bivariate normality assumption is easily achieved with this approach,
not only in the specific context of HIV prevalence estimation but also in other empirical
applications.

There are a number of avenues for future research. First, the literature on copula model
selection for censored data is underdeveloped. Implementing goodness-of-fit tests is difficult
due to the combination of censoring, the fact that the error terms are unobserved, and the
fact that the outcomes are binary. We have focused here on conventional information
criteria, but goodness-of-fit tests in this context are an important area for development,
which could substantially improve the performance of copula models. Secondly, there are
advantages and disadvantages associated with the copula approach compared with semi-
parametric and nonparametric models. The latter have the advantage of not requiring the
true parametric model to be specified by the researcher. However, while theoretically
possible,26 the intercept is typically not identified in these models, and so this approach is
not suitable for estimating population means based on binary outcomes, such as HIV
prevalence. Semi-parametric approaches that allow for the estimation of the intercept require
additional assumptions and have only been developed for the case of continuous
outcomes.*>46 Additionally, semi-parametric approaches typically generate estimates that
are inefficient relative to fully parameterized models, may not allow diagnostics, are limited
with regards to the inclusion of a large set of covariates, and may be computationally
demanding.#” In contrast, the computational simplicity of the copula approach allows the
practitioner to exploit familiar tools such as maximum likelihood without requiring
simulation methods or numerical integration. Maximum likelihood, in turn, allows for the
simultaneous estimation of all the parameters of the model and, if the usual regularity
conditions are met, ensures consistent, efficient and asymptotically normal estimators.32
Finally, copula modelling allows for direct estimation of the dependence structure in the
sample selection model, while semi-parametric methods do not.#8

Further analysis should focus on establishing the validity of the other main requirement in
sample selection models underlying the estimation of HIV prevalence in the presence of
non-response, namely the existence of a selection variable that does not independently affect
the outcome of interest. While interviewer identity is plausibly a function only of survey
design, and not related to individual-level characteristics, this claim is difficult to prove
conclusively. As a robustness check we included a cluster random effect in our model using
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a two-stage procedure in order to account for potential correlation between interviewer
allocation and the characteristics of the individual's primary sampling unit.34 HIV
prevalence estimates in this analysis were similar, but this approach is inefficient and
resulted in an attenuated relationship between consent and interviewer identity. Therefore,
incorporating random effects directly into these types of selection models is another
important direction for future research. In general, as we never observe the HIV status of
respondents who refuse to be tested, establishing whether estimates based on selection
models can be supported with objective external data, such as alternative selection variables
or mortality records, would help validate this approach.

In sum, we introduce and demonstrate a new approach for relaxing the assumption of
bivariate normality in Heckman-type selection models with binary outcomes using copulas.
Our simulation study illustrates that this methodology can be used to correct for the bias and
inefficiency associated with misspecification of the dependence structure between selection
into the data and the outcome of interest. In empirical work, establishing that selection
model estimates are robust to alternative functional form specifications for the relationship
between selection and the outcome increases the credibility of these estimates.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

[llustration of Modelling Dependence Using Copulae. Observations are drawn from the
corresponding bivariate distributions with n=1,000 and 7= -0.50. See the eAppendix for the
code for drawing from these distributions.
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Figure 2.
Simulation Results for HIV Prevalence Estimates with Non-Normal Errors. This scenario

illustrates the case with cubed normal errors. The distribution of the proportional error of
estimates of HIV prevalence obtained from the normal selection model (Gaussian Copula), a
Copula selection model and an imputation model are shown. The simulation is based on the
2007 Zambia Demographic and Health Survey for men, with n=6,500 and 1,000
replications. For each replication, the proportional error for each estimator is calculated as
mean (HIVmoda — HIVTrue)/HI Ve The copula model is defined as the copula with the
best fit in each replication according to the Akaike Information Criterion (AIC). Errors for
the latent variables for consent and HIV status were drawn from a bivariate normal
distribution with mean = 0 and z=-0.50, cubed, and then scaled to have mean 0. The mean
true HIV prevalence was 21%, observed HIV prevalence (for those with consent=1) was
12%. Consent to be tested was 81%, and the F statistic for interviewer identity was 3.5. The
F statistic is calculated as a joint test of significance for interviewer identity in a regression
of consent on interviewer identity with the inclusion of the model control variables. See the
eAppendix for further details, including the R code for replicating the simulations.
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Table 1

Participation Rates for HIV Testing in Demographic and Health Surveysa

Demographic and Health Surveys

Participation Rates for Men (%)

Participation Rates for Women (%)

Cote d'lvoire 2005
Malawi 2004
Tanzania 2003
Tanzania 2007
Zimbabwe 2005
Lesotho 2004
Liberia 2007
Sierra Leone 2008
Zambia 2007
Cameroon 2004
Ethiopia 2005
Mali 2006

Niger 2006
Senegal 2005
Swaziland 2006
Rwanda 2005
Burkina Faso 2003
Congo 2007
Ghana 2003
Guinea 2005
Kenya 2003
Kenya 2008

Mali 2001
Zambia 2001

76
63
7
80
63
68
81
87
72
90
76
85
84
75
78
96
86
86
80
88
70
79
76
73

79
70
84
90
76
81
88
90
7
92
83
93
91
84
87
97
92
90
89
92
76
86
85
79

aSource: Hogan et al.3 Data are publically avail able from www.dhsprogram.com.
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Table 2

Definition of Copula Functions®

Copula C(F1(y1):Fa(y2); 6)
Normal: C, (DR, D7HFL); 6
Frank: C; —QFi —9F2

o e -, 1
-6 “Inj1+ “o
(e - 1)

Clayton: C, (Fi 0+ Fy0-1)10
Student: C; ot H(Fa), (t72(F); )

Joe: G 1-((1-F)?+ (1 -Fp)/— (1 -F)A1-F)Hve
Gumbel: Cq exp(—((-log(F1)? + (-log(F))H1%

a e . - U . . -
t2v(...; 6) denotes the cumulative distribution function of a standard bivariate Student-t distribution with correlation coefficient #and v degrees of

freedom. t\/_1 denotes the inverse univariate Student-t distribution function with v degrees of freedom.
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Table 3

Summary Statistics for Men and Women (Zambia Demographic and Health Survey 2007)a

HIV Prevalence HIV Test

% (95% ClI) Consented No. (%) Refused No. (%0)
Men 12 (11t 13) 5098 (79) 1318 (21)
Women 16  (15to 17) 5625 (80) 1400 (20)

a . . . . .
HIV prevalence estimates are based on analysis of respondents who have a valid HIV test and are adjusted for survey design. Non-contacts are
excluded. CI = confidence interval.
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