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Abstract

Background—Heckman-type selection models have been used to control HIV prevalence 

estimates for selection bias, when participation in HIV testing and HIV status are correlated after 

controlling for observed variables. These models typically rely on the strong assumption that the 

error terms in the participation and the outcome equations that comprise the model are distributed 

as bivariate normal.

Methods—We introduce a novel approach for relaxing the bivariate normality assumption in 

selection models using non-linear copula functions. We apply this method to estimating HIV 

prevalence and new confidence intervals (CI) in the 2007 Zambian Demographic and Health 

Survey (DHS), using interviewer identity as the selection variable that predicts participation 

(consent to test) but not the outcome (HIV status).

Results—We show in a simulation study that selection models can generate biased results when 

the bivariate normality assumption is violated. In the 2007 Zambia DHS, HIV prevalence 

estimates are similar irrespective of the structure of the association assumed between participation 

and outcome. For men, we estimate a population HIV prevalence of 21% (95% = CI 16% to 25%), 

compared with 12% (11% to 13%) among those who consented to be tested; for women, the 

corresponding figures are 19% (13% to 24%) and 16% (15% to 17%).

Conclusions—Copula approaches to Heckman-type selection models are a useful addition to 

the methodological toolkit of HIV epidemiology, and of epidemiology in general. We develop the 

use of this approach to systematically evaluate the robustness of HIV prevalence estimates based 

on selection models, both empirically and in a simulation study.
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In order to address almost every aspect of the HIV epidemic, from assessing the risk factors 

associated with infection, to planning future resource allocation, to anti-retroviral treatment 

(ART) scale-up, accurate information on HIV prevalence is required.1 Research on HIV/

AIDS often relies on nationally representative surveys,2 but participation rates in these 

surveys can be low. Table 1 shows that participation rates in the HIV surveys that are nested 

within one of the major sources of nationally representative data in low- and middle-income 

countries, the Demographic and Health Surveys (DHS), range from a high of 97% for 

women in Rwanda in 2005, to a low of 63% for men in Malawi in 2004 and Zimbabwe in 

2005.3

There are many potential reasons for low participation rates in HIV surveys (including 

concerns about the confidentiality of results, lack of incentive to participate, and survey 

fatigue1,4, and non-participation can arise at different stages of HIV survey administration.5 

In this paper, we focus on refusal to be tested for HIV, which is typically the most important 

cause of missing data in HIV surveys.6 In longitudinal studies, it has been shown that 

respondents who are HIV-positive are less likely to consent to be tested for HIV than HIV-

negative individuals.7–10 In Malawi, 46% of women and 39% of men who declined to be 

tested did so because of prior HIV testing, knowledge of HIV status, or fear of positive 

results.11 Such reasons for declining to participate in an HIV survey have implications for 

the calculation of HIV prevalence. Neither complete case analysis (limiting the analysis only 

to people who consent to be tested for HIV) nor standard approaches to account for missing 

values generate unbiased estimates in the presence of selection on unobserved variables.12,13 

A potentially important situation leading to selection into survey participation based on 

unobserved variables occurs if HIV status itself predicts consent to be tested for HIV. This 

scenario is likely if people know that they are HIV-positive and fear that others will learn 

about their positive HIV status if they participate in a survey. It is also likely if people 

suspect that they are HIV positive (for instance, based on evaluation of past sexual 

behavior), if this suspicion predicts true HIV status, if they fear confirmation of this 

suspicion, or they fear that others might learn about their positive status. In these cases, 

standard approaches to correct HIV prevalence estimates for missing values (such as single 

imputation, multiple imputation, inverse probability weighting or propensity score 

reweighting) will be biased because they can only account for selection on observed factors, 

but HIV status is unobserved among those who refused to be tested. Another consequence of 

high refusal rates is that the uncertainty associated with estimating HIV prevalence can 

increase substantially, leading to wide confidence intervals.3

More generally, missing data is a common problem in epidemiologic studies, and the 

mechanisms through which this occurs can have an important impact on resulting estimates. 

Heckman-type selection models can provide asymptotically unbiased estimates of the 

parameters of interest, even when missing data are systematically related to unobserved 

characteristics of the individual.14,15 These models will thus be useful whenever researchers 

cannot be certain that the assumption that is required for the standard approaches to generate 

unbiased results holds – i.e., that data are missing at random after selection on observed 

variables has been taken into account. However, in practice the use of Heckman-type 

selection models is limited by one requirement and one statistical assumption.
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Heckman-type selection models require the existence of a selection variable that predicts 

participation in a survey but not the outcome of interest, other than through the effect on 

participation. Elements of survey design and implementation are often documented in 

datasets in epidemiology.16 Characteristics of these elements are often likely to determine 

survey participation, and are thus potential candidates for selection variables if they are also 

plausibly uncorrelated with the characteristics of the individuals who are potential 

participants in a survey.17 In HIV surveys, interviewer identity generally predicts consent to 

be tested, but it is unlikely that it also predicts HIV status. Previous research that has used 

interviewer identify as a selection variable in Heckman-type selection models has found 

evidence for selection on unobserved variables in several HIV surveys.3,18–21

The key statistical assumption that the standard Heckman-type selection models need to 

meet is that the relationship between consenting to be tested for HIV and HIV status follows 

a bivariate normal distribution after other covariates have been taken into account, i.e., that 

the error terms of the two equations in Heckman-type selection models are distributed as 

bivariate normal. While this assumption is convenient and tractable, it is a potentially 

serious limitation.22–25 If this assumption is met, then the estimates obtained using the 

conventional bivariate probit Heckman-type selection model are consistent and 

asymptotically efficient. However, if the true distribution of the error terms is not bivariate 

normal, then the estimates are likely to be both inconsistent and inefficient.26 Simulation 

studies have indicated that HIV prevalence estimates from selection models may indeed be 

sensitive to violations of this assumption.27

The robustness of results obtained from surveys involving missing data is particularly 

important.23 The implementation of selection models can be viewed as a sensitivity analysis 

to adjust for potential bias using alternative sets of assumptions about the underlying 

mechanisms causing data to be missing. If it can be demonstrated that the results obtained in 

selection models are invariant to a variety of alternative assumptions regarding the 

mechanisms leading to missing data, our belief that the conclusions are not just a function of 

the model imposed by the researcher will be substantially strengthened. The lack of methods 

for evaluating the robustness of Heckman selection models is likely an impediment to wider 

use of this approach.

The aim of this paper is to develop and illustrate a means of determining the sensitivity of 

results from selection models to alternative ways of characterizing the functional form of the 

association between the participation equation (in this case, consent to be tested for HIV) 

and the outcome equation (in this case, HIV status). Copulae have been previously applied 

to recursive models involving a treatment that is affected by unobserved variables (such as 

health as function of medical care utilization28–31) and in censored models with continuous 

outcomes.32 The main contribution of this paper is the application of copulae to binary 

outcomes with missing data. In addition, we use a variety of copulae (including the rotated 

Clayton, Joe, and Gumbel), allowing for large flexibility in modelling dependence. This 

flexibility is a key characteristic of our approach, because it allows us to capture a much 

wider set of possible dependence structures than those used in the previous literature.33 With 

this method, and the number of alternative parametric specifications, we are therefore able to 

be more confident in assessing the robustness of results based on the standard Heckman-type 

McGovern et al. Page 3

Epidemiology. Author manuscript; available in PMC 2016 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



selection models. For example, whereas previous implementations of the copula approach 

have generally focused on distributions that are similar to the bivariate normal (such as the 

Frank or Clayton31), we are able to consider asymmetric dependence. In addition to 

potential bias arising from misspecification of the error distribution, by potentially providing 

a more accurate representation of the underlying data structure, the copula approach may 

also provide more efficient estimates, allowing us to make better inferences. This approach 

with asymmetric copulae has not been previously implemented in the sample selection 

literature.

In what follows, we introduce and demonstrate our methodology for relaxing the assumption 

of bivariate normality in Heckman-type selection models that allow for non-linear 

association between participation and the outcome of interest. Although, in theory, semi-

parametric or nonparametric approaches would not require any distributional assumptions, 

their application to estimating the intercept in sample selection models with binary data and 

a high degree of missing data is limited due to their inefficiency and computational 

feasibility. While the copula method does require parametric specification, our approach 

makes many distributional functional forms available, therefore making copulae a viable 

practical alternative to imposing bivariate normality. We illustrate the consequences of 

violating the normality assumption in a simulation study, and show that copulae can provide 

an effective and practical means of adjusting for this bias and inefficiency. Finally, we 

evaluate the robustness of estimates of HIV prevalence in Zambia. We provide the relevant 

code in order to make this approach easily accessible to researchers working with surveys 

containing missing data eAppendix.

Methods

Statistical Approach

We begin by modelling consent to be tested for HIV and HIV status simultaneously, an 

approach based on the adaptation of the original Heckman selection model estimator for 

binary outcomes.14,34,35

Consent to be tested is given by:

(1)

(2)

The observed consent for person i with interviewer j, Consentij, is a dummy variable 

indicating acceptance of being tested, and is a function of a latent variable  , 

which reflects the respondent's propensity to be tested. Xij is a p × 1 vector representing 

observed individual level characteristics with associated parameter vector β, Zi is a k × 1 

vector of dummy variables representing interviewer identity with associated parameter 

vector α, and uij is a random error term. Although, in theory, identification can be achieved 

using the same set of regressors in both the participation equation and the outcome equation, 

in practice empirical identification in selection models requires at least one variable, the 

McGovern et al. Page 4

Epidemiology. Author manuscript; available in PMC 2016 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



selection variable, to be present in the participation equation but not the outcome 

equation.32,36 In this case, interviewer identity predicts consent to be tested but does not to 

enter into the HIV equation directly.

The equation for the HIV status HIVij of individual with i interviewer j is:

(3)

(4)

(5)

where γ is a parameter vector and εij is a random error term. The structural assumption used 

in previous studies to estimate HIV prevalence is that the error terms in both equations (uij, 

εij) are independent and identically distributed (i.i.d.) as bivariate normal, with means equal 

to zero, constant variances equal to one, and covariance (correlation coefficient)ρ. That is, 

the joint distribution of uij, εij is given by F(uij, εij) = Φ2uij, εij;ρ) , where Φ2 is the 

standardized bivariate normal cumulative distribution function (cdf). This model can be 

fitted using classic maximum likelihood. The standard selection model that relies on joint 

normality is equivalent to specifying the Gaussian copula in our framework; therefore we 

use this model as the baseline for our comparisons.

In order to allow for non-linear association between the consent and HIV status equations, 

we model the dependency of the error terms in the two equations using copulae. Broadly 

speaking, these are functions that connect multivariate distributions to their one dimensional 

margins, such that if F is a two-dimensional cdf with one-dimensional margins (F1(y1), 

F2(y2)), then there exists a two-dimensional copula C such that F(y1, y2) = C (F1(y1), F2(y2); 

θ), where y1 and y2 are two random variables, and θ is an association parameter measuring 

the dependence between the two marginals.37 If HIV-positive persons are refusing to be 

tested on the basis of knowledge of their HIV status,7–10 we would expect a value of ρ < 0. 

When we estimate the model for Zambia using symmetric copulae (Gaussian, Frank, 

Student-t) that do not impose a sign on the relationship between consent and HIV status, the 

dependence is estimated to be negative in the data, and when we implemented asymmetric 

copulae that specify positive associations (Clayton 0 and 180, Joe 0 and 180, Gumbel 0 and 

180), we found that the models did not converge. Therefore, we focus on those copulae that 

allow for negative association. However, in other contexts there could just as easily be a 

positive relationship, when this method is equally applicable. The models we consider are 

therefore: Gaussian (Cg), equivalent to the standard bivariate normal probit model; Frank 

(Cf); 90 and 270 degrees rotated Clayton (Cc90, Cc270); 90 and 270 degrees rotated Joe 

(CJ90, CJ270); 90 and 270 degrees rotated Gumbel (CG90, CG270); and Student-t (Ct). These 

copulae are reported in Table 2 and illustrated in Figure 1. While the Gaussian, Frank and 

Student-t copulae are symmetric, the rotated Clayton, Joe and Gumbel copulae allow for 

stronger negative dependence in the tails of the distribution. The 90- and 270-degrees 

rotated versions can be obtained using the following equations38:
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These forms of dependence are particularly applicable in the context of HIV prevalence 

estimation, as we might expect respondents with a strong negative score on the latent test 

variable to be of particularly high risk of being HIV-positive.

In the sample selection context, the data identify the three possible events (Consentij = 1, 

HIVij = 1), (Consentij = 1, HIVij = 0) and (Consentij = 0), with probabilities:

The log-likelihood function is therefore:

(11)

where δT (βT, αT, γT, θ).

Maximization is based on a trust region Newton algorithm and not the usual Newton-

Raphson algorithm, resulting in more stable computation and better convergence properties, 

which is valuable because another common criticism of these models is that they can often 

fail to converge.

We assess the degree of association between the consent and HIV status equations using a 

nonparametric measure of rank (Kendall's Tau, τ), which is more appropriate than the 

correlation coefficient (ρ) as the dependence modelled by copulae is typically non-linear. τ 

can be interpreted in the same manner as ρ in the sense that it ranges between -1 and +1; 

therefore if persons who refuse to be tested are more likely to be HIV positive, we would 

expect to see a value of τ < 0. The approximate posterior cumulative distribution function F̂
τ 

is obtained by simulating a set of random values, {θr: r = 1, ... ,R}, from the multivariate 

normal posterior of δ such that:

where H is the Heaviside function (jumping from 0 to 1 at τ). Confidence intervals are 

obtained from quantiles of this distribution. Intervals for τ(θ) may also be obtained by 

bootstrapping. The HIV prevalence estimate is computed as a weighted average of 

individual predicted values with survey weights, wij :
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We use a Taylor-series expansion to derive the large-sample variance estimator for the point 

estimate of HIV prevalence, which simultaneously acknowledges uncertainty due to cluster 

effects and the presence of sampling weights.39

There are no disadvantages to not specifying the standard normality assumption as we are 

using a likelihood based model; hence, asymptotic theory will still hold under the usual 

regularity conditions, and we can evaluate model fit using information criteria (for example, 

the Akaike Information Criterion [AIC]). However, it is important to understand the relative 

performance of the standard Heckman-type model in comparison with the copula approach. 

Therefore, we undertake a simulation study in order to determine the conditions under which 

the normality assumption performs well, and to assess the extent of bias which arises from 

misspecification of the error terms’ distribution.

Simulation Study

We follow the approach implemented in Clark and Houle by generating a dataset based on a 

real HIV survey (the 2007 Zambian DHS).27 Therefore, our simulations closely match the 

observed consent rates and HIV prevalence in the data used in the empirical part of this 

paper. We construct latent variables for consent and HIV status, and allow for interviewer 

identity to influence the probability of consent. Then we draw error terms for the latent 

variable equations in order to induce a correlation between consent and HIV status (which 

we censor for individuals with Consentij = 0). As we know the true HIV prevalence, we can 

evaluate the relative performance of imputation, the standard selection model, and our 

copula selection model. By varying the structure of the error terms, we assess the extent to 

which the standard selection model is sensitive to the assumption of bivariate normality, and 

whether the copula approach can be used to correct for potential bias and inefficiency.

We confirm that the imputation model performs poorly when there is correlation between 

consent and HIV status (bias of between 40% and 50%), and that selection models are 

appropriate for correcting for this correlation. We find that the performance of the bivariate 

normal selection model is related to the strength of the relationship between the selection 

variable and consent. This closely parallels the case of instrumental variables, and is 

consistent with previous results.40 When the relationship between interviewer identity and 

consent is less strong, bias and inefficiency can arise when the model is misspecified. For 

example, when normal errors are cubed we find the mean bias of the standard Heckman-type 

model is -14%, while the bias in the copula model is less than half this amount, as well as 

being more efficient. The distribution of the normal and copula estimators, along with that 

for the imputation model, is shown in Figure 2. Further details are presented in the 

eAppendix.

Data

We use data from the 2007 Zambian DHS (publically accessible from 

www.dhsprogram.com). We adopt the same explanatory variables and specification as used 
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in previous research,3 the code for which is freely available online from http://

hdl.handle.net/1902.1/17657. As outlined in model (1), interviewer identity enters into the 

consent equation as a series of dummy variables, one for each interviewer. As some 

interviewer fixed effects are collinear with other variables in the model, interviewers with 

fewer than 50 interviewees, or those with interviewer effects which are collinear, are 

combined into a single category. After combining, there are 29 interviewers for men, and 45 

for women. We focus on estimating selection models for persons who refused to consent to 

be tested, as opposed to respondents who have missing HIV data due to non-contact, as there 

are relatively few of these persons compared with those who refuse. However, the 

methodology we propose could be easily applied to respondents who were not contacted. 

Table 3 illustrates the composition of the analysis sample for men and women separately. 

Excluding non-contacts, of the eligible 6,416 men, 1,318 (21%) declined to take a HIV test; 

of the eligible 7,025 women in the survey, 1,400 (20%) declined to take a HIV test. Table 3 

also illustrates the HIV prevalence estimate based on the complete case analysis 

(respondents with a valid HIV test), which is estimated to be 12% for men and 16% for 

women.

All our estimates of HIV prevalence are weighted and take account of the complex survey 

design of the DHS.41 Statistical analyses were performed in R version 3.1.1 , using the 

SemiParBIVProbit package.42

Results

Table 4 presents estimates for the rank association between consenting to be tested and HIV 

status (Kendall's Tau, τ) for each of the nine copula models employed, along with the 

corresponding 95% confidence intervals (CIs), which account for clustering at the primary 

sampling unit level. A measure of model fit (the AIC) is also presented in the final column 

of Table 4. While the AIC is not adjusted for clustering, this limitation is unlikely to affect 

the preferred ordering of the models.43 For men, there is support for the hypothesis of 

selection bias, with a negative association for each of the copula models, and the 95% CI for 

τ excludes zero in each case. The τ of -0.53 for the normal model corresponds to a ρ 

(correlation coefficient) of -0.73. On the basis of the AIC, the model with the best fit is the 

Cij.

For women, the measure of association between testing and HIV status is also negative, 

although the association is less strong than for men, with the 95% CIs in most models 

including zero. The τ of -0.19 in the normal model corresponds to a ρ of -0.30. On the basis 

of the AIC, the preferred copula specification for women is Cg or Cc270 .

Table 5 gives the corresponding HIV prevalence estimates. Point estimates for all copula 

models for men are similar, ranging from 19% to 21%, with the preferred model (CJ90 

copula) indicating a population HIV prevalence of 21% (with a corresponding 95% CI of 

16% to 25%). As with men, HIV prevalence estimates for women are not sensitive to the 

choice of the copula function, ranging between 18% and 19%. The results for the preferred 

copula model (Cg) is 19% (with a 95% CI of 13% to 24%).
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Discussion

Longitudinal evidence has demonstrated that people who do not consent to be tested in HIV 

surveys are more likely to be HIV positive than people who do consent to be tested.7–10 

Heckman-type selection models can be used to correct for the bias in data that are missing 

due to unobserved variables. However, the practical use of these selection models has been 

criticized for the strong assumptions required for their implementation.22–25 Our method 

provides estimates of HIV prevalence that are corrected for missing data on unobserved 

variables, without relying on the assumption of bivariate normality for identification. This 

study shows how the credibility of conclusions from selection models can be enhanced by 

demonstrating that identification does not rely on a specific functional form for estimation – 

here, for the example of estimating HIV prevalence in Zambia. The wider variety of error 

distributions we consider provide a more meaningful assessment of the importance of the 

bivariate normality assumption than was previously possible using existing methods.

Our results indicate population HIV prevalence for men in the preferred selection model that 

is statistically larger than that based on the assumption of missing at random for the data on 

respondents who refuse to consent to be tested. The preferred copula model for men, the Joe 

90 (CJ90), indicates the presence of asymmetric dependence. This finding highlights the 

importance of our contribution of allowing for a large number of parametric structures. The 

previous literature relied on a more narrow set of models, which did not include the rotated 

Joe, Gumbel or Clayton copulas.33 In addition, we find that the corresponding 95% CI for 

the Joe 90 copula estimate is substantially narrower than that obtained from the bivariate 

normal model, indicating an efficiency gain from implementing a dependence structure that 

may more accurately reflect the true underlying distribution of the data.

In this analysis, imputation models, which require that the strong assumption of data being 

missing at random is met, produced results that are almost identical to the complete case 

analysis of respondents who have a valid HIV test, which is similar to previous 

findings.3,6,44 Given the increasing focus on treatment-as-prevention in HIV research and 

policy, it is likely that the HIV surveys will increase in both frequency and coverage in 

many settings. Therefore, the issue of non-response bias in such surveys will likely increase 

in importance. Moreover, knowledge of HIV status, and therefore the potential for selection 

bias that depends on the unobserved variable HIV status is also likely to increase as a result. 

The development of approaches to correct for selection on unobserved variables while 

relying on as few assumptions as possible, as well as approaches to test the robustness of the 

results from such selection models to variation in assumptions, are an important aim. The 

use of copula functions in Heckman-type selection models is an important advance toward 

this aim. We believe that our approach using several parametric assumptions in the 

implementation of Heckman-type selection models makes the use of these models an even 

more viable alternative to the other approaches to correct for selection bias, which require 

that the strong and untestable assumption that data are missing at random.

Our simulation results indicate that estimates obtained from the standard selection model 

that assumes bivariate normality can be biased and inefficient when the structure of the error 

term is misspecified. The copula models we propose perform well under a variety of 
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different correlational structures, including scenarios with asymmetry. While these 

conclusions are valid for the simulation settings considered here, it cannot be determined a 

priori whether relaxing the assumption of normality will lead to dramatically different 

estimated prevalence, as the error terms are not observed and the true structure is unknown. 

It is difficult to simulate the highly complex processes that likely underlie the relationship 

between consent to HIV testing and HIV status. However, these results do suggest that there 

are a variety of scenarios where an incorrect normality assumption leads to biased results, 

and where the copula approach can correct for this bias.

The methodology we outline is easily implemented in standard statistical software (http://

cran.r-project.org/web/packages/SemiParBIVProbit), and we provide the code for all the 

analyses discussed in this paper (eAppdendix). Assessing the sensitivity of selection model 

results to relaxing the bivariate normality assumption is easily achieved with this approach, 

not only in the specific context of HIV prevalence estimation but also in other empirical 

applications.

There are a number of avenues for future research. First, the literature on copula model 

selection for censored data is underdeveloped. Implementing goodness-of-fit tests is difficult 

due to the combination of censoring, the fact that the error terms are unobserved, and the 

fact that the outcomes are binary. We have focused here on conventional information 

criteria, but goodness-of-fit tests in this context are an important area for development, 

which could substantially improve the performance of copula models. Secondly, there are 

advantages and disadvantages associated with the copula approach compared with semi-

parametric and nonparametric models. The latter have the advantage of not requiring the 

true parametric model to be specified by the researcher. However, while theoretically 

possible,26 the intercept is typically not identified in these models, and so this approach is 

not suitable for estimating population means based on binary outcomes, such as HIV 

prevalence. Semi-parametric approaches that allow for the estimation of the intercept require 

additional assumptions and have only been developed for the case of continuous 

outcomes.45,46 Additionally, semi-parametric approaches typically generate estimates that 

are inefficient relative to fully parameterized models, may not allow diagnostics, are limited 

with regards to the inclusion of a large set of covariates, and may be computationally 

demanding.47 In contrast, the computational simplicity of the copula approach allows the 

practitioner to exploit familiar tools such as maximum likelihood without requiring 

simulation methods or numerical integration. Maximum likelihood, in turn, allows for the 

simultaneous estimation of all the parameters of the model and, if the usual regularity 

conditions are met, ensures consistent, efficient and asymptotically normal estimators.32 

Finally, copula modelling allows for direct estimation of the dependence structure in the 

sample selection model, while semi-parametric methods do not.48

Further analysis should focus on establishing the validity of the other main requirement in 

sample selection models underlying the estimation of HIV prevalence in the presence of 

non-response, namely the existence of a selection variable that does not independently affect 

the outcome of interest. While interviewer identity is plausibly a function only of survey 

design, and not related to individual-level characteristics, this claim is difficult to prove 

conclusively. As a robustness check we included a cluster random effect in our model using 
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a two-stage procedure in order to account for potential correlation between interviewer 

allocation and the characteristics of the individual's primary sampling unit.34 HIV 

prevalence estimates in this analysis were similar, but this approach is inefficient and 

resulted in an attenuated relationship between consent and interviewer identity. Therefore, 

incorporating random effects directly into these types of selection models is another 

important direction for future research. In general, as we never observe the HIV status of 

respondents who refuse to be tested, establishing whether estimates based on selection 

models can be supported with objective external data, such as alternative selection variables 

or mortality records, would help validate this approach.

In sum, we introduce and demonstrate a new approach for relaxing the assumption of 

bivariate normality in Heckman-type selection models with binary outcomes using copulas. 

Our simulation study illustrates that this methodology can be used to correct for the bias and 

inefficiency associated with misspecification of the dependence structure between selection 

into the data and the outcome of interest. In empirical work, establishing that selection 

model estimates are robust to alternative functional form specifications for the relationship 

between selection and the outcome increases the credibility of these estimates.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of Modelling Dependence Using Copulae. Observations are drawn from the 

corresponding bivariate distributions with n=1,000 and τ = −0.50. See the eAppendix for the 

code for drawing from these distributions.
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Figure 2. 
Simulation Results for HIV Prevalence Estimates with Non-Normal Errors. This scenario 

illustrates the case with cubed normal errors. The distribution of the proportional error of 

estimates of HIV prevalence obtained from the normal selection model (Gaussian Copula), a 

Copula selection model and an imputation model are shown. The simulation is based on the 

2007 Zambia Demographic and Health Survey for men, with n=6,500 and 1,000 

replications. For each replication, the proportional error for each estimator is calculated as 

mean (HIVModel − HIVTrue)/HIVTrue. The copula model is defined as the copula with the 

best fit in each replication according to the Akaike Information Criterion (AIC). Errors for 

the latent variables for consent and HIV status were drawn from a bivariate normal 

distribution with mean = 0 and τ = -0.50, cubed, and then scaled to have mean 0. The mean 

true HIV prevalence was 21%, observed HIV prevalence (for those with consent=1) was 

12%. Consent to be tested was 81%, and the F statistic for interviewer identity was 3.5. The 

F statistic is calculated as a joint test of significance for interviewer identity in a regression 

of consent on interviewer identity with the inclusion of the model control variables. See the 

eAppendix for further details, including the R code for replicating the simulations.

McGovern et al. Page 15

Epidemiology. Author manuscript; available in PMC 2016 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

McGovern et al. Page 16

Table 1

Participation Rates for HIV Testing in Demographic and Health Surveys
a

Demographic and Health Surveys Participation Rates for Men (%) Participation Rates for Women (%)

Cote d'lvoire 2005 76 79

Malawi 2004 63 70

Tanzania 2003 77 84

Tanzania 2007 80 90

Zimbabwe 2005 63 76

Lesotho 2004 68 81

Liberia 2007 81 88

Sierra Leone 2008 87 90

Zambia 2007 72 77

Cameroon 2004 90 92

Ethiopia 2005 76 83

Mali 2006 85 93

Niger 2006 84 91

Senegal 2005 75 84

Swaziland 2006 78 87

Rwanda 2005 96 97

Burkina Faso 2003 86 92

Congo 2007 86 90

Ghana 2003 80 89

Guinea 2005 88 92

Kenya 2003 70 76

Kenya 2008 79 86

Mali 2001 76 85

Zambia 2001 73 79

a
Source: Hogan et al.3 Data are publically avail able from www.dhsprogram.com.
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Table 2

Definition of Copula Functions
a

Copula C(F1(y1),F2(y2); θ)

Normal: Cn Φ2(Φ–1(F1), Φ–1(F2); θ)

Frank: Cf

− θ −1ln(1 +
(e

−θFi−1)(e
−θF2−1)

(e −θ − 1) )
Clayton: Cc (F1

–θ + F2
–θ – 1)–1/θ

Student: Ct t2v(tv–1(F1), (tv–1(F2); θ)

Joe: Cj 1 – ((1 – F1)θ + (1 – F2)θ – (1 – F1)θ](1 – F2)θ)1/θ

Gumbel: Cg exp(–((–log(F1))θ + (–log(F2))θ)1/θ)

a
t2v(.,.; θ) denotes the cumulative distribution function of a standard bivariate Student-t distribution with correlation coefficient θ and v degrees of 

freedom. tv–1 denotes the inverse univariate Student-t distribution function with v degrees of freedom.
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Table 3

Summary Statistics for Men and Women (Zambia Demographic and Health Survey 2007)
a

HIV Prevalence HIV Test

% (95% CI) Consented No. (%) Refused No. (%)

Men 12 (11 to 13) 5098 (79) 1318 (21)

Women 16 (15 to 17) 5625 (80) 1400 (20)

a
HIV prevalence estimates are based on analysis of respondents who have a valid HIV test and are adjusted for survey design. Non-contacts are 

excluded. CI = confidence interval.
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