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Abstract

Osteosarcoma (OS) is a devastating illness with rapid rates of dissemination and a poor overall prognosis, despite

aggressive standard-of-care surgical techniques and combination chemotherapy regimens. Identifying the molecular

mechanisms involved in disease pathogenesis and progression may offer insight into new therapeutic targets.

Defects in mesenchymal stem cell differentiation, abnormal expression of oncogenes and tumor suppressors, and

dysregulation within various important signaling pathways have all been implicated in development of various dis-

ease phenotypes. As such, a variety of basic science and translational studies have shown promise in identifying

novel markers and modulators of these disease-specific aberrancies. Born out of these and similar investigations,

a variety of emerging therapies are now undergoing various phases of OS clinical testing. They broadly include

angiogenesis inhibitors, drugs that act on the bone microenvironment, receptor tyrosine kinase inhibitors, immune

system modulators, and other radio- or chemo-sensitizing agents. As new forms of drug delivery are being devel-

oped simultaneously, the possibility of targeting tumors locally while minimizing systemic toxicityis is seemingly

more achievable now than ever. In this review, we not only summarize our current understanding of OS disease

processes, but also shed light on the multitude of potential therapeutic strategies the scientific community can

use to make long-term improvements in patient prognosis.
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Introduction

Osteogenic sarcoma (osteosarcoma, OS) is the most

common primary malignancy of bone in children, with

a distinct correlation between periods of rapid bone

growth and development of disease
[1-2]

. More com-

monly affecting males, primary tumors often arise in

the metaphyses of long bones such as the femur or

tibia
[1,3-4]

. OS disseminates rapidly throughout the body,

with 20% of patients noted to have secondary involve-

ment at the time of diagnosis; 90% of such metastases

are found in the lungs
[5-7]

. Though treatment approaches

can vary considerably, the standard of care generally

involves wide surgical resection with either neoadjuvant
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or adjuvant chemotherapy regimen
[8]
. With one of the

lowest survival rates among pediatric cancers, OS

imparts a 5-year survivorship of 70% in patients treated

for localized disease, but only 30% when metastases are

present
[6,9]

. Therefore, there is a critical need to better

understand the underlying mechanisms of disease devel-

opment and progression. This review seeks to provide a

concise and useful synthesis of findings from recent,

promising research efforts into these topics so as to

encourage future investigations aimed at improving

OS therapy and patient outcomes.

Molecular basis of OS and potential

targets for therapy

Defects in osteogenic differentiation leading

to OS development

OS commonly develops during the pubertal growth

spurt, when bone turnover is high and defects in differ-

entiation and signaling have the potential to be ampli-

fied
[10-11]

. Osteoblasts arise from mesenchymal stem

cells (MSCs), undifferentiated bone marrow stromal

cells with the potential to self-renew and proliferate

into bone, muscle, tendon, and fat
[12-13]

. Milieus of

endogenous and exogenous factors are involved in

driving the osteogenic pathway from MSC to osteo-

blast. Dysregulation of these markers, or new exposure

to non-native stimuli (e.g. pro-tumor inflammatory

cytokines), causes an imbalance between cellular dif-

ferentiation and proliferation, ultimately contributing

to a malignant phenotype
[14-16]

.

There are thought to be various similarities between

early osteoprogenitors and OS cells, including a highly

proliferative nature, resistance to apoptosis, and similar

expression profiles of genes such as alkaline phosphatase

(ALP) and connective tissue growth factor (CTGF)
[17-18]

.

Furthermore, it is widely held that the earlier these

defects occur in the osteoblastic lineage, the more undif-

ferentiated or aggressive the cancer cells
[15,19-20]

.

Accordingly, more invasive OS cells are noted to have

minimal expression of osteocalcin (OCN) and osteopon-

tin (OPN), both of which are observed at higher levels in

mature osteoblasts
[21-23]

. Another notable difference

between late osteoprogenitors and OS tumor cells is

the ability of the latter to evade senescence through an

alternative lengthening of telomere (ALT) pathway
[24]
.

Unlike more terminally differentiated osteoblasts with

shortened telomeres resulting from many replication

cycles, ALT allows OS cells to remain in a stem cell-like

state and responsive to exogenous stimuli
[25]
.

Bone morphogenetic proteins (BMPs) represent one

such group of factors involved in OS stimulation
[15]
.

Normally involved in carrying MSCs along an osteo-

genic lineage, BMPs are not only unable to induce dif-

ferentiation of OS cells but may actually promote a

more aggressive phenotype
[26-27]

. This is due to an

intrinsic underexpression of Runx2, a transcription

factor which usually serves as a master regulator of

BMP activity by causing exit from the cell cycle and

promoting terminal differentiation
[15,28]

. However,

RUNX2 overexpression is also correlated with poor

prognosis of OS tumors, indicating that its expression

is likely tightly controlled in normal osteogenesis
[29]
.

Select BMPs additionally exert effects through the

Wnt glycoprotein pathway, a signaling network that

has been extensively implicated in suppressing osteo-

blastic differentiation
[30-33]

. Aberrant signaling by Wnt

can also result in increased cell proliferation and migra-

tion through both the canonical b-catenin and non-

canonical pathways
[34-35]

. Accordingly, many research

efforts have shown promise for OS therapy through

inhibition of Wnt and downstream proto-oncogenes
[36-

38]
. However, similar to Runx2, it appears that normal

Wnt signaling is also finely tuned, with other studies

demonstrating a correlation between decreased path-

way activity and hypoxic chemoresistance in OS
[39]
.

Beyond understanding the roles of BMPs, Runx2,

and Wnt, researchers have identified additional pro-

teins of interest that may promote differentiation of

OS cells, thereby inhibiting proliferation and increas-

ing susceptibility to apoptosis. These include super

proteins of the nuclear receptor family, such as

PPARc, retinoids, and estrogens
[20,40-44]

. 1,25-dihy-

droxyvitamin D3 [1,25(OH)2D3], another nuclear

receptor agonist, has shown promise by increasing

expression levels of p21, a pro-apoptotic cell cycle

regulator which drives osteogenic differentiation and

senescence
[45-48]

. Finally, parathyroid hormone-related

peptide appears to promote differentiation of OS cells,

observed through upregulation of osteoprogenitor mar-

kers ALP and collagen type I
[49]
. Ultimately, it appears

that loss of differentiation plays a critical role in osteo-

sarcoma genesis, but numerous molecular targets

involved in the osteoblastic lineage may offer signifi-

cant promise in developing new treatments.

Abnormal expression of oncogenes and

tumor suppressors

As observed in most cancers, abnormal activity of

oncogenes and tumor suppressors is a key molecular

underpinning of osteosarcoma
[50]
. c-Myc, perhaps one

of the most researched and well-understood oncogenes

in OS pathogenesis, is overexpressed in over 10%

of tumors and is correlated with increased tumor
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recurrence. Specifically, it increases invasiveness of

cells through activation of the MEK-ERK pathway

and decreases apoptotic potential
[51-52]

. Recent studies

have shown that inhibition of c-Myc activity results

in decreased proliferation, invasion, and viability of

OS cells, demonstrating its considerable value as a

therapeutic target
[53-56]

. Similar to c-Myc, c-Fos is

another oncogene that correlates with a higher rate of

metastasis when upregulated in a primary tumor
[57]

.

Sorafenib, a kinase inhibitor commonly used in treat-

ment of hepatocellular and renal cell carcinomas,

causes a favorable response in OS cells by downregu-

lating c-Fos and S100A4, another oncogene implicated

in regulating the cell cycle, decreasing apoptosis, and

inhibiting osteogenic differentiation of OS cells
[58-59]

.

MDM2, a protein that marks the tumor suppressor

p53 (see below) for degradation, is amplified in at least

1 out of 10 patients
[60,61]

. Furthermore, higher co-expres-

sion levels of MDM2 and CDK4, which promotes cell

cycle progression, can be used reliably to distinguish

low-grade OS from benign masses and correlates with

further dedifferentiation into high-grade lesions
[62-64]

.

The transcription factor MEF2D is overexpressed in

clinical specimens from OS patients with poor prog-

noses, and silencing the protein using a miRNA sup-

presses cell proliferation by triggering G2-M cell

cycle arrest
[65]
. AURKA (coding for Aurora-A kinase)

is an oncogene and an important regulator of mitosis

that has undergone much recent investigation
[66]

.

AURKA silencers and inhibitors of Aurora-A kinase

have shown promising results in OS by not only caus-

ing hyperploidy and apoptosis, but also by working

synergistically with traditional chemotherapeutics in

cell lines that have become resistant to single-drug

treatment
[67-68]

. Indicating the true complexity of OS

molecular biology, additional oncogenes have also

been recently attributed to disease progression, includ-

ing those that code for p21-activated kinase 7 (PAK7),

E2F transcription factor 2 (E2F2), special AT-rich

sequence-binding protein-1 (SATB1), and several

microRNAs such as 301a
[69-72]

. These proteins are of

high interest to researchers as potential targets for ther-

apy in the future.

Deficient tumor suppressor activity appears to play

an equally important role as dysregulation of onco-

genes in OS pathogenesis. Rb, a regulator of the G1/

S cell cycle transition, is found to be insufficient in

about 70% of all sporadic cases of OS, not to mention

the nearly 1000-fold increased risk for developing OS

in individuals who inherit an inactivated copy of the

gene
[73-75]

. Similarly, mutations in tumor suppressor

p53 are commonly found in OS cells and contribute

to disease progression by permitting cells with

damaged DNA repair mechanisms to evade check-

points and apoptosis
[74,76-77]

. In fact, patients with type

2 neurofibromatosis actually have a higher incidence

of OS due to increased activity of MDM2 and destabi-

lization of p53
[78]
. Finally, p16

INK4A
is another tumor

suppressor that normally inactivates CDK4 and has

undergone much recent investigation as a biomarker

that is positively correlated with patient survival in

OS
[79]
.

Signaling pathway dysregulation

Aberrant cell signaling is an equally important piece

in the molecular biology puzzle underlying osteosar-

coma development and progression. Several ubiquitous

pathways have been implicated in the disease, provid-

ing numerous potential therapeutic targets for research-

ers moving forward. The insulin-like growth factor

(IGF) signaling axis is one that ties in closely with

the development of disease during periods of signifi-

cant bone growth, such as in adolescence. The IGF-1

receptor (IGF-1R) is a member of the tyrosine kinase

family and is most commonly activated by the IGF-1

ligand, ultimately stimulating proliferation, protein

synthesis, and glucose metabolism while inhibiting

apoptosis
[80]

. Normal functioning of this pathway is

integral to both tissue homeostasis and growth, but loss

of regulation has been extensively implicated in tumor-

igenesis and spread of disease
[81-82]

. Specifically,

increased expression levels of IGF-1and IGF-1R are

associated with worse prognosis in patients with

OS
[83-84]

. Furthermore, IGF-2 mediates chemoresistance

through a state of autophagic dormancy that preserves

cell survival
[85]
. A downstream mediator involved in

both IGF and insulin signaling, insulin receptor sub-

strate 1 (IRS-1) is critically important for MSC differ-

entiation. Its deregulation appears to be involved in

malignant transformation of OS cells
[86]
. The IGF bind-

ing proteins (IGFBPs), which modulate signaling

through both IGF-dependent and IGF-independent

mechanisms, have recently been implicated in OS
[87]
.

Notably, IGFBP-5 expression is significantly downre-

gulated in various cell lines, and exogenous administra-

tion of the protein has been shown to suppress tumor

growth and metastasis by multiple mechanisms
[88-89]

.

Downstream of IGF-1R, signaling is propagated

through the PI3K/AKT and Ras/MAPK/ERK path-

ways
[80]
. Upregulation of the former has been signifi-

cantly implicated in OS pathogenesis, resulting in

increased proliferation, increased invasion, and

decreased apoptosis of tumor cells
[90]
. Researchers have

shown that various molecules cause this activation,

including the long noncoding RNA metastasis-associated
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lung adenocarcinoma transcript 1 (MALAT1), tumor

necrosis factor receptor-associated factor 4 (TRAF 4),

and autophagy related protein 6 (Beclin-1)
[91-93]

.

Furthermore, suppressing such activation may not only

be involved in decreasing the aggressiveness of tumors,

but may also be involved in overcoming chemoresis-

tance, further demonstrating the importance of PI3K/

AKT signaling as a therapeutic target
[91,94-97]

. Discussed

earlier, Aurora-A (and -B) kinase inhibitors appear to

also suppress this pathway as a means of halting tumor

progression, representing a class of potential drugs seek-

ing to match the complexity of the underlying patho-

physiology
[98-99]

.

Finally, inflammation and cytokine signaling have

been heavily implicated in the tumorigenesis of

OS
[100]

. For example, transforming growth factor b

(TGF-b) is linked to the dedifferentiation of osteosar-

coma cells into cancer stem cells, a dynamic popula-

tion associated with tumor invasion, radio- and

chemoresistance, and poor prognosis
[101]

. Often found

to be involved in autocrine signaling by cancer cells,

TGF-b increases the migration potential of OS cells

through MAPK activation
[102]

. Similarly, tumor necro-

sis factor a (TNF-a) is strongly correlated with disease

spread, though researchers have recently shown that

infliximab, a monoclonal antibody (mAb) to TNF-a,

can decrease OS cell motility and pulmonary metas-

tases in a mouse model
[103]

.

Interleukins represent another important class of

cytokines with similar roles in disease progression.

A pro-inflammatory cytokine, interleukin 32 has a dose

dependent effect on promoting invasion and migration

of OS cells via activation of the AKT pathway and

upregulation of matrix metalloproteinase 13
[104]

.

Regulated by TNF-a and IL-1b, interleukin 34 is

expressed by OS cells and similarly promotes tumor

spread through neo-angiogenesis and recruitment of

tumor-associated M2 macrophages, which further pro-

duce TGF-b and promote tumor growth
[105 - 106 ]

.

Finally, interleukin 11 receptor a, a marker of poor

long-term prognosis in various cancers, has been found

to be overexpressed in OS and can actually serve in the

development of improved noninvasive imaging and tar-

geted therapy
[107]

.

Inflammation maintains tumors in an aggressive state

due to the milieu of molecules released bymacrophages,

many of which further recruit other inflammatory cells.

Monocyte chemoattractant protein 1 (MCP-1, or CCL2)

is an example of this type of chemokine, involved in

the critical migration of monocytes across the vascular

endothelium and into tissues
[108]

. Additionally in OS,

MCP-1 expression is significantly upregulated and acti-

vates AKT signaling, with knockdown inhibiting both

the proliferation and invasion of tumor cells
[109]

.

Downstream of cytokines such as interleukins, the

JAK2/STAT3 pathway also represents a notable target

for potential therapeutics
[110]

. Recent studies involving

the use JAK2/STAT3 inhibitors delayed OS growth in
vitro and in vivo, with similar results seen through short

hairpin RNA knockdown of STAT3
[111-112]

. Overall, it

has become increasingly clear that modulating several

notable signaling pathways and quelling the inflamma-

tory response to tumors may lead to profound therapeu-

tic response in OS.

Emerging therapies and clinical trials

Angiogenesis inhibitors

As in most types of cancer, the ability of an OS

tumor to acquire a robust blood supply has significant

implications for growth, metastasis, and ultimately

prognosis
[113-115]

. Therefore, drugs aimed at limiting

angiogenesis have become increasingly studied in the

treatment of various malignancies, including OS
[116-117]

.

Vascular endothelial growth factor (VEGF) is one of

the key regulators in angiogenesis and a well-studied

marker associated with decreased disease-free survival

in OS
[118-121]

. VEGF inhibitors have demonstrated con-

siderable success in basic science and translational stu-

dies by reducing growth and metastatic potential of OS

tumors, with the potential to sensitize cells to che-

motherapy
[122-126]

. There are also several early clinical

trials that are investigating bevacizumab, a mAb to

VEGF, in patients with OS. However, there is concern

that this drug may cause adverse events, particularlyin

the pediatric population, including lymphopenia, pneu-

mothorax, and increased wound dehiscence
[127-131]

.

Finally, sorafenib is a tyrosine kinase inhibitor of the

VEGF receptor family that has also undergone clinical

investigation
[132]

. In a phase II trial that studied

35 patients with unresectable OS previously unrespon-

sive to standard therapy, sorafenib resulted in a 46%

progression-free survival at 4 months and a reduction

in tumor density in those with stable disease (34% of

all patients)
[133]

. Therefore, such targeted therapy war-

rants further investigation. Results from other well-

designed clinical trials are needed to shed light on

outcomes, feasibility of combination therapy, and

appropriate dosing of VEGF inhibitors in the treatment

of OS.

Part of the PI3K/AKT pathway, mammalian target

of rapamycin (mTOR) is another signaling molecule

involved in angiogenesis, and mTOR inhibitors are

under clinical investigation for use in mesenchymal

tumors, including OS
[134-136]

. A phase II clinical study

published in 2015 reported that combination treatment
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with sorafenib and everolimus, an mTOR mAb,

resulted in progression-free survival of unresectable

OS at 6 months in 17 of 38 patients who had pre-

viously failed standard therapy
[134]

. However, another

phase II trial involving an IGF-1R inhibitor, cituxumu-

mab, and mTOR mAb temsirolimus found no objective

effect in 11 pediatric patients with OS
[137]

. Since both of

these studies involved the use of combination therapy,

the role of mTOR inhibition alone in OS still remains

unclear in the clinical setting, warranting the need for

future studies addressing this issue.

Bisphosphonates

Bisphosphonates are used in the treatment of osteo-

porosis and can reduce skeletal-related events in adult

cancers, but have also shown promise in specifically

treating OS
[138-139]

. Pre-clinical studies demonstrated that

these agents inhibit the proliferation and metastasis of

OS through activating apoptosis, suppressing tumor-

induced angiogenesis, augmenting T-cell-mediated

cytotoxicity, and sensitizing to chemotherapy
[140-147]

.

Due to the potential for adverse craniofacial effects-

such as osteonecrosis of the jaw, there have been clin-

ical trials seeking to understand the feasibility and

dosing of bisphosphonates in OS treatment
[139,148]

. In

2011, Meyers et al. demonstratedthat pamidronate

could be added to chemotherapy regimens without

any increase in toxicity, resulting in 5-year event-free

survival (EFS) rates of 72% and 45% for patients with

localized and metastatic disease, respectively. Though

the authors did not incorporate a no-treatment arm with

regard to bisphosphonate, they commented that the

agent might improve durability of limb reconstruc-

tion
[149]

. Now that bisphosphonates have been deemed

potentially safe, there are ongoing phase II/III clinical

trials that may shed light on the role of the more-potent

zoledronic acid in treating high-grade osteosarcoma,

both alone and in conjunction with combination che-

motherapy (NCT00691236, NCT00470223).

Receptor tyrosine kinase inhibitors

As previously mentioned, signaling pathway aberran-

cies are heavily involved in the aggressiveness of OS.

Receptor tyrosine kinases (RTK) represent a class of

molecules involved in propagating extracellular signals

from a variety of sources, often growth factors, result-

ing in increased gene transcription, protein synthesis,

and cell proliferation
[150]

. VEGF receptors, blocked by

sorafenib as discussed above, are members of the

RTK family
[151]

. Another important RTK is the human

epidermal growth factor receptor 2 (HER2/neu), exten-

sively studied in the pathogenesis and treatment of

breast cancer, but also of considerable interest in OS

research
[152-153]

. Pre-clinical trials have shown that both

direct and indirect HER2 inhibition can have significant

effects on decreasing OS proliferation, inhibiting migra-

tion, and promoting apoptosis
[154-155]

. A recent phase II

clinical trial found that trastuzumab, a mAb to

HER2, can be safely dosed in conjunction with a che-

motherapy regimen, but doesnot offer any improve-

ment in outcome. However, the study did not

randomize patients into treatment groups, so the trastu-

zumab-specific effects still remain to be identified. Of

note, two recently completed clinical trials may offer

some insight into the use of trastuzumab, but are yet

to be published. A group from Memorial Sloan

Kettering is studying the drug as a single neoadjuvant

agent before surgery in recurrent OS, whereas

a study from the National Cancer Institute is compar-

ing patients receiving standard-of-care chemotherapy

with and without trastuzumab (NCT00005033 and

NCT00023998).

Discussed earlier, the IGF-1 receptor is a tyrosine

kinase and an important therapeutic target in OS, espe-

cially for adolescent patients with increased serum

levels of growth factors seen during the pubertal

growth spurt
[156]

. IGF-1R inhibitors, including antibo-

dies, have shown promising results in vitro and in vivo
using animal models

[157-159]
. Some clinical studies have

addressed the use of an IGF-1R mAb in patients with

various soft tissue and bone tumors, reporting that it

is well tolerated but may have limited or no response

in terms of outcomes
[137,160-163]

. Another large, multi-cen-

ter trial is evaluating the combination of cixutumumab,

an IGF-1R mAb, and a VEGF-R inhibitor in patients

with bone and soft tissue sarcoma. Of 54 patients with

IGF-1R-positive bone sarcoma (18 with OS), 19 were

progression-free at 12 weeks. Of the 54 patients with

IGF-1R-negative soft tissue and bone tumors (6 with

OS) who were also followed, 12 were progression-free

at 12 weeks. Furthermore, based on histology, 13% of

the patients with OS showed a partial response to ther-

apy. As this trial is ongoing, the median overall survi-

val for OS has not yet been reached
[164]

. Though

promising, this study is evaluating two different drugs

on a variety of tumors as classified by IGF-1R expres-

sion, only a small subset of which is OS. Therefore,

there is a need to design clinical trials intended to

understand the effects of IGF-1R inhibition on osteo-

sarcoma specifically.

Immunotherapy

The immune system can be a valuable tool for target-

ing and destroying tumor cells, a topic which has
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received considerable attention in the popular press
[165-166]

.

Recent in vitro and in vivo work has shown the ability

of a variety of immune cells, including natural killer

cells, genetically modified T-cells, and viruses, to

effectively kill OS tumor cells, making immunotherapy

an intriguing prospect
[167-170]

. Mifamurtide, or liposomal

muramyl tripeptide phosphatidylethanolamine (L-

MTP-PE, Mepact), is an agent that causes recruitment

of inflammatory macrophages and has been under clin-

ical investigation with promising results
[171,172]

. The

drug is of particular interest to researchers because of

its favorable safety profile and ability to target metas-

tases, such as in the lung
[173-174]

.

In Europe, mifamurtide has already been approved

for use in children, adolescents, and young adults for

non-metastatic osteosarcoma after tumor excision
[175]

.

This was in response to the results of a large multi-cen-

ter, randomized phase III trial, known as the

Intergroup Study 0133, demonstrating the drug’s abil-

ity to improve overall survival in conjunction with 3-

or 4-agent combination chemotherapy in newly diag-

nosed, high-grade, non-metastatic, resectable osteosar-

coma
[9]
. Though a similar trend was seen in a smaller

cohort of patients presenting with metastatic disease,

the result was not of statistical significance
[176]

.

A recent Markov process model using data from the

Intergroup 0133 trial found that mifamurtide improved

the lifetime effectiveness of chemotherapy in both

metastatic and nonmetastatic disease
[177]

. Currently, in

the United States, mifamurtide remains an orphaned

drug, but additional well-designed, prospective, rando-

mized controlled trials may offer a path for this pro-

mising drug to be re-introduced into the market as

adjuvant therapy.

Granulocyte macrophage-colony stimulating factor

(GM-CSF) exhibits similar macrophage-stimulating

properties, but may also extend its reach to CD4 T-

cells, natural killer cells, and dendritic cells
[178]

. In

laboratory studies, GM-CSF has shown an ability to

induce osteoblastic differentiation and apoptosis in

OS cells
[179-180]

. An inhaled form of this factor was stu-

died in a phase I trial evaluating patients with first iso-

lated pulmonary recurrence of OS, with results

showing that it had low toxicity but no discernible

effects on immunostimulation or outcomes
[181]

. The

same group recently completed a phase II study look-

ing at inhaled recombinant GM-CSF, sargramostim,

on a similar group of patients with first pulmonary

recurrence of the disease, but the results are yet to be

published (NCT00066365). Overall, immune system

modulators represent an important class of anti-neo-

plastic agents that may undergo considerable growth

and development in the near future.

Chemo- and radio-sensitizing agents

As tumor resistance remains one of the most signifi-

cant barriers to improving patient prognosis, numerous

research efforts have recently been directed towards

increasing OS response to existing chemotherapy and

radiotherapy regimens
[80,182-188]

. In addition to studies

looking at various anti-neoplastic agents discussed

above in combination with chemotherapy, a few

researchers have also aimed to repurpose existing

non-cancer drugs for use in OS
[189]

. The most notable

example is metformin, an insulin-sensitizer considered

to be the first-line treatment for type II diabetes melli-

tus
[190]

. An in vitro study found that metformin not only

inhibits tumor cell growth but also sensitizes three dif-

ferent cisplatin-resistant cell lines to the drug, demon-

strating a synergistic effect
[191]

. This effect might be

mediated through crosstalk that exists between insulin-

and IGF-signaling
[192]

. Similarly, proton pump inhibi-

tors (PPIs) normally used for dyspepsia have shown

promise in OS. A recent translational study studied

two cell lines in culture as well as a murine xenograft

model, finding that in both settings pre-treatment with

esomeprazole sensitized tumor cells to cisplatin. The

same study then evaluated 98 patients aged 40 years

or younger with resectable nonmetastatic OS of the

extremities who received esomeprazole in the two days

before each round of neoadjuvant chemotherapy.

When compared to a historical study that used the

same chemotherapy regimen, the authors found that

PPI pre-treatment increased local cytotoxicity of the

drugs as evidenced by histologic tumor necrosis
[193]

.

Though the study did not randomize patients or look

at survival rates as an outcome, this represents an excit-

ing starting point for researchers to design future clin-

ical studies involving the potential chemosensitizing

effects of PPIs.

Radiotherapy plays a considerable role in treating

incompletely- or un-resectable primary tumors and che-

moresisant metastases to the lung and axial skeleton,

though not a standard OS treatment modality due to

resistance
[8,194-195]

. Therefore, finding agents capable of

sensitizing tumors to radiation may improve outcomes

in patients who may need it as an end-of-the-line treat-

ment option. Though most of the work to date has

taken place in a laboratory setting, the findings do

appear promising. A small molecule inhibitor of

WEE1 kinase, found in many OS tissue samples, has

been shown to bypass the G2 cell cycle checkpoint fol-

lowing radiation exposure, resulting in mitotic cata-

strophe
[196]

. Similarly, radiation combined with

parthenolide, a naturally occurring molecule that

interferes with NF-kB cell survival signaling, has a
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synergistic effect on previously radio-resistant OS

tumor cel ls , including cancer stem cel ls
[ 1 9 7 ]

.

Previously discussed, the ALT pathway allows cancer

cells to evade senescence and remain in a stem cell-like

state, but also appears to play a role in resistance to

irradiation. Suppression of Ku80, a protein involved

in DNA repair via nonhomologous end joining, radio

sensitizes an ALT OS line in vitro, with affected cells

demonstrating shortened telomeres
[198]

. Results such as

this should spur more investigations to overcome resis-

tance to radiation, a treatment modality that has been

underutilized in OS.

Novel drug delivery mechanisms

Though the most effective treatment modality to

date in OS, chemotherapy also carries with it toxic

effects, several of which can promote the development

of a secondary malignancy or cause significant morbid-

ity
[199-201]

. In response, as has been the approach in other

cancers, researchers have studied the use of vectors for

delivering OS therapy to a localized area, hoping to

minimize unintended consequences. Stem cells repre-

sent such a promising option moving forward. Using

bone-marrow-derived MSCs expressing the cytosine

deaminase/5-fluorocytosine prodrug, a recent study

found that the MSCs were able to migrate toward OS

cells in vitro, resulting in cytotoxicity, and also inhibit

subcutaneous tumor growth when injected locally into

mice
[202]

. Furthermore, another study showed that RFP-

labeled human MSCs could be injected into the tail

vein of athymic nude mice and effectively localize to

OS tumors. The MSCs, which were carrying the osteo-

protegerin (OPG) gene, caused expression of the pro-

tein at the tumor site and resulted in decreased tumor

growth and bone destruction
[203]

.

Using nanocarriers may also be effective for deliver-

ing drugs to specific locations with sustained

release
[204-205]

. A recent study demonstrated that nano-

particles loaded with paclitaxel and etoposide demon-

strated increased cytotoxic effects on OS cell lines

when compared to a combination of the drugs in

native form
[206]

. Similarly, nanoparticles carrying the

antibiotic salinomycin were designed to target

CD133+ osteosarcoma cancer stem cells and caused

pronounced in vitro and in vivo cell death. A new

technology involves nanotubes made from halloysite,

which can be mined from natural deposits, and has

been shown to inhibit OS cell proliferation when deli-

vering methotrexate
[207]

. Finally, organic molecules,

such as liposomes and micelles, loaded with existing

and experimental anti-neoplastic agents have been

used with promising results in suppressing OS tumor

cells in culture and in a xenograft model
[208-210]

. This

approach may also be useful for potential drugs, such

as curcumin, that previously could not be properly for-

mulated due to their chemical properties (e.g. water

insoluble)
[211,212]

.

Conclusions and future directions

In conclusion, a considerable body of recent, cutting-

edge research provides an optimistic view of osteosar-

coma treatment and patient prognosis in the future.

With continued investigation into the molecular under-

pinnings of this aggressive disease, we can hope to bet-

ter understand the interplay between various signaling

and differentiation pathways, identifying the most criti-

cal molecular targets for therapy. An effort to design

meaningful translational studies can then allow for a

bench-to-bedside approach involving potential thera-

peutics. Finally, there is a pivotal need to implement

more high-quality randomized clinical trials, focusing

on just patients with osteosarcoma, as it has become

increasingly clear that the unique properties of this

malignancy make it difficult to predict drug response

in comparison to other bone or soft tissue tumors.

Ultimately, there may exist in some combination of

surgery, chemotherapy, and localized molecular ther-

apy that can significantly improve outcomes and qual-

ity of life for those suffering from osteosarcoma.
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