Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Sep 1;90(17):7970–7974. doi: 10.1073/pnas.90.17.7970

Reaction sequence and molecular mass of a Cl(-)-translocating P-type ATPase.

G A Gerencser 1, B Zelezna 1
PMCID: PMC47269  PMID: 8367450

Abstract

The basolateral membranes of Aplysia californica foregut absorptive cells contain both Cl(-)-stimulated ATPase and ATP-dependent Cl- transport activities, and each was inhibited by orthovanadate. Both of these orthovanadate-sensitive activities were reconstituted into proteoliposomes. The reaction sequence kinetics were determined by [gamma-32P]ATP-induced phosphorylation of the reconstituted Cl- pump. Rapid phosphorylation and dephosphorylation kinetics of acyl phosphate bonding were confirmed by destabilization of the phosphoprotein by either hydroxylamine or high pH. Mg2+ caused phosphorylation of the enzyme; Cl- caused dephosphorylation. Orthovanadate almost completely inhibited the Mg(2+)-driven phosphorylation reaction. The molecular mass of the catalytic unit (subunit) of the enzyme appeared to be 110 kDa, which is in agreement with molecular masses of all other catalytic units (subunits) of P-type ATPases.

Full text

PDF
7970

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amzel L. M., Pedersen P. L. Proton atpases: structure and mechanism. Annu Rev Biochem. 1983;52:801–824. doi: 10.1146/annurev.bi.52.070183.004101. [DOI] [PubMed] [Google Scholar]
  2. Bertorello A. M., Aperia A., Walaas S. I., Nairn A. C., Greengard P. Phosphorylation of the catalytic subunit of Na+,K(+)-ATPase inhibits the activity of the enzyme. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11359–11362. doi: 10.1073/pnas.88.24.11359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blanck A., Oesterhelt D. The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin. EMBO J. 1987 Jan;6(1):265–273. doi: 10.1002/j.1460-2075.1987.tb04749.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gerencser G. A. Electrogenic ATP-dependent Cl- transport by plasma membrane vesicles from Aplysia intestine. Am J Physiol. 1988 Jan;254(1 Pt 2):R127–R133. doi: 10.1152/ajpregu.1988.254.1.R127. [DOI] [PubMed] [Google Scholar]
  5. Gerencser G. A. Electrophysiology of chloride transport in Aplysia (mollusk) intestine. Am J Physiol. 1983 Feb;244(2):R143–R149. doi: 10.1152/ajpregu.1983.244.2.R143. [DOI] [PubMed] [Google Scholar]
  6. Gerencser G. A., Lee S. H. Cl- -HCO3- -stimulated ATPase in intestinal mucosa of Aplysia. Am J Physiol. 1985 Feb;248(2 Pt 2):R241–R248. doi: 10.1152/ajpregu.1985.248.2.R241. [DOI] [PubMed] [Google Scholar]
  7. Gerencser G. A., Lee S. H. Cl--stimulated adenosine triphosphatase: existence, location and function. J Exp Biol. 1983 Sep;106:143–161. doi: 10.1242/jeb.106.1.143. [DOI] [PubMed] [Google Scholar]
  8. Gerencser G. A. Reconstitution of a chloride-translocating ATPase from Aplysia californica gut. Biochim Biophys Acta. 1990 Dec 14;1030(2):301–303. doi: 10.1016/0005-2736(90)90307-a. [DOI] [PubMed] [Google Scholar]
  9. Gerencser G. A. Thiocyanate inhibition of active chloride absorption in Aplysia intestine. Biochim Biophys Acta. 1984 Sep 5;775(3):389–394. doi: 10.1016/0005-2736(84)90195-0. [DOI] [PubMed] [Google Scholar]
  10. Gerencser G. A., White J. F. Membrane potentials and chloride activities in epithelial cells of Aplysia intestine. Am J Physiol. 1980 Nov;239(5):R445–R449. doi: 10.1152/ajpregu.1980.239.5.R445. [DOI] [PubMed] [Google Scholar]
  11. Goffeau A., Slayman C. W. The proton-translocating ATPase of the fungal plasma membrane. Biochim Biophys Acta. 1981 Dec 30;639(3-4):197–223. doi: 10.1016/0304-4173(81)90010-0. [DOI] [PubMed] [Google Scholar]
  12. Ikeda M., Oesterhelt D. A Cl(-)-translocating adenosinetriphosphatase in Acetabularia acetabulum. 2. Reconstitution of the enzyme into liposomes and effect of net charges of liposomes on chloride permeability and reconstitution. Biochemistry. 1990 Feb 27;29(8):2065–2070. doi: 10.1021/bi00460a014. [DOI] [PubMed] [Google Scholar]
  13. Ikeda M., Schmid R., Oesterhelt D. A Cl(-)-translocating adenosinetriphosphatase in Acetabularia acetabulum. 1. Purification and characterization of a novel type of adenosinetriphosphatase that differs from chloroplast F1 adenosinetriphosphatase. Biochemistry. 1990 Feb 27;29(8):2057–2065. doi: 10.1021/bi00460a013. [DOI] [PubMed] [Google Scholar]
  14. Inagaki C., Shiroya T. ATP-dependent Cl- uptake by plasma membrane vesicles from the rat brain. Biochem Biophys Res Commun. 1988 Jul 15;154(1):108–112. doi: 10.1016/0006-291x(88)90656-0. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lukacovic M. F., Feinstein M. B., Sha'afi R. I., Perrie S. Purification of stabilized band 3 protein of the human erythrocyte membrane and its reconstitution into liposomes. Biochemistry. 1981 May 26;20(11):3145–3151. doi: 10.1021/bi00514a025. [DOI] [PubMed] [Google Scholar]
  17. Nakamoto R. K., Rao R., Slayman C. W. Transmembrane segments of the P-type cation-transporting ATPases. A comparative study. Ann N Y Acad Sci. 1989;574:165–179. doi: 10.1111/j.1749-6632.1989.tb25155.x. [DOI] [PubMed] [Google Scholar]
  18. Nyrén P., Baltscheffsky M. Inorganic pyrophosphate-driven ATP-synthesis in liposomes containing membrane-bound inorganic pyrophosphatase and F0-F1 complex from Rhodospirillum rubrum. FEBS Lett. 1983 May 2;155(1):125–130. doi: 10.1016/0014-5793(83)80223-3. [DOI] [PubMed] [Google Scholar]
  19. POST R. L., SEN A. K., ROSENTHAL A. S. A PHOSPHORYLATED INTERMEDIATE IN ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT ACROSS KIDNEY MEMBRANES. J Biol Chem. 1965 Mar;240:1437–1445. [PubMed] [Google Scholar]
  20. Ross A. H., McConnell H. M. Reconstitution of band 3, the erythrocyte anion exchange protein. Biochem Biophys Res Commun. 1977 Feb 21;74(4):1318–1325. doi: 10.1016/0006-291x(77)90586-1. [DOI] [PubMed] [Google Scholar]
  21. Schuurmans Stekhoven F., Bonting S. L. Transport adenosine triphosphatases: properties and functions. Physiol Rev. 1981 Jan;61(1):1–76. doi: 10.1152/physrev.1981.61.1.1. [DOI] [PubMed] [Google Scholar]
  22. Vara F., Serrano R. Partial purification and properties of the proton-translocating ATPase of plant plasma membranes. J Biol Chem. 1982 Nov 10;257(21):12826–12830. [PubMed] [Google Scholar]
  23. Zimniak P., Racker E. Electrogenicity of Ca2+ transport catalyzed by the Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem. 1978 Jul 10;253(13):4631–4637. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES