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ABSTRACT

The use of botanical dietary supplements has grown steadily over
the last 20 years despite incomplete information regarding active
constituents, mechanisms of action, efficacy, and safety. An
important but underinvestigated safety concern is the potential
for popular botanical dietary supplements to interfere with the
absorption, transport, and/or metabolism of pharmaceutical
agents. Clinical trials of drug–botanical interactions are the gold
standard and are usually carried out only when indicated by
unexpected consumer side effects or, preferably, by predictive
preclinical studies. For example, phase 1 clinical trials have
confirmed preclinical studies and clinical case reports that St.
John’s wort (Hypericum perforatum) induces CYP3A4/CYP3A5.

However, clinical studies of most botanicals that were predicted to
interact with drugs have shown no clinically significant effects. For
example, clinical trials did not substantiate preclinical predictions
that milk thistle (Silybum marianum) would inhibit CYP1A2,
CYP2C9, CYP2D6, CYP2E1, and/or CYP3A4. Here, we highlight
discrepancies between preclinical and clinical data concerning
drug–botanical interactions and critically evaluate why some pre-
clinical models perform better than others in predicting the
potential for drug–botanical interactions. Gaps in knowledge are
also highlighted for the potential of some popular botanical dietary
supplements to interact with therapeutic agents with respect to
absorption, transport, and metabolism.

Introduction

In a survey by the U.S. Centers for Disease Control and Prevention,
52 million Americans (4 in 10 adults) reported using complementary
and alternative medicine, especially botanical dietary supplements
(Barnes et al., 2008), and the Natural Marketing Institute reported that
36 million U.S. adults (approximately 16% of the adult population)
used botanical supplements during 2013 (http://www.nutraingredients-
usa.com/Markets/Future-looks-increasingly-bright-for-herbal-supple-
ments-market-researcher-says). A 2011 survey by the Harvard Opinion
Research Program found that American consumers used dietary
supplements to feel better, improve energy levels, and boost the
immune system (Blendon et al., 2013). According to a 2009 Nielsen
study, 40% of North Americans and Asians and 30% of Europeans and
Latin Americans use dietary supplements (http://www.nielsen.com/us/
en/insights/news/2009/north-america-asia-lead-vitamin-and-supple-
ment-usage.html). Importantly, this does not take into account the
various definitions of the term dietary supplement in different parts of
the world, some of which include some botanical products as part of the
pharmacopeia instead of dietary supplements. The natural products

industry generated $5.6 billion in direct sales during 2012 (http://www.
nutraingredients-usa.com/Markets/Future-looks-increasingly-bright-
for-herbal-supplements-market-researcher-says), and by a more recent
estimate, this industry exceeded $9 billion in sales during 2013
(Lindstrom et al., 2014). From 2012 to 2013, U.S. botanical dietary
supplement sales enjoyed an annual increase of 7.9% (Lindstrom et al.,
2013).
In the United States, for example, the botanical dietary supplement

market grew rapidly after passage in 1994 of the Dietary Supplement
Health Education Act (DSHEA) (Cohen, 2012, 2014). DSHEA defines
dietary supplements as neither food nor drugs and therefore liberates
them from the regulations of either designation. These products do not
require U.S. Food and Drug Administration (FDA) approval prior to
marketing but must not be adulterated or mislabeled. Although DSHEA
has not been amended in over 20 years, the FDA has since imposed
regulation 21 CFR part 111 requiring that dietary supplements be
produced under dietary supplement current good manufacturing
practice conditions. However, current good manufacturing practice
does not require the botanical dietary supplements industry to in-
vestigate possible side effects of the use of these products.
The potential for side effects and other problems resulting from the

use of botanical dietary supplements is exacerbated by the lack of
standardization of these products, patients under-reporting supplement
use to their health care providers, and consumers delaying conventional
medical care due to reliance on botanical dietary supplements. It is
important to note that botanical dietary supplements are used in many
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different forms, such as teas, tinctures, pills, or salves. A wide variety of
botanical species are used to produce botanical dietary supplements,
including different plant parts originating from multiple sources
worldwide, all of which contribute to consumer exposure to a wide
range of natural products spanning a range of levels. Even scientific
studies on the effects of a specific botanical dietary supplement can
differ in the species of plants used in the product, the sources of the
botanicals, how the botanicals are prepared, how the product is
formulated, and how the product is standardized. Each of these
variables can affect the biologic effects of a botanical dietary
supplement and the outcomes of a scientific study.
Among the possible side effects of botanical dietary supplements, as

with conventional pharmaceuticals, is interaction with other drugs. This
possibility is significant, because 16% of prescription drug users report
concurrently taking dietary supplements (Kaufman et al., 2002). This
review addresses the potential for botanical dietary supplements to alter
the pharmacokinetics of conventional therapeutic agents and, therefore,
cause a form of drug–botanical dietary supplement interaction. A
review by Tsai et al. (2012) provided a broad overview of drug
interactions, toxicities, and contraindications for a variety of dietary
supplements including botanicals. Both pharmacokinetic and pharma-
codynamic interactions were covered, but the depth of drug–botanical
dietary supplement interactions was understandably limited. More
recently, Korobkova (2015) reviewed the interactions of natural
polyphenols, which can be found in many botanical dietary supple-
ments, on the activities of cytochrome P450 (P450) enzymes. In
particular, Korobkova found that many flavonoids could modulate the
activities of CYP3A4, CYP2C9, and CYP1A2 and thereby interfere
with drug metabolism. Here, we review the current understanding of
these and other drug–botanical dietary supplement pharmacokinetic
interactions, and we evaluate the accuracy of preclinical predictive
models based on the reality of the clinical evidence.

Pharmacokinetic Drug–Botanical Dietary Supplement
Interactions

Although the potential for drug–drug interactions must be investigated
for all new drugs, and many such interactions have been documented,
drug–botanical dietary supplement interactions remain underexplored.
The popularity of botanical dietary supplements worldwide makes this
issue particularly urgent. Drug–botanical dietary supplement interactions
can include inhibition or induction of 1) P450 enzymes involved in drug
metabolism, 2) UDP-glucuronosyl transferases, 3) other phase I and
phase II enzymes, and 4) drug transporters and drug-efflux proteins (Fig.
1). Natural product dietary supplements might inhibit or induce the
enzymes responsible for the metabolism of therapeutic agents or their
transporters and cause drug–botanical dietary supplement interactions.
When drug–botanical dietary supplement interactions occur, the phar-
macokinetics of therapeutic agents can be altered.
By inhibiting the action of specific drug-metabolizing enzymes,

natural products in botanical dietary supplements can prolong the half-
lives of drugs that depend on the same enzymes for their degradation,
deactivation, or conjugation prior to excretion. Longer half-lives will
result in prolonged action and even toxicity, especially if drug levels
rise unexpectedly after multiple doses. By contrast, inhibition of
enzymes responsible for activating prodrugs would prevent these
compounds from exerting their pharmacological effects and would
result in loss of pharmacological effects.
On the other hand, enzyme induction would shorten drug half-lives

and possibly result in subtherapeutic levels in the body. Inhibition of
drug transporters responsible for uptake would reduce the absorption of
therapeutic agents possibly lowering their efficacy, whereas induction

of drug transporters might cause toxicity due to enhanced blood levels.
The opposite is true for efflux drug transporters. An example of a well
documented drug–botanical dietary supplement interaction is that
between St. John’s wort (Hypericum perforatum) and drugs metabo-
lized by CYP3A4 (Tirona and Bailey, 2006). St. John’s wort induces
CYP3A4 through interactions of the natural product constituent
hyperforin with the steroid xenobiotic receptor (Wentworth et al.,
2000). Because 70% of drugs are substrates for CYP3A4, induction of
this enzyme can lead to lower efficacy of many therapeutic agents,
including oral contraceptives (Hall et al., 2003) and the anticoagulant
warfarin (Jiang et al., 2004).

Phase I Metabolism

P450 enzymes are responsible for most phase I metabolism of
xenobiotics (Ortiz de Montellano, 1995; Ioannides, 1996; Parkinson,
1996). These enzymes are expressed primarily in the liver endoplasmic
reticulum, although some are abundant in other tissues such as the
intestine. The most important P450 enzymes in human drug metabolism
belong to the CYP1A, CYP1B, CYP2C, CYP2D, CYP2E, and CYP3A
subfamilies. The expression and function of these enzymes can be
altered by physiologic, pathologic, genetic, and environmental factors
(including exposure to natural products). The following P450 enzymes
are particularly important in metabolism and drug–botanical dietary
supplement interactions.
CYP1A1/CYP1A2 and CYP1B. Human liver P450 is composed of

15%–20% CYP1A2, but CYP1A1 is usually not detectable except in
smokers. CYP1B (Sutter et al., 1994) can metabolize estrogens and
some xenobiotic compounds to carcinogens. Substrates for CYP1A2
include acetaminophen, warfarin, and caffeine (Wentworth et al., 2000;
Hall et al., 2003). The botanical dietary supplement Echinacea
purpurea has been reported to inhibit CYP1A2 activity in humans by
approximately 36% (Gorski et al., 2004).
CYP3A. Including CYP3A4, CYP3A5, and CYP3A7, the CYP3A

subfamily is the most abundant group of P450 enzymes in the human
liver (30% of the total). CYP3A enzymes are responsible for the
metabolism of approximately 70% of all drugs (e.g., alprazolam,
benzphetamine, and diazepam) (Shimada et al., 1994) and show broad
substrate specificity. CYP3A4 is inducible and can be inhibited by
structurally diverse drugs and botanical compounds.
CYP2C8/CYP2C9/CYP2C19. Comprising approximately 25% of

P450 enzymes in the human liver (Hall et al., 2003), the CYP2C
subfamily metabolizes many drugs, including warfarin, diclofenac, and
tolbutamide. Defects in CYP2C19 are rare in Caucasians (2%–5%) but
affect 12%–23% of Asians.
CYP2D6. Many nitrogen-containing compounds and drugs are

metabolized by CYP2D6, including tricyclic antidepressants, morphine,
and b-blockers (Strobl et al., 1993). Up to 10% of the population has
defects in CYP2D6, which can result in exaggerated responses to certain
drugs such as tamoxifen and dextromethorphan (Brauch et al., 2009).
CYP2E1. CYP2E1 metabolizes many low-mass compounds, in-

cluding acetaminophen, inhalation analgesics, ethanol, and some
environmental carcinogens (Guengerich et al., 1991). CYP2E1 is
inducible by ethanol and can potentiate acetaminophen toxicity by
forming a hepatotoxic quinone imine (Patten et al., 1993).

Phase II Metabolism

During phase II metabolism, a substrate is conjugated with a
nucleophilic group (thiol, amino, hydroxyl, etc.) donated by a cofactor
through a reaction catalyzed by a transferase. Phase II reactions include
glucuronidation, phosphorylation, methylation, sulfonation, acetyla-
tion, and reaction with glutathione (Testa and Krämer, 2008). Most
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phase II conjugation reactions are catalyzed by the UDP-
glucuronosyltransferase and sulfotransferase families.

Drug Transporters

In addition to first-pass hepatic metabolism, absorption after oral
administration is a factor determining the bioavailability of a com-
pound. Lack of absorption might explain why many clinical trials of

natural products [e.g., milk thistle (Silybum marianum)] have shown no
drug interactions although interactions were predicted during pre-
clinical studies.

Serum Binding Competition

The extent to which a drug is bound to serum proteins affects the
ability of the drug to be distributed and have therapeutic or toxic effects.

Fig. 1. Pharmacokinetic drug-botanical interactions. Botanicals can cause pharmacokinetic drug interactions by interfering with drug-metabolizing enzymes in the liver,
stomach, and intestines; drug transporters in the kidneys, stomach, and intestines that will alter absorption, bioavailability, and drug elimination; and proteins in the blood that
can alter drug distribution.
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If botanical compounds are highly bound to serum proteins, they may
compete with other drugs for this protein binding. Displacement of
therapeutic agents from binding sites on serum proteins will increase
their rates of elimination, and sudden displacement of drugs from serum
proteins by natural products absorbed from a botanical dietary
supplement could increase the free drug concentration to toxic levels.
For these reasons, botanical compounds that are found to be absorbed
should also be tested for serum protein binding.
Preclinical studies of the safety of isolated natural products and those

in dietary supplements are essential for determining mechanisms of
action, assessing routes of metabolism, and predicting drug–botanical
dietary supplement interactions, but clinical studies must be used to
determine the relevance of these results to human health. Because of the
popularity of dietary supplements, it is important to determine the safety
of these products, and the potential for drug–botanical dietary
supplement interactions is an understudied safety aspect. To determine
what drug–botanical dietary supplement interactions have been in-
vestigated and the outcomes of these reports, we reviewed the literature
for the most popular botanical dietary supplements (Tables 1 and 2).

State of the Literature

Each year, the American Botanical Council reports the 40 most
popular natural products in the United States based on retail records.We
combined the 2012 list created by using SymphonylRl (Blumenthal
et al., 2012) with the 2013 list created based on SPINS/IRI (Lindstrom
et al., 2014) to provide a comprehensive list of popular botanical dietary
supplements. In addition, our review included the additional botanicals
goldenseal, noted in a review by Tsai et al. (2012) to cause drug
interactions, and hops, which has recent preclinical reports of drug
interactions (Yuan et al., 2014). We then examined the data available in
the literature for all products on the combined list (Tables 1–3). Data for
interactions of botanicals with specific drugs were not considered,
because these reports often lack confirmation of target enzymes and
mechanisms of action. Instead, pharmacokinetic drug interactions of
botanicals with specific drug-metabolizing enzymes or transporters
were included. For simplicity, only positive reports of drug–botanical
dietary supplement interactions were included in the preclinical data
columns of Tables 1–3, although both negative as well as positive
results of drug–botanical dietary supplement clinical trials were
included, because these are the most important evidence of drug–
botanical dietary supplement interactions or the lack thereof.
The 15 botanical dietary supplements listed in Table 1 have been

evaluated using both preclinical assays and in clinical trials or only in
clinical trials for drug–botanical dietary supplement interactions.
Table 2 summarizes the preclinical data for 13 botanical dietary
supplements that have been reported to potentially interact with drugs,
although no clinical interaction studies have yet been documented.
Examples of botanical dietary supplements with only preclinical
evidence of drug–botanical dietary supplement interactions include
bilberry, dandelion, Dong quai, feverfew, grape seed, hops, licorice, red
clover, and yohimbe (Table 2). Most popular botanical dietary
supplements, such as kelp, maca, ginger, cinnamon, and elderberry,
have not been reported to pose risks of drug–botanical dietary
supplement interactions (Table 3). Indeed, among the 63 most popular
natural products in 2012 and 2013 in the United States, 35 have no
reports of drug interactions in the literature (Table 3).
Ten of the dietary supplements listed in Table 1, which include black

cohosh, Echinacea, St. John’s wort, milk thistle, and goldenseal,
showed potential for drug–botanical dietary supplement interactions
during preclinical studies and were then evaluated in clinical trials.
Although preclinical P450 inhibition studies are common, P450

induction studies are not often conducted. Furthermore, there are
considerable discrepancies between the preclinical inhibition data and
the corresponding clinical responses for these botanical dietary
supplements. The majority of those dietary supplements (black cohosh,
gingko, ginseng, milk thistle, saw palmetto, and valerian) that had been
predicted to cause drug interactions using preclinical assays did not
produce clinically relevant interactions when tested in humans
(Table 1). For example, green tea and kava had been reported to inhibit
several drug-metabolizing enzymes, but clinical testing of some of
these predicted interactions showed no effects. In the case of black
cohosh, which had been predicted in preclinical studies to inhibit
CYP3A4 and CYP2D6 (Li et al., 2011), no clinically observable
interactions were observed with CYP3A4, whereas the predicted
inhibition of CYP2D6 was observed in humans but was considered
clinically insignificant (Gurley et al., 2004, 2005).
Only four botanical dietary supplements that were predicted to have

drug interactions (St. John’s wort, goldenseal, Echinacea, and garlic
oil) have been documented to cause interactions in human trials
(Table 1). Even then, only some of the predicted interactions were
clinically confirmed. For example, preclinical studies predicted that
Echinaceawould inhibit CYP2C9, CYP2C19, CYP2D6, and CYP3A4,
but a clinical trial carried out by Gorski et al. (2004) found no effects on
CYP2C9 or CYP2D6, although inhibition of CYP1A2 and intestinal
CYP3A4were confirmed. Although not predicted by preclinical studies
of Echinacea, Gorski et al. observed induction of hepatic CYP3A4 in
human subjects. By contrast, a clinical trial by Gurley et al. (2004)
found that Echinacea did not inhibit or induce CYP1A2, CYP2D6,
CYP2E1, or CYP3A4. These apparently contradictory clinical results
of CYP3A4 inhibition/induction by Echinacea can be reconciled in that
the intestinal inhibition and hepatic induction of CYP3A4 observed by
Gorski et al. (2004) might have offset each other in the study by Gurley
et al. (2004), which did not separate these effects. Among the
interactions predicted preclinically for garlic dietary supplements, none
have been substantiated in clinical studies except for inhibition of
CYP2E1 by garlic oil (Gurley et al., 2002).
In the case of goldenseal, preclinical studies (Table 1) have predicted

interactions with CYP2D6, CYP2C9, CYP2C19, and CYP3A4 (Bud-
zinski et al., 2000; Chatterjee and Franklin, 2003; Foster et al., 2003).
Clinical trials (Table 1) subsequently confirmed that goldenseal inhibits
CYP2D6 (Gurley et al., 2005, 2008) and CYP3A4/CYP3A5 (Gurley
et al., 2005) but clinical interactions of goldenseal with CYP2C9 and
CYP2C19 have not yet been tested. Although preclinical models had
not reported any effects of goldenseal on CYP1A2 or CYP2E1, Gurley
et al. (2005) investigated this possibility in a clinical trial and found no
interactions.

Discussion

The literature on milk thistle (S. marianum) and its constituents,
silibinin and silymarin, was extensively reviewed by Brantley et al.
(2014). This review indicated that inhibition data had been obtained
using recombinant enzymes or human liver microsomes but that no data
had been collected regarding induction studies. Although transporter
activity and expression were tested, no preclinical absorption data seem
to have been produced. From the incomplete preclinical studies, it was
predicted by some that milk thistle would cause drug interactions,
although other researchers disputed this prediction owing to low in vivo
plasma concentrations and low inhibitory potency. Subsequently,
multiple clinical trials of drug–botanical dietary supplement interac-
tions were carried out using different extracts of milk thistle, and all
revealed no drug interaction effects. It was pointed out by Brantley et al.
(2014) that, to their knowledge, no mathematical modeling had been
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TABLE 1

Popular natural product supplements with clinical drug interaction data

Dashes indicate no data found.

Common Name (Latin
Binomial)

Preclinical Interactions Clinical Interactions

Inhibition Induction Inhibition Induction No Effect

Bioflavonoid complex
(Citrus spp.)

— — — — Citrus aurantium: CYP1A2,
CYP2D6, CYP2E1,
CYP3A4 (Testa and
Krämer, 2008)

Black cohosh (Actaea
racemosa)

CYP2D6 (Li et al., 2011);
CYP3A4 (Tsukamoto et al.,
2005)

— — — CYP1A2, CYP2E1, CYP3A
(Gurley et al., 2004, 2005);
CYP2D6 (Gurley et al.,
2004)

Cranberry (Vaccinium
macrocarpon)

CYP3A (Uesawa and Mohri,
2006)

— — — CYP2C9 (Greenblatt et al.,
2006)

Echinacea (Echinacea
purpurea)

CYP2C9, CYP2C19,
CYP2D6, CYP3A4 (Foster
et al., 2003; Strandell et al.,
2005; Yale and Glurich,
2005; Modarai et al., 2006);
OATP2B1 (Fuchikami
et al., 2006)

— CYP1A2 (Gorski et al.,
2004); CYP3A4
(Gorski et al., 2004)
(intestinal)

CYP3A4 (Gorski
et al., 2004) (hepatic)

CYP1A2, CYP2D6, CYP2E1,
CYP3A4 (Gurley et al.,
2004); CYP2C9, CYP2D6
(Gorski et al., 2004)

Garlic (Allium sativum)a CYP2C19, CYP2E1, CYP3A,
MDR1 (Foster et al., 2001;
Patel et al., 2004); CYP2C9
(Ho et al., 2010); CYP3A,
MDR1 (Hsiu et al., 2002)

— CYP2E1 (oil) (Gurley
et al., 2002)

— CYP1A2, CYP2D6, CYP2E1,
CYP3A4 (Gurley et al.,
2002); CYP2D6, CYP3A4
(Markowitz and Chavin,
2003)

Gingko (Ginkgo biloba)a CYP1A2, CYP2C9,
CYP2C19, CYP2D6,
CYP3A (Ohnishi et al.,
2003; Yale and Glurich,
2005); OATP2B1
(Fuchikami et al., 2006)

— — — CYP1A2, CYP2D6, CYP2E1,
CYP3A4 (Gurley et al.,
2002); MDR1 (Mauro et al.,
2003)

Ginseng (Panax spp.)a,b CYP1A2, CYP2A6, CYP2C9,
CYP2D6, CYP3A4,
UGT2B15 (Anderson et al.,
2003); CYP2C9, CYP2C19,
CYP2D6, CYP3A4 (Foster
et al., 2002)

— — — CYP1A2, CYP2D6, CYP2E1,
CYP3A4 (Gurley et al.,
2002); CYP3A4 (Anderson
et al., 2003)

Goldenseal (Hydrastis
Canadensis)

CYP2D6, CYP2C9,
CYP2C19, CYP3A4
(Budzinski et al., 2000;
Chatterjee and Franklin,
2003; Foster et al., 2003)

— CYP2D6 (Gurley et al.,
2005, 2008);
CYP3A4/CYP3A5
(Gurley et al., 2005)

— CYP1A2, CYP2E1 (Gurley
et al., 2005)

Green tea (Camellia
sinensis)a

CYP1A2 (Netsch et al., 2006);
CYP3A4 (Moore et al.,
2000); OATP2B1 (Mao
et al., 2013)

— — — CYP2D6, CYP3A4 (Chatterjee
and Franklin, 2003); ECGC:
CYP1A2 (Chow et al.,
2006); CYP2D6, CYP2C9,
CYP3A (Wang et al., 2001)

Isoflavones [e.g., soy
(Glycine max) and red
clover, (Trifolium
pretense)]

Soy: CYP1A2, CYP2A6,
CYP2C9, CYP2D6
(Modarai et al., 2006);
CYP3A4 (Li and Doshi,
2011); OATP22B1 (Mao
et al., 2013)

CYP3A4 (Modarai
et al., 2006)

— — Soy: CYP3A4 (Modarai et al.,
2006)

Kava kava (Piper
methysticum)a

CYP1A2, CYP2C9,
CYP2C19, CYP2D6,
CYP3A4 (Li and Doshi,
2011)

— — — CYP1A2, CYP2D6, CYP3A
(Shen et al., 1997)

Milk thistle (Silybum
marianum)

MDR1 (Zhou et al., 2004;
Budzinski et al., 2007)
CYP3A4 (Brantley et al.,
2013)

— — — CYP1A2, CYP2C9, CYP2D6,
CYP2E1, CYP3A4 (Gurley
et al., 2004; Kawaguchi-
Suzuki et al., 2014);
CYP3A4 (Gurley et al.,
2006)

Silymarin CYP3A4 (Venkataramanan
et al., 2000); OATP1B1,
OATP1B3, OATP2B1
(Köck et al., 2013); GT1A6/
GT1A9 (Venkataramanan
et al., 2000)

— — —

(continued )
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used to unite the various preclinical data to provide more accurate
clinical predictions. In addition to these issues, a variety of milk thistle
extracts had been used in the various clinical trials, which further
complicated the interpretation of data. The experience with milk thistle
demonstrates how the piecemeal application of some, but not other,
preclinical drug interaction studies as well as the failure to unite them

with modeling can lead to clinical trials that do not corroborate
preclinical predictions of drug interactions.
For several other popular botanical dietary supplements, the pre-

clinical testing data for drug–botanical dietary supplement interactions
are incomplete or are simply not predictive of clinical effects. In the case
of valerian (Table 1), preclinical data predicting drug–botanical dietary

TABLE 2

Popular natural products supplements with preclinical but no clinical drug interaction data

Dashes indicate no data found.

Common Name (Latin Binomial)

Preclinical Interactions Clinical Interactions

Inhibition Induction Inhibition Induction
No

Effect

Bilberry (Vaccinium myrtillus) OATP2B1 (Mao et al., 2013) — — — —

Cannabinoids — CYP1A2 (Stout and Cimino,
2014)

— — —

Dandelion (Taraxacum spp.) CYP1A2 (Maliakal and Wanwimolruk, 2001) UDPGT (Zhou et al., 2004) — — —

Dong quai (Angelica sinensis)a,b CYP1A (Lin et al., 1998); CYP3A4 (Guo et al., 2001) CYP2D6 (Tang et al., 2006);
CYP3A4 (Gurley et al., 2006)

— — —

Evening primrose oil (Oenothera biennis)a Cis-linoleic acid: CYP1A2 (Zou et al., 2002);
CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Netsch
et al., 2006)

— — — —

Feverfew leaf (Tanacetum parthenium) CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Li and
Doshi, 2011)

— — — —

Grape seed (Vitis vinifera) OATP2B1 (Mao et al., 2013) — — — —

Hops (Humulus lupulus) CYP1A2 (Yuan et al., 2014); CYP2C8, CYP2C9,
CYP2C19 (Whitten et al., 2006)

— — — —

Licorice root (Glycyrrhiza glabra,
G. uralensis, and G. inflate)a

CYP2A1 (Paolini et al., 1999); CYP2B6, CYP2C8,
CYP2C9, CYP2C19 (Johne et al., 1999; Lefebvre
et al., 2004); CYP3A4 (Johne et al., 1999; Gorski
et al., 2004; Lefebvre et al., 2004); UGT1A1 (Guo
et al., 2013)

CYP1A2 (Kent et al., 2002);
CYP2B6 (Lefebvre et al.,
2004)

— — —

Plant sterols (e.g., sitosterol) MDR1 (Nabekura et al., 2008); MRP1 (Chow et al.,
2006)

— — — —

Red clover (Trifolium pretense) CYP1B1 (Roberts et al., 2004); CYP2C8 (Liang et al.,
2003; Piersen et al., 2004); CYP2C9 (Lin et al.,
1998; Maliakal and Wanwimolruk, 2001)

— — — —

Turmeric (Curcuma longa) Curcumin: CYP1A2 (Appiah-Opong et al., 2007);
CYP2B6, CYP2C9, CYP2D6, CYP3A4 (Yuan
et al., 2014)

— — — —

Yohimbe (Pausinystalia yohimbe)a CYP2D6 (VandenBrink et al., 2012) — — — —

UGT, UDP-glucuronosyltransferase.
aClinical interactions have been noted, as reported by Tsai et al. (2014).
bClinical interactions have been reported, as noted by Hu et al. (2005).

TABLE 1—Continued

Common Name (Latin
Binomial)

Preclinical Interactions Clinical Interactions

Inhibition Induction Inhibition Induction No Effect

Silibinin CYP2C9 (Beckmann-Knopp
et al., 2000; Sridar et al.,
2004; Jancová et al., 2007);
CYP3A4 (Zuber et al.,
2002; Sridar et al., 2004)

— — —

Saw palmetto (Serenoa
repens)

CYP2C9, CYP2D6, CYP3A4
(Yale and Glurich, 2005)

— — — CYP1A2, CYP2E1 (Gurley
et al., 2004); CYP2D6,
CYP3A4 (Markowitz et al.,
2003b)

St. John’s wort
(Hypericum
perforatum)a,b,c

— CYP3A4, MDR1
(Moore et al., 2000;
Wang et al., 2001)

— CYP3A4 (Whitten
et al., 2006); MDR1
(Johne et al., 1999)

CYP1A2, CYP2C9, CYP2D6
(Wang et al., 2001)

CYP2D6, CYP2E1 (Gurley
et al., 2002)

Valerian (Valeriana
officinalis)

CYP2C19, CYP2D6,
CYP3A4, MDR1 (Lefebvre
et al., 2004; Strandell et al.,
2004)

— — — CYP1A2, CYP2D6, CYP2E1,
CYP3A (Gurley et al.,
2005); CYP3A4, CYP2D6
(Donovan et al., 2004)

aClinical interactions have been noted, as reported by Tsai et al. (2014).
bClinical interactions have been reported, as noted by Hu et al. (2005).
cClinical interactions have been noted, as reported by No-wack (2008).
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supplement interactions were reported in the same year as the first
negative clinical data; thus, each set of data might have been produced
without knowledge of the others. The preclinical data for valerian were
obtained using recombinant enzymes (Lefebvre et al., 2004; Strandell
et al., 2004) and predicted mild interactions. The first clinical trial of
drug–valerian interactions showed no effects (Donovan et al., 2004),
and the lack of clinical effect was confirmed in another clinical trial
reported a year later (Gurley et al., 2005).
Although the preclinical data for saw palmetto (Table 1) suggested no

inhibition of CYP2D6 or CYP3A4 using recombinant protein (Budzinski
et al., 2000), clinical trials were conducted and showed no evidence of
drug–saw palmetto interactions (Markowitz et al., 2003). Interestingly, a
later study did show preclinical inhibition of CYP2D6, CYP3A4, and
CYP2C9 using recombinant enzymes (Yale and Glurich, 2005), which
further highlights the problem of incomplete preclinical data used to inform
clinical trial decisions. In the case of ginseng (Table 1), preclinical studies
with human liver cells predicting drug interactionswere not corroborated in
a clinical trial (Anderson et al., 2003). A similar outcome was observed for
ginkgo (Table 1), when preclinical work with both recombinant protein
(Yale and Glurich, 2005) and liver microsomes (Ohnishi et al., 2003)
predicted inhibition of several P450 enzymes, but no drug–ginkgo
interactions was observed in a clinical trial (Gurley et al., 2002).
These many examples indicate that clinical trials often fail to confirm

drug–botanical dietary supplement interactions that were predicted by
common preclinical experiments. We assert that this is a failure of
current preclinical models used to predict clinical drug interactions. To
correct this problem, we suggest that more rigorous preclinical testing

of botanical dietary supplements can better inform which botanicals to
investigate in clinical trials and can inform the design of these trials.

Recommendations for Future Interaction Studies

To avoid expensive human trials that show no effects, we suggest
alternative preclinical testing methods to predict drug–botanical dietary
supplement interactions more accurately and to provide data for prioritiz-
ing botanical dietary supplements for clinical evaluation (Fig. 2). This
workflow for drug–botanical dietary supplement studies is based on the
FDA guidance for industry—drug interaction studies (http://www.fda.gov/
downloads/drugs/guidancecomplianceregulatoryinformation/guidances/
ucm292362.pdf) and may also be used to inform experimental design. Our
workflow highlights the importance of each preclinical assay before
moving to clinical trials. We also suggest that the scheme in Fig. 2 should
be amended as new and updated preclinical models become available.
To minimize discrepancies between preclinical and clinical trials, the

same botanical material or extract should be used at all stages of study.
More uniform interlaboratory results can be obtained by standardizing
botanical dietary supplements both chemically, based on active
compounds, and biologically through bioassays. The U.S. Pharmaco-
peial Convention provides guidance on standardization of botanical
dietary supplements, and the USP Dietary Supplement Reference
Standards are available to facilitate standardization (http://www.usp.
org/dietary-supplements/overview). AOAC International also provides
guidance on chemical standardization of botanical dietary supplements
(http://www.aoac.org/iMIS15_Prod/AOAC/SD/SPDS/AOAC_Mem-
ber/SH/SPDSCF/SPDSM.aspx?hkey=b8cbd524-33d1-4e51-8cc0-
4e2028c367f2). The goal of chemical and biologic standardization is to
ensure that the botanical dietary supplement will have reproducible
effects for research purposes as well as for consumers. For additional
information regarding standardization of botanical dietary supplements,
see our recent perspective (van Breemen, 2015).
Another reason for the inconsistencies between preclinical data and

clinical results is that the preclinical assays do not take into account
bioavailability of the relevant natural products. For example, if the
botanical natural products responsible for preclinical inhibition of P450
enzymes are not absorbed after oral administration (Shen et al., 1997),
then they would be unlikely to have any effects on phase I metabolism in
humans. Inactivation of these compounds by phase II enzymes via first-
pass metabolism would also lower their bioavailability and minimize the
possibility of drug–botanical dietary supplement interactions. This
reinforces the need for the study of the intestinal absorption and phase
I and II metabolism of botanical natural products. Therefore, it is
important to start with predictors of bioavailability such as the Caco-2
permeability assay to predict uptake and tissue accumulation. Such
studies also allow for the exploration of the effects on drug transporters
that can be very important in drug–botanical dietary supplement
interactions. Next, serum-binding assays of bioavailable natural products
should be carried out to predict alterations of drug distribution.
The frequency of botanical natural products showing P450 inhibition

in preclinical studies without similar effects in humans suggests that
most preclinical methods are over-estimating inhibition. One possible
solution might be the emerging use of human hepatocytes in place of
liver microsomes to investigate inhibition as well as induction of drug-
metabolizing enzymes (Zhao. 2008; Xu et al., 2009; Chen et al., 2011;
Li and Doshi, 2011). We agree with Mao et al., and others who have
also suspected that the use of microsomes tends to overestimate P450
enzyme inhibition, and that incorporating cell membrane permeability
and phase II enzyme transformation with intact hepatocytes will
provide a more reliable prediction of natural product interactions with
P450 enzymes (Li et al., 2011; Mao et al., 2011). It might be ideal to

TABLE 3

Popular natural product supplements with no reported preclinical or clinical drug
interaction data

Common Name (Latin Binomial)

Acai (Euterpe oleracea)a

Alfalfa (Medicago sativa)a

Aloe vera (Aloe vera)a

Artichoke (Cynara spp.)
Barley (Hordeum vulgare)
Bromelain (Ananas comosus)
Cascara sagrada (Frangula purshiana)
Cayenne (Capsicum annuum)
Chia seed/oil (Salvia hispanica)
Cinnamon (Cinnamomum spp.)
Coconut oil (Cocos nucifera)
Damiana leaf (Turnera diffusa)
Elderberry (Sambucus nigra)
Eyebright herb (Euphrasia spp.)
Fennel (Foeniculum vulgare)
Fenugreek (Trigonella foenum-gracecum)
Flaxseed (Linum usitatissimum)
Ginger (Zingiber officinale)
Gotu Kola (Centella asiatica)
Gymnema (Gymnema sylvestre)
Hawthorn (Crataegus spp.)a

Horehound (Marrubium vulgare)
Horny goat weed (Epimedium spp.)
Horsetail (Equisetum spp.)
Horse chestnut seed (Aesculus hippocastanum)
Kelp (Laminaria digitata)
Maca (Lepidium meyenii)
Olive leaf (Olea europaea)
Pycnogenol (Pinus pinaster)
Red yeast rice (Monascus purpureus)a

Senna (Senna alexandrina)
Slippery elm bark (Ulmus rubra)
Spirulina (Arthrospira spp.)
Tribulus (Tribulus terrestris)
White kidney bean (Phaseolus vulgaris)

aClinical interactions have been noted, as reported by Tsai et al. (2014).
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combine inhibition and induction studies in a single assay by de-
termining both P450 activities and expression changes simultaneously.
We believe it is important to study both enzyme expression and activity
as these complementary data provide different pieces of information.
These data should corroborate each other while providing strong

evidence, or lack thereof, of drug–botanical dietary supplement
interactions.
To improve the predictive accuracy of preclinical assays of drug–

botanical dietary supplement interactions, it is ideal to use a model-
based form of evaluation of interactions to determine whether clinical
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Fig. 2. Suggested drug-botanical interaction investigation work flow. (A) For a botanical dietary supplement, the potential for P450 interactions must first be determined,
followed by the identification of active compounds. (B) For an active compound either alone or in an extract, the absorption, efflux, and importance of transporters will first
be predicted using the Caco-2 permeability assay. If there is significant absorption, the amount of free compound in serum will be predicted using rapid equilibrium dialysis.
If the properties of the extract or compound are sufficient, drug interaction experiments will then be conducted using the previous experiments to inform concentration
decisions. Induction of P450 enzyme activity and mRNA expression will be examined using hepatocytes and/or HepaRG cells. CYP450, cytochrome P450; LCMS, liquid
chromatography-mass spectrometry; qPCR, quantitative polymerase chain reaction.
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studies are necessary (Espié et al., 2009). The most inclusive models are
dynamic models such as pharmacologically based pharmacokinetics
(PBPK). PBPK uses mathematical models to predict absorption,
distribution, metabolism, and excretion. These models integrate pre-
clinical protein/tissue binding, metabolism, transport, and drug–
botanical dietary supplement interaction data with physiochemical data
and any pharmacokinetic data available to create a system model of the
body. These modeling data could then be used to determine the need for
clinical studies, guide the design of Rx-drug interaction experiments,
predict the magnitude of interactions, and even predict at-risk
populations. When designing these models, it will be important to
consider any model assumptions, physiologic and biologic plausibility,
parameters origins, as well as uncertainty and variability.

Importance of Further Investigation

Some botanical dietary supplements have been shown in clinical trials
to cause drug–botanical dietary supplement interactions, but these effects
are generally mild to moderate. We suspect this trend will continue with
future investigations of drug interactions with the most popular botanical
dietary supplements. Occasionally, as in the case of St. John’s Wort, these
drug interactions may prove to be significant. For botanical dietary
supplements with a long history of use and/or food without incident, the
risk for drug–botanical dietary supplement interactions is likely to be low.
However, without preclinical experimentation, these interactions will not
be recognized until consumers have already been negatively affected.
Currently, the primary methods for evaluating the potential for drug–

botanical dietary supplement interactions include the use of human liver
microsomes and primary human hepatocytes to determine inhibition and
induction, respectively, of P450 enzymes and the use of Caco-2 human
epithelial colorectal adenocarcinoma cell monolayer model to predict
absorption and efflux. However, these assays are used sporadically, rather
than systematically. By using these preclinical assays in tandem along
with physiologically based pharmacokinetic modeling, probable drug–
botanical dietary supplement interactions that should be tested in clinical
trials can be more accurately predicted. The resulting clinical trials
measuring the effects of botanical dietary supplements on P450 enzymes
using probe drugs will be more likely to produce relevant safety data.
Studies of possible drug–botanical dietary supplement interactions

are especially important considering that manufacturers of botanical
dietary supplements are not required to generate these data before
production and sale, and because consumers frequently use botanical
dietary supplements simultaneously with prescription medications.
With the lack of knowledge regarding possible drug–botanical dietary
supplement interactions, we put health at risk, especially for vulnerable
populations, who often turn to botanical dietary supplements when
conventional medicine fails them. There is an unmet need to carry out
studies of potential drug–botanical dietary supplement interactions that
will provide crucial safety information for consumers as well as guide
suppliers toward product improvements.
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