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Abstract

Single-molecule localization microscopy achieves subdiffraction-limit resolution by localizing a 

sparse subset of stochastically activated emitters in each frame. Its temporal resolution is limited 

by the maximal emitter density that can be handled by the image reconstruction algorithms. 

Multiple algorithms have been developed to accurately locate the emitters even when they have 

significant overlaps. Currently, compressive-sensing-based algorithm (CSSTORM) achieves the 

highest emitter density. However, CSSTORM is extremely computationally expensive, which 

limits its practical application. Here, we develop a new algorithm (MempSTORM) based on two-

dimensional spectrum analysis. With the same localization accuracy and recall rate, 

MempSTORM is 100 times faster than CSSTORM with ℓ1-homotopy. In addition, Memp-

STORM can be implemented on a GPU for parallelism, which can further increase its 

computational speed and make it possible for online super-resolution reconstruction of high-

density emitters.

Single molecule localization based super-resolution microscopy techniques [1–3] achieve 

sub-diffraction-limit resolution by stochastically activating and localizing a sparse subset of 

emitters with nanometer resolution. The final super-resolution image is reconstructed from 

thousands of frames, which generally takes tens of minutes. This greatly limits its 

application from live cell imaging.

One way to improve the temporal resolution is to increase the number of emitters localized 

at each frame. Multiple algorithms have been developed to locate emitters even when they 

significantly overlap with each other [4–7]. Among these algorithms, compressive-sensing-

based method (CSSTORM) [4] utilizes the sparsity of the signal in each frame and achieves 

the state-of-the-art recall rate and localization accuracy when the density is as high as 10 

emitters/µm2. However, CSSTORM solves a large-scale convex problem and suffers from 
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high computation complexity. In addition, it experiences the intrinsic bias due to the 

discretization of the two-dimensional (2D) parameter space [8].

By transforming the super-resolution imaging model to the frequency domain, the problem 

of emitter localization becomes 2D spectrum estimation, a problem often encountered in 

signal processing. We developed an algorithm (MempSTORM) based on a 2D spectrum-

estimation method called matrix enhancement and matrix pencil (MEMP) [9] to extract the 

number of emitters and their positions by determining the 2D frequencies.

We have extensively tested the method by both simulation and experimentation. 

MempSTORM achieves the same localization accuracy and recall rate as the CSSTORM, 

but is 100 times faster in computation. The most time-consuming steps of MempSTORM 

are a truncated singular-value decomposition (SVD) and two generalized eigenvalue 

decomposition. MempSTORM can be further speeded up by implementing on a GPU.

The 2D point spread function (PSF) of a microscope can be approximated by a Gaussian 

function [10]:

(1)

where σ is the standard deviation of the Gaussian function, and (x, y) ∈ ℝ2 is the 2D spatial 

coordinate. The signal s(x, y) received at the camera can be represented as a weighted 

summation of the shifted PSFs from all the I emitters:

(2)

where ci is the intensity of the emitter i, and (xi, yi) ∈ ℝ2 represents its location. The 2D 

continuous-time Fourier transform (CTFT) of the image can be written as

(3)

(4)

where ℱ(u, v) is the CTFT of f(x, y).

The image s = {s[m, n]} acquired by the camera is a matrix of size M × N, where s[m, n] 

represents the intensity value of the pixel at (m, n) obtained by integrating s(x, y) over the 

pixel area, approximated as

(5)
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where 1 ≤ m ≤ M, 1 ≤ n ≤ N, and A is the area of a pixel. The discrete Fourier transform 

(DFT) S {S[k, l]} of s can be approximated as

(6)

where F[k, l] = ℱ(k/M, l/N), for 1 ≤ k ≤ M and 1 ≤ l ≤ N. Denote , and divide 

both sides of Eq. (6) by F[k, l], we obtain

(7)

After these transformations, the problem of emitter localization becomes a 2D frequency-

estimation problem in Eq. (7). We apply the MEMP method [9] for the frequency estimation 

step, considering its low computational cost and capability to resolve high-density signals.

We further rewrite Eq. (7) into

(8)

where pi = e−j2πf1i, qi = e−j2πf2i are called the 2D poles. With this notation, we can write R = 

{R[k, l]} as an M × N matrix with the following factorization:

(9)

where

(10)

(11)

(12)
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From Eqs. (9)–(12), in principle one can obtain {pi; i = 1, …, I} and {qi; i = 1, …, I} from 

the left and right principal singular vectors of R. However, pi and qi cannot be obtained from 

the SVD when either set of {pi; i = 1, …, I} or {qi; i = 1, …, I} does not contain distinct 

elements, due to the rank deficiency of R, i.e., rank(R) < I.

To solve this problem, a partition-and-stacking process, referred to as matrix enhancement 

[9], is applied before SVD. The enhanced matrix Re is defined as a block Hankel matrix of 

size K × (M − K + 1):

(13)

where each block Rm, 0 ≤ m ≤ M − 1, is a Hankel matrix of size L × (N − L + 1) defined as

It is shown in [9] that rank(Re) = I as long as the two pencil parameters K and L

(14)

eliminating the earlier described rank deficiency issue.

In the noise-free case, the SVD of Re can be given as

(15)

where U = [u1, …, uI] ∈ ℂKL×I, Σ = diag(σ1, …, σI) ∈ ℝI×I, V = [v1, …, vI] ∈ 

ℂ(M−K+1)(N−L+1)×I, respectively.

In the case when Re is noisy, we can similarly define U, Σ, and V as the top I left singular 

vectors, singular values, and right singular vectors of Re.

Denote the ith column of UH as wi, then UH = [w1, w2, …, wKL]. Further define Up ∈ ℂKL×I 

by permuting the rows of U as

(16)

Define U1 ∈ ℂ(K −1)L×I as the submatrix of U by deleting its last L rows, 

 and U2 ∈ ℂ(K −1)L×I as the submatrix of U by deleting its first L 

rows, U2 = [wL+1, …, wKL], then the matrix pencil U2 − λU1 can be written as [9]
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(17)

where Yd = diag(p1, …, pI) is a diagonal matrix of the poles {pi; i = 1, …, I}, E and T are 

full-rank matrices. Thus the poles {pi; i = 1, …, I} can be found as the rank-reducing 

numbers λ such that the matrix pencil U2 − λU1 is rank-deficient. This can be achieved by 

solving a generalized eigenvalue decomposition.

Similarly, {qi; i = 1, …, I} can be found as the rank-reducing numbers of the matrix pencil 

U4 − λU3, where U3 ∈ ℂK (L−1)×I as the submatrix of Up by deleting its last K rows, 

, and U4 ∈ ℂK (L−1)×I as the submatrix of Up by deleting its first 

K rows, , which again can be done by solving a generalized 

eigenvalue decomposition.

After extracting {pi; i = 1, …, I} and {qi; i = 1, …, I} separately, we need to further 

determine the one-to-one (or one-to-more, if there are multiplicity in the retrieved poles) 

correspondence between the poles to fully determine the set of 2D poles. First, we consider 

all the possible pairings between {pi; i = 1, …, I} and {qi; i = 1, …, I}, with a total of no 

more than I2 pairs. We then pose a non-negative least-squares problem, by minimizing the 

quadratic loss between the data matrix R and the fitting using all possible pairs, given in Eq. 

(9), under the constraint that the coefficient of each pair is non-negative. We then select I 

pairs corresponding to the highest coefficients. From the paired 2D poles {(pi, qi); i = 1, …, 

I}, the set of 2D frequencies (f1i, f2i) as well as the positions (xi, yi) of the I emitters can be 

calculated.

In implementing the above MempSTORM method, a pair of pencil parameters K and L 

needs to be chosen for matrix enhancement. Equation (14) is a sufficient condition for the 

rank of enhanced matrix Re to be I. Under this condition, the rule of thumb is to choose K 

and L such that the enhanced matrix Re is as square as possible, i.e., choose K to be close to 

(M + 1)/2 and L to be close to (N + 1)/2. Moreover, since the number of emitters I is not 

known a priori, we choose a threshold value and determine the number of emitters as the 

number of singular values of Re that is larger than the threshold. The threshold value is 

chosen such that the sum energy of the selected singular vectors is 80%–90% of the total.

For super-resolution image reconstruction, the noise in the frequency domain has similar 

energy across different frequencies due to the Poisson noise in the spatial domain. However, 

the energy of the signal is not uniformly distributed in the frequency domain due to the 

shape of the PSF. Instead, most of the energy is concentrated in the low frequency with the 

high-frequency components dominated by noise. In practice, we only use entries that 

correspond to the low-frequency region of R and apply MEMP on a truncated data matrix. 

For an image of size 30 × 30, we only use the submatrix of size 11 × 11 of Eq. (7) that 

corresponds to the low-frequency region of the image to generate the matrix enhancement.

To evaluate the performance of MempSTORM, we generate a series of simulated STORM 

movies of size 30 × 30 across a range of emitter densities (0.5 emitter/µm2 to 9 

emitters/µm2). An average photon number of 1500 per emitter is used in the simulation. The 
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movies are comparatively analyzed using MempSTORM and CSSTORM [4]. We 

implement CSSTORM using ℓ1-homotopy, which has been proven to be two orders of 

magnitude faster than CVX implementation [11]. An up-sampling factor of 8 is used in 

CSSTORM. As shown in Fig. 1, MempSTORM achieves the same level of identified 

density and false discovery rate as CSSTORM, and maintains similar precision with 

CSSTORM. The false discovery rate is defined as the percentage of incorrectly detected 

emitters in all detected emitters. Most importantly, MempSTORM is more than 100 times 

faster than CSSTORM in most densities [Fig. 1(d)].

To examine the bias of MempSTORM, we simulate a stack of images of size 30 × 30 with a 

single emitter positioned randomly. The photon number of the emitter is set to 1500. The 

localization bias is plotted as a function of the emitter location in both the x and y direction. 

As shown in Fig. 2, there is no bias associated with the MempSTORM method.

We then evaluated the performance of MempSTORM when the number of photons varies. A 

series of STORM images with different emitter photon numbers are generated and analyzed. 

The performance of MempSTORM deteriorates when the number of photons decreases, but 

within a tolerable range (Fig. 3). Even when the photon number is as low as 500, 

MempSTORM can still detect a reasonable amount of emitters with high precision (<50 

nm).

To further test the practical applicability of MempSTORM, we analyze STORM images of 

microtubules stained with Alexa 647 in HeLa cells. In total, 5000 frames were acquired at 

56 frames per second. Figure 4 shows the comparison of reconstructed microtubule images 

using the MempSTORM and CSSTORM methods, where MempSTORM achieves similar 

performance with CSSTORM. However, the reconstruction time using MempSTORM is 

only 20 min, while with the same computational configurations, CSSTORM requires more 

than 100 h.

In conclusion, we have developed the MempSTORM method for super-resolution imaging 

with high emitter densities, which significantly improves the temporal resolution of 

STORM. MempSTORM achieves the same performance as the current state-of-the-art 

method, CSSTORM, but is more than 100 times faster.

The experiments in this Letter were performed on the compute nodes of the Ohio 

Supercomputing Center Oakley cluster. Each node has one Intel Xeon X5650 CPU clocked 

at 2.66 GHz and 48 GB of memory. Currently, the algorithm is implemented in MATLAB. 

By porting the algorithm to C/C++ and using GPU parallelism, we expect to further 

accelerate the analysis and make online reconstruction of dense emitter images practical.
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Fig. 1. 
Comparison of (a) the identified density, (b) false discovery rate, (c) precision, and (d) 

execution time between MempSTORM and CSSTORM.
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Fig. 2. 
Bias of single-emitter localization using MempSTORM in (a) x direction and (b) y direction.
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Fig. 3. 
Comparison of (a) false-negative, (b) false discovery rate, and (c) precision when the emitter 

photon varies under different densities.
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Fig. 4. 
Reconstructed microtubule image using 5000 raw frames with (a) MempSTORM and (b) 

CSSTORM.
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