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A pivot mutation impedes reverse 
evolution across an adaptive landscape for drug 
resistance in Plasmodium vivax
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Abstract 

Background:  The study of reverse evolution from resistant to susceptible phenotypes can reveal constraints on bio-
logical evolution, a topic for which evolutionary theory has relatively few general principles. The public health catas-
trophe of antimicrobial resistance in malaria has brought these constraints on evolution into a practical realm, with 
one proposed solution: withdrawing anti-malarial medication use in high resistance settings, built on the assumption 
that reverse evolution occurs readily enough that populations of pathogens may revert to their susceptible states. 
While past studies have suggested limits to reverse evolution, there have been few attempts to properly dissect its 
mechanistic constraints.

Methods:  Growth rates were determined from empirical data on the growth and resistance from a set of combina-
torially complete set of mutants of a resistance protein (dihydrofolate reductase) in Plasmodium vivax, to construct 
reverse evolution trajectories. The fitness effects of individual mutations were calculated as a function of drug envi-
ronment, revealing the magnitude of epistatic interactions between mutations and genetic backgrounds. Evolution 
across the landscape was simulated in two settings: starting from the population fixed for the quadruple mutant, and 
from a polymorphic population evenly distributed between double mutants.

Results:  A single mutation of large effect (S117N) serves as a pivot point for evolution to high resistance regions 
of the landscape. Through epistatic interactions with other mutations, this pivot creates an epistatic ratchet against 
reverse evolution towards the wild type ancestor, even in environments where the wild type is the most fit of all gen-
otypes. This pivot mutation underlies the directional bias in evolution across the landscape, where evolution towards 
the ancestor is precluded across all examined drug concentrations from various starting points in the landscape.

Conclusions:  The presence of pivot mutations can dictate dynamics of evolution across adaptive landscape through 
epistatic interactions within a protein, leaving a population trapped on local fitness peaks in an adaptive landscape, 
unable to locate ancestral genotypes. This irreversibility suggests that the structure of an adaptive landscape for 
a resistance protein should be understood before considering resistance management strategies. This proposed 
mechanism for constraints on reverse evolution corroborates evidence from the field indicating that phenotypic 
reversal often occurs via compensatory mutation at sites independent of those associated with the forward evolu-
tion of resistance. Because of this, molecular methods that identify resistance patterns via single SNPs in resistance-
associated markers might be missing signals for resistance and compensatory mutation throughout the genome. In 
these settings, whole genome sequencing efforts should be used to identify resistance patterns, and will likely reveal 
a more complicated genomic signature for resistance and susceptibility, especially in settings where anti-malarial 
medications have been used intermittently. Lastly, the findings suggest that, given their role in dictating the dynamics 
of evolution across the landscape, pivot mutations might serve as future targets for therapy.
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Background
In recent years, experts have introduced several new 
perspectives on the management of drug resistance in 
malaria and other infectious diseases. These include criti-
cisms of the aggressive use of therapeutic agents [1–3], 
the broader encouragement of more responsible use of 
antimicrobials [4–7] and the exploration of drug cycling 
strategies [8–13]. Drug stewardship programmes have 
been successful in several settings, and declines in drug 
resistance have been observed following changes in anti-
biotic use [14, 15]. There are other settings, however, 
where more careful use of antibiotics was not so effec-
tive, microbial populations remaining highly resistant 
even after removal of drug [16–19], an outcome with 
serious health and financial consequences. Pathogens 
might remain resistant to antimicrobials even after their 
removal for several reasons, among them compensatory 
mutations at other loci that counteract any fitness cost of 
drug resistance [18, 20, 21]. While compensatory muta-
tions at other loci underlie many long-term fixation pat-
terns in clinical infections, it is not fully understood why 
compensatory mutation is necessary, rather than the evo-
lutionary undoing of mutations that ‘fixed’ in the process 
of forward resistance evolution.

The lack of a coherent understanding of reverse evo-
lution is partly due to conceptual ambiguity: the term 
‘reverse evolution’ is misleading, as it implies directional-
ity in a process (Darwinian evolution) that is near-sighted 
and agnostic with regard to goal. This has spawned simi-
larly dubious concepts, such as Dollo’s Law, asserting 
that evolution is intrinsically irreversible [22] because it 
would require two independent, low-probability events, 
occurring along the same pathway, but in opposite 
order [23]. Consequently, few studies have examined the 
molecular pathways through which reverse evolution 
across an antimicrobial resistance adaptive landscape is 
likely to occur. One such study of cefotaxime/pipericil-
lin resistance in Escherichia coli highlighted that epistasis 
may wire ‘hidden randomness’ into adaptive landscapes 
that prevents reverse evolution [24]. A landmark study of 
reverse evolution in the vertebrate glucocorticoid recep-
tor identified a combination of five mutations, labelled 
an ‘epistatic ratchet’, that precludes evolution towards 
the ancestral state [25]. Studies of this sort are even less 
frequent as they pertain to the problem of malaria drug 
resistance, which remains the cause of a global pandemic 
complicated by widespread resistance [26].

Approaches utilizing all possible combinations of a 
suite of mutations associated with resistance can help 
to resolve the likelihood of adaptive evolution occur-
ring through certain pathways [27–31]. This study uses 
empirical data from a combinatorial analysis of Plasmo-
dium vivax dihydrofolate reducatase (DHFR) mutants, 
evolutionary theory, and individual-based simulations 
to uncover factors that affect the likelihood of reverse 
evolution across pyrimethamine (PYR) concentra-
tions. In doing so, it proposes a method for determining 
whether reverse evolution will occur across an adaptive 
landscape. By measuring the fitness effects of individual 
mutations, the study uncovers the existence of a muta-
tional pivot with potentiated genotype-by-environment 
(G × E) effects that may direct evolution towards or 
constrain evolution from areas of the landscape with 
high resistance or fitness. In addition, these mutations 
attract interactions with other mutation sites, creating 
an epistatic ratchet, limiting reverse evolution across a 
landscape. Lastly, the study discusses the implications 
of these findings for evolutionary theory, molecular 
epidemiology and in two clinically relevant contexts: 
(1) the use of existing drugs for resistance management 
in malaria, and, (2) the rational design of drugs that 
might target certain amino acid residues of a resistance 
determinant.

Methods
System of study and growth rates
The study modelled empirical growth and resistance 
(IC50) data developed in a prior study [32] in strains of 
transgenic Saccharomyces cerevisiae carrying P. vivax 
DHFR containing a set of four mutations orthologous to 
the resistance mutations found in Plasmodium falcipa-
rum [30], in all combinations, several of which have been 
isolated from field settings [33–46]. The combinatorial 
approach is an effective way to create empirical adaptive 
landscapes for final phenotypes when all intermediate 
genotypes can be reconstructed in the protein of interest, 
often in a transgenic setting (Saccharomyces cerevisiae in 
this case). Because of this, this approach is not meant to 
be a literal analogue for drug treatment, but does effec-
tively test important properties of protein evolution. 
Results derived from prior studies of this kind have reca-
pitulated findings from the field [29, 32], reaffirming that 
this approach has utility in understanding the evolution 
of drug resistance.

Keywords:  Plasmodium vivax, Pyrimethamine resistance, Adaptive trajectories, Reverse evolution, Gene by 
environment interactions
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This study used bit-string notation, with 0 correspond-
ing to the presence of the ancestral state mutation, and 1 
a replacement of a mutation observed to confer varying 
levels of fitness in the presence of drug concentrations. 
The individual amino acid sites are N50I (1***), S58R 
(*1**), S117N (**1*), and I173L (***1). A diagram of the 
possible evolutionary trajectories from the state 1111 to 
0000 is shown in Fig. 1a.

A logistic growth equation was used to model growth 
rates across a range of concentrations (Fig.  1b). The 
growth equation, as described in Jiang et  al. [32] is as 
follows:

where gdrugless is the growth rate in the presence of no 
drug, the IC50 value in μM and the c a constant that 
determines the slope of the curve. The estimated growth 
rates are robust with regard to estimation error, as the 
standard errors of the estimated IC50 parameters are 
quite low, generally less than 10  % of the mean (Addi-
tional file  1). The growth rates in the study are deter-
mined across a broad range (Fig.  1b, Additional file  2) 
which includes those concentrations of PYR observed 
in the blood of persons treated with PYR [47–51]. The 
study used these growth rates to determine the accessi-
bility of pathways, as in prior studies. In order to iden-
tify an accessible pathway, the rank orders between 
alleles must decrease from step-to-step, indicating that 
a mutation is moving to a higher fitness portion of the 
landscape (a ranking of 1 meaning the most fit allele in 
the landscape). Figure  1c demonstrates how the rank 
order of fitnesses changes as a function of drug concen-
tration (values in Additional file 3). For the purposes of 
this study, one should note how often the lines cross one 

(1)g(x) =
gdrugless

1+ e
IC50−x

c

another at different drug concentrations. This indicates 
the presence of gene by environment (G ×  E) interac-
tions that alter the structure of the adaptive landscape 
and create different evolutionary dynamics in different 
drug environments.

Fitness effect of mutations
To estimate the interaction between the effect of muta-
tion and drug concentration (G  ×  E interaction), the 
effect of individual mutations across drug concentrations 
was calculated [52]. For the P. vivax DHFR landscape, 
each mutant site has eight possible genetic backgrounds 
to which it could be added. To calculate the effect of a 
mutation, take the difference between the fitness (W) of 
an allele j and the one-step neighbour carrying mutation 
ε, where ε corresponds to mutations: N50I (1***), S58R 
(*1**), S117N (**1*), and I173L (***1):

This was calculated for each of the four mutations 
across a range of drug concentrations (between 0 and 
approximately 8000  μM). After calculating the fitness 
effect of mutations across drug concentrations, the aver-
age fitness of all whole alleles carrying each of the four 
mutations (1***, 1***, **1*, ***1) was measured and com-
pared using ANOVA to determine any significant differ-
ences between mutant classes (Additional file 4).

Measuring epistasis
Embedded in Fig.  3a is epistasis, or the “surprise at the 
phenotype when mutations are combined, given the con-
stituent mutations’ individual effects” [52]. Epistasis was 
measured by calculating the standard deviation of the 
total fitness effects for a mutation at a given concentra-
tion. These values were plotted in Additional file 5.

(2)�Wε = Wj −Wjε

Fig. 1  Alleles composing the Plasmodium vivax adaptive landscape for drug resistance in this study. a Schematic of the possible pathways between 
the most resistant allele (1111) and most susceptible (0000). b Growth rates of alleles in the landscape of P. vivax as observed in Jiang et al. [32] 
c Rank order curves for P. vivax in pyrimethamine. The y-axis depicts the rank order of alleles at a given drug concentration. The x-axis is in terms 
ln(concentration of PYR + 1) of the pyrimethamine drug concentration in μM. Note how regularly the lines intersect across drug concentrations. 
This indicates G × E interactions, which alters the structure of the landscape
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Simulations of evolution
Having identified the S117N mutation as having the 
greatest G x E effect, computer simulations were used to 
test whether these (or other) effects constrain evolution 
in certain directions. SimuPop was used as the simula-
tion convention, an individual-based, Wright–Fisher, 
forward-time simulation model [53] similar to that 
described by Jiang et al. [32]. In this model, generations 
are discrete (non-overlapping), with an effective popula-
tion size of 10,000. Mutation rates were determined by 
the relative rate matrix for P. vivax computed from data 
in Neafsey et al. [54]. For the purposes of converting the 
relative substitution rate matrix to a more realistic per-
generation rate matrix, mutation rates were divided by 
103 and then converted into amino acid substitution rates 
using the sum of substitution rates of nucleotides respon-
sible for drug resistance in P. vivax DHFR.

The mutation rates were also scaled by a factor of 1000 
to allow simulations with fewer individuals. Scaling 
involves dividing the population size by a scaling factor, 
m, and then multiplying the mutation rates by that same 
factor:

The simulations were designed to simulate the dynam-
ics of reverse evolution in two population genetic 
scenarios:

1.	 A population fixed for the most resistant (1111) allele 
for 1000 generations across a range of drug concen-
trations (~3000, ~400, ~55, ~7 μM). This allows one 
to observe the general dynamics of reverse evolu-
tion, and test whether reversion towards the wild 
type (0000) ever occurs. The most obvious predic-
tion would be that at the extremely high PYR concen-
tration (~3000  μM), the population should remain 
trapped on the 1111 allele, as it is the most resistant 
allele in the set and has the highest growth rate at the 
highest concentration (Fig. 1b, c, Additional file 3).

2.	 A population composed equally of all six dou-
ble mutants (1100, 1010, 1001, 0011, 0101, 0110), 
evolving in the absence of drug. Because the double 
mutants are in the centre of the landscape (in terms 
of Hamming distance between 0000 and 1111), simu-
lations with them as a starting point would uncover 
any intrinsic landscape bias towards forward or 
reverse evolution.

Results
The structure of reverse evolution trajectories
Using fitness values for P. vivax based on Eq.  1, three-
dimensional representations of all possible trajectories 

(3)Ne · µ =
Ne

m
(µ ·m)

were constructed for each drug across several drug con-
centrations (Fig.  2). In particular, one should highlight 
the structure of the reverse evolutionary trajectories at 
the two lower drug concentrations (no drug and ~7 μM, 
Fig.  2a, b), as the wild-type ancestor (0000) has a rela-
tively high fitness in both (Fig.  1). Note the presence of 
fitness valleys in all trajectories between 1111 and 0000, 
even at low concentrations, indicating that 0000 is inac-
cessible through mutation-selection balance alone. This 
characteristic of the trajectories is further examined in 
other parts of this study. Keep in mind that the quadru-
ple mutant (1111) might not exist in nature for P. vivax 
DHFR. This means that this exact scenario might not 
reflect how reversal occurs in nature, but still changes lit-
tle about the purpose or relevance of the study: to diag-
nose features of the adaptive landscape that explain why 
reverse evolution might be difficult, rather than explain 
any single finding in any particular ecological context. In 
order to do so, evolution was modelled from one extreme 
of the landscape (1111) to the other (0000), all towards 
a conceptual and mechanistic understanding of the con-
straints on reverse evolution, suggesting forces at play in 
wild populations of malaria parasite.

Analysis of the fitness effects of mutations across drug 
concentrations reveals a single mutation of uncommonly 
large positive effect
The fitness effect of individual mutations across drug con-
centrations was then measured. Figure  3a displays both 
the average effects (solid lines) and individual effect points 
(scattered points). Here, one can see that the third site 
mutation, S117N (**1*) has a strongly positive fitness effect 
across environments (P = 2.22 × 10−8, Additional file 4). 
To observe how this mutation contributes to the fitness 
of alleles composing the landscape, the average growth 
rate of all alleles that carry each individual mutation was 
then calculated (Fig. 3b). This analysis reveals that alleles 
containing the S117N mutation have significantly higher 
growth rates across environments than alleles carrying the 
other mutations (P = 0.025; F = 5.7; df = 3, 36) (Fig. 3b).

Simulations of evolution
Next, evolution was simulated across the adaptive land-
scape to test whether S117N plays a key role in imped-
ing reversal in two settings: starting from (1) a population 
composed of the most resistant allele (1111), and, (2) 
from the centre of the landscape with a population 
divided equally between each of the six double mutants 
(see “Methods”). Figures  4 and 5 depict illustrative 
dynamics of evolution in these simulations, and Table 1 
contains a more detailed summary of all simulation runs.

Simulations demonstrate that populations fixed for 
the 1111 allele do not undergo reverse evolution to the 
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ancestral allele at any drug concentration (including the 
drugless environment) even after a thousand generations, 
but are trapped at the 1110 triple mutant fitness peak 
at most concentrations, with a small fraction of simula-
tions leading to the 0111 triple mutant (Fig. 4; Table 1). 
This finding reflects the fact that the 1110 triple mutant 
has a high growth rate even in the drugless environment, 
superior to all of its double- and single-mutant neigh-
bours. Although the 0110, 1110 and 0111 alleles (all of 

which contain the S117N mutation) have a growth rate 
lower than the ancestor (0000) in the no-drug environ-
ment, evolving populations are unable to cross the single-
mutant (1000, 0100, 0010, 0001) valley necessary to reach 
the ancestral genotype, precluding reverse evolution 
(Fig.  5). This is because the combination of the S117N 
mutation and the second-site mutation, S58R (*1**) 
has properties of an epistatic ratchet [25] that restricts 
reverse evolution: it is able to reproduce well enough at 

Fig. 2  The structure of reverse evolution trajectories in Plasmodium vivax. Twenty-four adaptive landscapes for P. vivax DHFR across several drug 
concentrations, organized into individual trajectories. The y-axis is growth rate. The x-axis denotes hamming distance from the original, which is the 
quadruple mutant (1111) in this study (0 = quadruple mutant, 1 triple mutant, 2 double mutant, 3 singe mutant, 4 ancestral allele), and the z-axis 
corresponds to the 24 different possible pathways between the most resistant allele (1111) and the ancestral allele (0000). Additional file 6 identifies 
the individual pathways a–x. Growth rates are in units of time−1. Concentrations: a no drug, b ~7 μM, c ~55 μM, d ~400 μM
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both higher drug concentrations and in the drugless envi-
ronment (Fig.  1b) to limit crossing the single mutation 
(0010 and 0100 in this case) valley necessary to reach the 
0000 absolute fitness peak in the drugless environment.

Conclusions
While irreversibility across an adaptive landscape for 
antimicrobial resistance has been observed in many 
pathogen types, this question has been relatively unex-
plored in malarial parasites and in particular, as it per-
tains to a mechanism underlying this constraint. In the 
case of malaria, several past studies from the field, involv-
ing both chloroquine and pyrimethamine, support the 

assertion that reverse evolution is improbable: in one 
instance, a population of P. falciparum resistant to chlo-
roquine reverted to wild type only after replacement with 
a migrant population composed of ancestral susceptible 
genotypes (rather than through de novo mutation and 
selection) [55]. In another, a population of P. falcipa-
rum resistant to pyrimethamine compensated through 
copy number variation in GTP cyclohydrolase in lieu of 
reversing the mutations already fixed in DHFR [56].

Although the study focused on P. vivax DHFR, it pro-
vides a conceptual basis for irreversibility in other resist-
ance proteins. The findings from the field, in combination 
with these results, imply that modern whole-genome 

Fig. 3  A single mutation potentiator of G × E effects, S117N, has uncommonly high fitness effects across a range of drug concentrations, and cre-
ates alleles that are of higher fitness. a Each colour represents the Δ fitness effect of a one of the four mutations, the difference between a genotype 
with and without a mutation. Each mutation has 8 possible genetic backgrounds. Small (unconnected) symbols are representative of Δ fitness effect 
measures for individual mutation effects in a particular genetic background. Large symbols, connected by lines, represent the average Δ fitness 
effect of a mutation over all 8 genetic backgrounds. The third site (S117N) mutation has a strong effect, creating high fitness alleles that foster for-
ward evolution and inhibit reverse evolution. The x-axis is in units ln(concentration of PYR + 1) μM. b Whole alleles carrying the G × E pivot muta-
tion (**1*) have significantly higher growth rates than the other alleles (averaged across drug concentrations). This graph differs from a because this 
does not depict fitness effects of single mutations, but rather, the total average fitness of whole alleles carrying the specified mutation

Fig. 4  Starting from the quadruple mutant (1111), reverse evolution towards the ancestor (0000) is impeded across concentrations. These are 
illustrative examples of the most preferred pathways for evolution at each of the simulated pyrimethamine environments, starting with the 1111 
quadruple mutant. Panels correspond to several simulation scenarios: a no drug, b low drug (~7.0 μM), c high drug (~3000 μM). In each case, one 
observes no accessible trajectories in the fitness landscape leading to the ancestral allele (0000), not even in the no-drug environment where the 
ancestor is the most fit
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sequencing efforts will reveal a more complex genomic 
signature of resistance and reversal in settings where 
antimicrobial use has waxed and waned. This has impli-
cations for the practice of molecular epidemiology: while 
sequencing selected SNPs in resistance determinants 

might be sufficient for identifying resistance alleles in 
settings where populations of pathogen are ‘forward’ 
evolving resistance, the genomic picture is likely more 
complicated in reverse. The results, corroborated by 
findings from the field, suggest that re-evolution of the 

Fig. 5  Evolution starting from the ‘centre’ of the landscape (double mutants) cannot cross the single mutant valley en route to the wild type ances-
tor (0000). These are illustrative examples of individual simulations of evolution without drug when the starting population is composed equally of 
the double mutants: 1100, 1010, 1001, 0011, 0101, and 0110. Broadly speaking, one can observe three different outcomes after 1000 generations: a 
fixation of the third-site (**1*) in the double mutant (0110), b a third-site-carrying triple mutant (1110) or c a “polymorphic” population with 0110, 
1101 and 1110 all present in frequency space after 1000 generations (but headed towards an eventual fixation of 1110). No simulations starting 
from the centre moved in the reverse direction toward the ancestral allele (0000)

Table 1  Summary of simulations of evolution in two schemes

(a) Starting from a population fixed for 1111, across drug concentrations and (b) starting from the centre of the landscape, a population composed equally of the six 
double mutants. Note that this summary includes several drug concentrations not visualized in Figs. 4 and 5. For (a) which allele in the landscape is the absolute peak 
at that drug concentration is also highlighted (in parentheses). In a smooth landscape, the landscape should be able to locate the absolute peak. Note that in the no 
drug environment, the population remains trapped on triple mutant local peaks (1110 and 1101), and unable to locate the 0000 absolute peak

(a) Reverse evolution simulation summary

Starting conditions (drug and allele) Outcome Fraction

~3000 μM PYR (peak mutant = 1111)

 1111 1111 0.97

 1111 1111 → 0111 0.3

~400 μM PYR (peak mutant = 1110)

 1111 1111 → 1110 0.93

 1111 1111 → 0111 0.06

~55 μM PYR (peak mutant = 1110)

 1111 1111 → 1110 0.96

 1111 1111 → 0111 → 0110 0.04

~7 μM PYR (peak mutant = 1110)

 1111 1111 → 1110 0.97

 1111 1111 → 1101 0.03

No drug (peak mutant = 0000)

 1111 1111 → 1110 0.91

 1111 1111 → 1101 0.08

(b) Double mutants, no drug simulation summary

Outcome Fraction

Equally distributed: 1100, 1001, 1010, 0011, 0101, 1110

 Polymorphic → 1110 0.54

 Polymorphic → 0110 0.27

 Polymorphic → 1101 0.19
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susceptible phenotype (without the growth defects of 
the more resistant phenotypes) is likely to occur either 
through the introduction of susceptible migrant geno-
types from elsewhere or compensatory mutations at sites 
other than the ones originally arising during resistance 
evolution [57, 58].

This study dissected barriers to reverse evolution from 
the most resistant genotype (1111) toward the most sus-
ceptible (0000) across an adaptive landscape for drug 
resistance mediated by DHFR in P. vivax. Among four 
amino acid replacements resulting in pyrimethamine 
resistance, a single site, S117N (**1*) had a strong effect 
on the fitness of alleles in the landscape across a breadth 
of drug concentrations. At high drug concentrations, 
double and triple mutants containing the S117N muta-
tion, and in particular those in combination with the 
second site mutation S58R (0110 and 1110, for example) 
have a reproductive advantage across most drug envi-
ronments. More specifically, while these higher order 
alleles have lower fitness than the 0000 ancestral allele 
in the absence of drug, they have substantially higher fit-
ness than the single mutant neighbours that separate the 
higher-order mutants carrying the S117N (**1*) mutation 
(1000, 0100, 0010, 0001), which explains the low likeli-
hood of reverse evolution across this drug resistance 
adaptive landscape.

Simulations of evolution across the landscape dem-
onstrate the consequences of genotype-by-environment 
interactions involving S117N: whereas past studies have 
shown that forward evolution from the 0000 ancestor to 
an absolute fitness peak occurs readily at drug concen-
trations greater than 0 [32], evolution starting from the 
population fixed for the 1111 quadruple mutant becomes 
trapped at the 1110 triple mutant local fitness peak, even 
in the drugless environment (Fig.  4). Even more, when 
the landscape starts with a population distributed equally 
between the double mutants (the centre of the landscape; 
0011, 0101, 1001, 1010, 0110, 1100), the evolutionary 
dynamics are still driven by the S117N site (**1*), usu-
ally resulting in fixation of the 1110 triple mutant (Fig. 5; 
Table  1). In this sense, the S117N mutation serves as a 
pivot point for mutation: its arrival provides a bridge to 
high fitness areas of the landscape that are trapped onto 
local peaks through their interaction with other muta-
tions, unable to move to other areas of the landscape.

These findings support the existence of epistatic 
ratchets that inhibit reverse evolution towards ances-
tral states, such as that observed in the evolution of the 

vertebrate glucocorticoid receptor [25]. While the piv-
otal S117N mutation creates a ratchet through epistatic 
interactions, its average effect alone (across all genetic 
backgrounds and across environments) is larger than 
that of the other sites (1***, * 1**, ***1), indicating that 
its fitness effects are not limited to singular genetic back-
grounds or certain environments. In this sense, S117N 
opens evolutionary ‘forks in the road’ towards higher 
mutation regions of the landscape (double mutants, tri-
ple mutants and the quadruple mutant), serving as the 
starting material for the epistatic ratchets that ultimately 
prevent reverse evolution.

Other than the implications for molecular epide-
miology discussed above, these findings are most 
relevant to debates surrounding best practices for 
antimicrobial resistance management. The notion that 
ceasing use of antimicrobials is a viable strategy for 
decreasing resistance is based, in part, on the assump-
tion that reverse evolution can occur across a land-
scape because of the fitness cost of resistance. The 
results suggest that such strategies may not be gen-
erally valid, and they should be tailored to the nature 
of the actual adaptive landscape and its G ×  E inter-
actions affecting the accessible trajectories towards 
resistance and susceptibility. Please note that these 
comments apply to stepwise reverse evolution in a 
situation where a derived resistance allele (1111 in 
this manuscript) is fixed. Alternatively, if a popula-
tion retains the ancestral allele at low frequency, it 
can increase in frequency in the absence of drug. This 
latter scenario is not stepwise evolution, however, but 
canonical selection on standing genetic variation, a 
different population genetic context than the one sim-
ulated in this study.

Lastly, and most provocatively, the identification of 
the S117N pivot mutation suggests a possible strategy 
for identifying targets for chemotherapeutic interven-
tion: if a single mutation is a pivot point to large fitness 
effects (as found in this study), it might be an ideal drug 
target. Compounds that perturb the interaction between 
these pivot residues and others might have a destabiliz-
ing effect on protein structure or function, and diminish 
the evolutionary potential of alleles carrying the resist-
ance determinant. Because this strategy would target the 
ability of a protein to reach high fitness areas of adaptive 
landscapes, it would constitute a strategy directed against 
the evolvability of the pathogen, an unexplored avenue 
for the treatment of microbial pathogens.
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